28th "Saalburg" Summer School
Course "String-inspired methods and the worldline formalism"
Christian Schubert, 29.8. - 2.9.2022

Exercises: part 3

Exercise 1: Higgs production by gluon fusion

Here we calculate the leading contribution to the process of Higgs production by gluon fusion in the SM, which is the one mediated by a top-quark loop. We denote the gluon momenta by $k_{1,2}$, the Higgs momentum by $-k_{3}$. In the worldline formalism this amplitude can be written as (F. Bastianelli, O. Corradini, J.P. Edwards, D.G.C. McKeon and C. Schubert, "Unified worldline treatment of Yukawa and axial couplings", in preparation):

$$
\begin{equation*}
\Gamma\left(k_{1}, \varepsilon_{1} ; k_{2}, \varepsilon_{2} ; k_{3}\right)=(-2)(i g)^{2}\left(2 m_{t} g_{H}\right) \int_{0}^{T} \frac{d T}{T} \mathrm{e}^{-m_{t}^{2} T}(4 \pi T)^{-2}\left\langle V_{1}^{g} V_{2}^{g} V_{3}^{H}\right\rangle \tag{1}
\end{equation*}
$$

with vertex operators

$$
\begin{align*}
V_{1,2}^{g} & =T^{a_{1,2}} \int_{0}^{T} d \tau_{1,2}\left(\varepsilon_{1,2} \cdot \dot{x}_{1,2}-i \psi_{1,2} \cdot f_{1,2} \cdot \psi_{1,2}\right) \mathrm{e}^{i k_{1,2} \cdot x_{1,2}} \tag{2}\\
V_{3}^{H} & =\int_{0}^{T} d \tau_{3} \mathrm{e}^{i k_{3} \cdot x_{3}} \tag{3}
\end{align*}
$$

(where $f_{i}^{\mu \nu}=k_{i}^{\mu} \varepsilon_{i}^{\nu}-\varepsilon_{i}^{\mu} k_{i}^{\nu}$) and Wick contraction rules

$$
\begin{align*}
\left\langle x^{\mu}(\tau) x^{\nu}\left(\tau^{\prime}\right)\right\rangle & =-G_{B}\left(\tau, \tau^{\prime}\right) \tag{4}\\
\left\langle\psi^{\mu}(\tau) \psi^{\nu}\left(\tau^{\prime}\right)\right\rangle & =\frac{1}{2} G_{F}\left(\tau, \tau^{\prime}\right) \tag{5}
\end{align*}
$$

Since this amplitude is finite we have set $D=4$.

1. Perform the Wick contractions, not yet using any on-shell conditions.
2. Remove terms involving \ddot{G}_{B} by partial integration.
3. Show that the on-shell amplitude vanishes for opposite gluon helicities.
4. Calculate the on-shell amplitude for the equal-helicity case.

Solution:

1.

$$
\begin{align*}
\left\langle V_{1}^{g} V_{2}^{g} V_{3}^{H}\right\rangle= & \operatorname{tr}\left(T^{a_{1}} T^{a_{2}}\right)\left\{\ddot{G}_{12} \varepsilon_{1} \cdot \varepsilon_{2}-\left(\dot{G}_{12} \varepsilon_{1} \cdot k_{2}+\dot{G}_{13} \varepsilon_{1} \cdot k_{3}\right)\left(\dot{G}_{21} \varepsilon_{2} \cdot k_{1}+\dot{G}_{23} \varepsilon_{2} \cdot k_{3}\right)\right. \\
& \left.-G_{F 12}^{2} \frac{1}{2} \operatorname{tr}\left(f_{1} f_{2}\right)\right\} \mathrm{e}^{G_{12} k_{1} \cdot k_{2}+G_{13} k_{1} \cdot k_{3}+G_{23} k_{2} \cdot k_{3}} \tag{6}
\end{align*}
$$

2.

$$
\begin{align*}
\left\langle V_{1}^{g} V_{2}^{g} V_{3}^{H}\right\rangle \rightarrow & \operatorname{tr}\left(T^{a_{1}} T^{a_{2}}\right)\left\{\left(\dot{G}_{12}^{2}-G_{F 12}^{2}\right) \frac{1}{2} \operatorname{tr}\left(f_{1} f_{2}\right)+\frac{1}{2} \dot{G}_{12} \varepsilon_{1} \cdot \varepsilon_{2}\left(\dot{G}_{23} k_{2} \cdot k_{3}-\dot{G}_{13} k_{1} \cdot k_{3}\right)\right. \\
& \left.-\left(\dot{G}_{12} \varepsilon_{1} \cdot k_{2}+\dot{G}_{13} \varepsilon_{1} \cdot k_{3}\right)\left(\dot{G}_{21} \varepsilon_{2} \cdot k_{1}+\dot{G}_{23} \varepsilon_{2} \cdot k_{3}\right)\right\} \\
& \times \mathrm{e}^{G_{12} k_{1} \cdot k_{2}+G_{13} k_{1} \cdot k_{3}+G_{23} k_{2} \cdot k_{3}} \tag{7}
\end{align*}
$$

