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Preface

This is a course on integrable models given at the 26th Saalburg Summer School for graduate students
“Foundations and New Methods in Theoretical Physics”. I start with recalling the basic notions
of the lagrangian and hamiltonian mechanics, Poisson and symplectic geometry, which provide the
necessary background to subsequently formulate the Arnold-Liouville theorem and to outline its
proof. I then discuss the Lax representation and the Babelon-Viallet theorem on the special form
of the Poisson bracket between the components of a Lax matrix that guarantees involutivity of its
spectral invariants.

The main focus of these lectures is on the Factorised Scattering Theory and the Bethe Ansatz.
Here I departure from considering scattering in classical integrable models, discuss reflection and
transmission representations of the scattering process and show how to compute the classical phase
shift (classical S-matrix). I then turn to scattering in quantum integrable models and show that the
existence of a large number of conservation laws implies a special form of the asymptotic wave func-
tion (the Bethe wave function), renders the scattering process non-di↵ractive and leads to factorisa-
tion of the multi-body scattering matrix into a product of two-body S-matrices. The basic features of
the formalism are demonstrated on the examples of the Lieb-Liniger and Calogero-Moser-Sutherland
models. Further, the Bethe wave function is considered in a finite one-dimensional volume which
amount to imposition of the periodic boundary conditions. This leads to a consistent system of
the matrix Bethe-Yang equations on the scattering amplitudes. Resolution of these equations is
equivalent to finding a simultaneous eigenstate for a family of commuting operators (matrices) Tj

and is conveniently done by means of a procedure known as the nested Bethe Ansatz. I explain the
nested Bethe Ansatz construction based on the generalised Bethe hypothesis for the simplest case
where the operators Tj act in the permutation module of the symmetric group SN described by a
Young diagram rN ´ M, M s. As soon as the common spectrum of operators Tj is found, one can
formulate a system of “scalar” Bethe equations, the latter can be regarded as quantisation conditions
for particle momenta.

Finally, in the last part of the course I describe the transfer matrix method which replaces
diagonalisation of the commutative family tTju by diagonalisation of the transfer matrix. This
diagonalisation is then performed in two alternative ways – in the framework of the coordinate
Bethe Ansatz by Lieb’s method and by means of the Algebraic Bethe Ansatz. The course contains a
number of exercises (most of them with solutions) which appear in the text in yellow boxes. In the
appendix I collected some relevant information about the symmetric group and its representations,
as well as some other useful formulae. I also supply a list of papers and books as a suggestion for
further reading, all this literature material has been heavily used in preparation of these lectures.

Acknowledgement. I would like to thank the organisers of the School for the very enjoyable
atmosphere, perfect organisation and kind hospitality. I am also grateful to the students for their
interesting questions and their passion to be guided into the wonderful world of integrable models.

Heigenbrücken, Germany Gleb Arutyunov
September 2020
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Lecture 1

Liouville Integrability

1.1 Dynamical systems in classical mechanics

We start with recalling the two ways dynamical systems are described in classical mechanics. The
first description is known as the lagrangian formalism and is equivalent to the “principle of stationary
action”. Consider a point particle with mass m which moves in an N -dimensional space with
coordinates q “ pq1, . . . , qN

q and a potential V pqq. Newton’s equations which describe the particle’s
trajectory are

m:qi
“ ´

BV

Bqi
. (1.1)

These equations can be obtained by extremising the following action functional

Srqs “

ª t2

t1

dt Lpq, 9q, tq “

ª t2

t1

dt
´m 9q2

2
´ V pqq

¯

. (1.2)

According to the principle of stationary action, the actual trajectories of a dynamical system (par-
ticle) are the ones that extremise S.

In general, we consider the lagrangian L as an arbitrary function of q, 9q and time t. The equations
of motion are obtained by extremising the corresponding action

�S

�qi
“

BL

Bqi
´

d

dt

´

BL

B 9qi

¯

“ 0

and they are called the Euler-Lagrange equations. An assumption that L does not involve higher
order time derivatives implies that the corresponding dynamical system is fully determined by spec-
ifying initial coordinates and velocities. Indeed, for a system with N degrees of freedom there are N
Euler-Lagrange equations of second order. Thus, the general solution will depend on 2N integration
constants, which are determined by specifying e.g. the initial coordinates and velocities.

Note that adding to the lagrangian a time derivative of a function which depends on coordinates
and time only: L Ñ L `

d
dt⇤pq, tq will not influence the Euler-Lagrange equations. Indeed, the

variation �S1 of the new action S1 will be

�S1
“ �S `

ª t2

t1

dt
d

dt
�⇤pq, tq “ �S `

B⇤

Bqi
�qi

ˇ

ˇ

ˇ

t“t2

t“t1
,

where �S is the variation of the original action S. Since in deriving the equations of motion the
variations of coordinates are assumed to vanish at the initial and final moments of motion, we get
that �S1

“ �S and, as a result, the Euler-Lagrange equations remain unchanged.
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If L does not explicitly depend on t, then

dL

dt
“

BL

B 9qi
:qi

`

BL

Bqi
9qi .

Substituting here BL
Bqi from the Euler-Lagrange equations, we get

dL

dt
“

BL

B 9qi
:qi

`

d

dt

´

BL

B 9qi

¯

9qi
“

d

dt

´

BL

B 9qi
9qi

¯

.

Therefore, we find

d

dt

´

BL

B 9qi
9qi

´ L
¯

“ 0 , (1.3)

as a consequence of the equations of motion. Thus, the quantity

H ”

BL

B 9qi
9qi

´ L (1.4)

is conserved under the time evolution of our dynamical system. For our particular example,

H “ m 9q2

´ L “

m 9q2

2
` V pqq “ T ` V ” E ,

where T is the kinetic energy, 9q2

” 9qi 9qi. Thus, H is nothing else but the energy E of the system; the
energy is conserved due to the equations of motion. In general, dynamical quantities which remain
unchanged under the time evolution are called conservation laws or integrals of motion. Conservation
of energy is one of the main examples of conservation laws.

Introduce the quantity called the canonical momentum

pi “

BL

B 9qi
, p “ pp

1

, . . . , pN q .

Obviously, for a particle pi “ m 9qi. If V “ 0, then

9pi “

d

dt

´

BL

B 9qi

¯

“ 0

by the Euler-Lagrange equations. Thus, in the case of vanishing potential, the particle momentum
is an integral of motion. This is another example of a conservation law.

Let us now we recall the second description of dynamical systems, which exploits the notion of
the hamiltonian. The energy of a system expressed via canonical coordinates and momenta is called
the hamiltonian:

Hpp, qq “

p2

2m
` V pqq .

where p2

” pipi. Given the hamiltonian, Newton’s equations can be rewritten as

9qj
“

BH

Bpj
, 9pj “ ´

BH

Bqj
. (1.5)

These are equations of motion in the hamiltonian form or Hamilton’s equations. These equations
can also be obtained by means of the variational principle. The corresponding action has the form,
cf. (1.2) and (1.4),

Srp, qs “

ª t2

t1

`

pi 9qi
´ Hpp, qq

˘

dt . (1.6)
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Varying this action with respect to p and q, considered as independent variables, one obtains the
hamiltonian equations.

Hamilton’s equations can be represented in the form of a single equation. Introduce two 2N -
dimensional vectors

x “

ˆ

q
p

˙

, rH “

˜ BH
Bqj

BH
Bpj

¸

and 2N ˆ 2N matrix J :

J “

ˆ

0 ´

0

˙

, (1.7)

where is the N ˆ N unit matrix. Then (1.5) are concisely written as

9x “ ´J ¨ rH , or J ¨ 9x “ rH . (1.8)

The vector x “ px1, . . . , x2N
q defines a state of a dynamical system in classical mechanics. The

set of all states forms the phase space P “ txu of the system which in the present case is the 2N -

dimensional space with the euclidean metric px, yq “

2N
∞

i“1

xiyi. Solving Hamilton’s equations with

given initial conditions pp
0

, q
0

q representing a point in the phase space, we obtain a phase space
curve

p ” ppt; p
0

, q
0

q , q ” qpt; p
0

, q
0

q

passing through this point. As follows from the uniqueness theorem for ordinary di↵erential equa-
tions, there is one and only one phase space curve through every phase space point.1