3. For opposite helicities, using spinor helicity with reference momenta $r_{1,2}=k_{2,1}$ leads to

$$
\begin{equation*}
\varepsilon_{1} \cdot k_{2}=\varepsilon_{2} \cdot k_{1}=\varepsilon_{1} \cdot \varepsilon_{2}=0 \tag{8}
\end{equation*}
$$

and thus to the vanishing of (7) after eliminating k_{3} through momentum conservation.
4. For equal gluon helicities, we use the same reference momenta, which still leads to the vanishing of $\varepsilon_{1} \cdot k_{2}$ and $\varepsilon_{2} \cdot k_{1}$, but now $\varepsilon_{1} \cdot \varepsilon_{2}$ survives. Using the further on-shell relations

$$
\begin{equation*}
k_{1}^{2}=k_{2}^{2}=0, k_{3}^{2}=-m_{H}^{2}, \tag{9}
\end{equation*}
$$

and momentum conservation we have

$$
\begin{equation*}
k_{1} \cdot k_{3}=k_{2} \cdot k_{3}=-k_{1} \cdot k_{2}=\frac{m_{H}^{2}}{2} \tag{10}
\end{equation*}
$$

With these relations (7) simplifies to

$$
\begin{align*}
& \left\}=\varepsilon_{1} \cdot \varepsilon_{2} m_{H}^{2}\left[\frac{1}{2}\left(\dot{G}_{12}^{2}-G_{F 12}^{2}\right)+\frac{1}{4} \dot{G}_{12}\left(\dot{G}_{23}-\dot{G}_{13}\right)\right]\right. \tag{11}\\
& G_{12} k_{1} \cdot k_{2}+G_{13} k_{1} \cdot k_{3}+G_{23} k_{2} \cdot k_{3}=\left(G_{13}+G_{23}-G_{12}\right) \frac{m_{H}^{2}}{2}
\end{align*}
$$

Rescaling $\tau_{i}=T u_{i}$, eliminating the T-integral, and introducing the ratio $R \equiv \frac{m_{H}^{2}}{4 m_{t}^{2}}$, we have

$$
\begin{align*}
\Gamma\left(k_{1}, \varepsilon_{1}^{ \pm} ; k_{2}, \varepsilon_{2}^{ \pm} ; k_{3}\right) & =\frac{\alpha_{s}}{\pi} g_{H} m_{t}^{-1} m_{H}^{2} \operatorname{tr}\left(T^{a_{1}} T^{a_{2}}\right) \varepsilon_{1}^{ \pm} \cdot \varepsilon_{2}^{ \pm} I(R) \\
I(R) & =\int_{0}^{1} d u_{1} \int_{0}^{1} d u_{2} \int_{0}^{1} d u_{3} \frac{\frac{1}{2}\left(\dot{G}_{12}^{2}-G_{F 12}^{2}\right)+\frac{1}{4} \dot{G}_{12}\left(\dot{G}_{23}-\dot{G}_{13}\right)}{1-2\left(G_{13}+G_{23}-G_{12}\right) R} \tag{12}
\end{align*}
$$

We use the translation invariance to set $u_{3}=0$, and the symmetry $1 \leftrightarrow 2$ to write $\int_{0}^{1} d u_{1} \int_{0}^{1} d u_{2}=2 \int_{0}^{1} d u_{1} \int_{0}^{u_{1}} d u_{2}$. Writing out the worldline Green's functions yields

$$
\begin{equation*}
I(R)=2 \int_{0}^{1} d u_{1} \int_{0}^{u_{1}} d u_{2} \frac{3\left(u_{1}-u_{2}\right)-2\left(u_{1}-u_{2}\right)^{2}}{1-4 u_{2}\left(1-u_{1}\right) R} \tag{13}
\end{equation*}
$$

MATHEMATICA (version 13.0) is able to perform this double integral (in the opposite order and under the assumption that $R<1$, which is fulfilled for the actual values of m_{t} and m_{H}), giving the result
$I(R)=\frac{1}{R}-\frac{1-R}{2 R^{2}}\left[\operatorname{Li}_{2}(2 R+2 i \sqrt{R(1-R)})+\operatorname{Li}_{2}(2 R-2 i \sqrt{R(1-R)})\right]$

Finally, one calculates

$$
\begin{equation*}
\varepsilon_{1}^{+} \cdot \varepsilon_{2}^{+}=\frac{[12]}{\langle 12\rangle}, \quad \varepsilon_{1}^{-} \cdot \varepsilon_{2}^{-}=\frac{\langle 12\rangle}{[12]} \tag{15}
\end{equation*}
$$

so that $\left|\varepsilon_{1}^{+} \cdot \varepsilon_{2}^{+}\right|=\left|\varepsilon_{1}^{-} \cdot \varepsilon_{2}^{-}\right|=1$.
For quarks $\operatorname{tr}\left(T^{a_{1}} T^{a_{2}}\right)=\frac{1}{2} \delta^{a_{1} a_{2}}$, so our final result for the absolute value of the matrix element becomes

$$
\begin{equation*}
\left|\Gamma\left(k_{1}, \varepsilon_{1}^{ \pm} ; k_{2}, \varepsilon_{2}^{ \pm} ; k_{3}\right)\right|=\delta^{a_{1} a_{2}} \frac{\alpha_{s}}{2 \pi} g_{H} m_{t}^{-1} m_{H}^{2} I(R) \tag{16}
\end{equation*}
$$

To identify it with the form usually given in the literature, we can use $g_{H}=m_{t} \sqrt{\sqrt{2} G_{F}}$ and the identity

$$
\begin{align*}
& \frac{1}{R}-\frac{1-R}{2 R^{2}}\left[\operatorname{Li}_{2}(2 R+2 i \sqrt{R(1-R)})+\operatorname{Li}_{2}(2 R-2 i \sqrt{R(1-R)})\right] \\
& =\tau_{t}\left[1+\left(1-\tau_{t}\right) \arcsin ^{2} 1 / \sqrt{\tau_{t}}\right] \tag{17}
\end{align*}
$$

where $\tau_{t}=1 / R$ (MATHEMATICA seems to be unable to verify this identity analytically, so I had to check it numerically).