Let F pPq be the space of smooth real-valued functions on P. It carries the structure of an
algebra with respect to the pointwise multiplication and its elements are called observables. Using
the matrix J , one can define on F pPq the following Poisson bracket

tf, gupxq “ J ij
BifBjg “

N
ÿ

i“1

´

Bf

Bpi

Bg

Bqi
´

Bf

Bqi

Bg

Bpi

¯

for any f, g P F pPq. The Poisson bracket is a map F pPq ˆ F pPq Ñ F pPq which has the following
properties

1) Linearity tf ` ↵h, gu “ tf, gu ` ↵th, gu ;

2) Skew-symmetry tf, gu “ ´tg, fu ;

3) Jacobi identity tf, tg, huu ` tg, th, fuu ` th, tf, guu “ 0;

4) Leibniz rule tf, ghu “ tf, guh ` gtf, hu

for arbitrary functions f, g, h P F pPq and ↵ P R. The first three properties imply that the Poisson
bracket introduces on F pPq the structure of an infinite-dimensional Lie algebra, while the Leibniz
rule expresses the compatibility of the bracket with multiplication in F pPq. Due to this rule, the
bracket is fully determined by its values on the coordinate functions xi for which txi, xj

u “ J ij or,
explicitly,

tqi, qj
u “ 0 , tpi, pju “ 0 , tpi, q

j
u “ �j

i . (1.9)

1 The phase curve may consist of a single point. Such a point is called an equilibrium position.
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Using the Poisson bracket, Hamilton’s equations for the coordinate functions can be rephrased in
the following concise form

9xj
“ tH, xj

u .

As a consequence, evolution of any function f on the phase space is governed by the equation

9f “ tH, fu .

Due to the skew-symmetry property of the Poisson bracket, this form of Hamilton’s equations makes
the conservation law for H obvious.

Poisson and symplectic manifolds. The properties 1) ´ 4) provide a general definition of the
Poisson bracket for an arbitrary smooth manifold P. Any Poisson bracket is described by a skew-
symmetric tensor J on P satisfying the Jacoby identity. In local coordinates this identity takes the
form

ÿ

pi,l,mq
J ik

BkJ lm
“ 0 ,

where the sum is over the cyclic permutation of indices. A manifold endowed with a Poisson bracket
is called Poisson.

For later we will need the notion of a Poisson map. For Poisson manifolds M and N , a smooth
map ' : M Ñ N is called Poisson, if for any f, h P F pN q

tf, huN p'pxqq “ t'˚f,'˚huM pxq , (1.10)

where '˚fpxq “ fp'pxqq and '˚hpxq “ hp'pxqq, x P M , are pullbacks of f and h. Here t , uM and
t , uN stand for the Poisson brackets on the respective manifolds.

In general, the rank r of the matrix J is less than or equal to the dimension dim P of a manifold
and it might change from point to point. In the case when r “ dim P at every point, the matrix J
is invertible and the corresponding Poisson bracket is called non-degenerate. This is only possible if
dim P is even.

Exercise. Show this.

Indeed, since J t
“ ´J , one has

detJ “ detp´Jq “ p´1q

dim PdetJ ,

so that p´1q

dim P
“ 1 since detJ ‰ 0.

A manifold P supplied with a non-degenerate Poisson bracket is called symplectic.2 The inverse
of J with entries !ij , where J ik!kj “ �i

j , defines a skew-symmetric bilinear di↵erential 2-form ! on
P

! “ ´

1

2

!ijpxq dxi
^ dxj .

The Jacobi identity for J implies that this form is closed, i.e. d! “ 0. A closed non-degenerate
2-form is called symplectic.

2As an aside, the term , from the Greek for “intertwined” was symplectic introduced in 1939 by Hermann Weyl in
his book The Classical Groups as a substitute for the term complex.
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Exercise. Show that the Jacobi identity for J implies the closeness of !.

We write the Jacobi identity in the explicit form

J ik
BkJ lm

` Jmk
BkJ il

` J lk
BkJmi

“ 0 .

Multiply both sides by !ij!ms and use J ik!kj “ �i
j to obtain

´BjJ
ml!ms ´ !ijBkJ il

` !ijJ
lk

BkJmi!ms “ 0 .

In the last relation we put derivatives on ! using BsJ ik!kj ` J ik
Bs!kj “ 0 that gives

J lm
Bj!ms ´ J li

Bs!ij ´ J lm
Bm!js “ 0 .

It remains to multiply the last relation by !kl and get

Bi!jk ` Bk!ij ` Bj!ki “ 0 ,

which is equivalent to
Bri!jks “ 0 ›Ñ d! “ 0 .

An example of a symplectic manifold is the space R2N with the bracket (1.9). The corresponding
symplectic form is

! “ dpi ^ dqi
“ dppidqi

q .

The 1-form ↵ “ pidqi is called the canonical 1-form.

Given a Poisson manifold, to any function f P F pPq one can associate a vector field ⇠f defined
as

⇠f “ tf, ¨ u . (1.11)

This field is called the hamiltonian vector field generated by f , and f is the generating or hamiltonian
function of ⇠f . In local coordinates xi we have

⇠f “ J ij
BifBj . (1.12)

If we let ⇠f “ ⇠j
f Bj , then the relation above gives

⇠j
f “ J ij

Bif , Bjf “ !ij⇠
i
f . (1.13)

The Jacobi identity for the Poisson bracket implies

⇠tf,gu “ r⇠f , ⇠gs . (1.14)

Hence, the map f Ñ ⇠f is a homomorphism3 F pPq Ñ XpPq, where XpPq is the Lie algebra of vector
fields on P.

Exercise. Prove this statement.

We have

⇠tf,guh “ ttf, gu, hu “ ´tth, fu, gu ´ ttg, hu, fu “ ´tg, tf, huu ` tf, tg, huu

“ ´⇠g⇠fh ` ⇠f⇠gh “ r⇠f , ⇠gsh .

3The map is from functions into vector fields, not vice versa, because functions whose di↵erence is a constant lead,
in fact, to the one and the same hamiltonian vector field.
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If P is symplectic, the definition (1.11) of the hamiltonian vector field can be formulated with
the help of the interior product i⇠

i⇠f! ` df “ 0 , (1.15)

while the one-to-one correspondence between the Poisson bracket and the symplectic form ! can be
expressed as

!p⇠f , ⇠hq “ tf, hu “ ⇠fh “ ´⇠hf . (1.16)

A function C is called a central or Casimir function if it Poisson-commutes with any element of
F pPq, that is

tC, fu “ 0 , @f P F pPq .

Casimir functions form a ring. If C is a Casimir function then it is annihilated by any hamiltonian
vector field ⇠f , i.e. the latter lies everywhere tangent to the level set of the function C. On the
other hand, the hamiltonian vector field ⇠C vanishes as the one-form dC belongs to the kernel of J :
JdC “ 0. Thus, the existence of non-constant Casimir functions means that r ‰ dim P, i.e. the
Poisson bracket is degenerate.

Let tCiu, i “ 1, . . . , m, be a complete set of independent Casimir functions. Consider a level set
Pc “ tx P P : Cipxq “ ciu, where ci are constants. Any hamiltonian vector field is tangent to Pc

⇠fCi “ tf, Ciu “ 0 , @f P F pPq .

The same is true for the commutator of any two hamiltonian vector fields. Thus, by the Frobenius
theorem, the level set Pc is an integral submanifold in P. On Pc one can naturally define a 2-form
!

!xp⇠f , ⇠gq “ tf, gupxq , x P Pc , (1.17)

where !x is the value of ! at x. The di↵erential of ! can be computed with the help of the formula4

3d!p⇠f , ⇠g, ⇠hq “ ⇠f!p⇠g, ⇠hq ` ⇠g!p⇠h, ⇠f q ` ⇠h!p⇠f , ⇠gq

´ !pr⇠f , ⇠gs, ⇠hq ´ !pr⇠h, ⇠f s, ⇠gq ´ !pr⇠g, ⇠hs, ⇠f q .

Using (1.14), definition (1.17) and the Jacobi identity, we get d! “ 0. Since the hamiltonian vector of
any Casimir function vanishes, the form ! is non-degenerate and, therefore, it is symplectic, i.e. Pc

is a symplectic manifold. Thus, the hamiltonian vector fields foliate P into integral even-dimensional
sub-manifolds called symplectic leaves, each of which inherits a symplectic form from the original
Poisson bracket on P.

Canonical transformations. Consider a smooth coordinate transformation x Ñ x1
“ x1

pxq. In
terms of these new coordinates Hamilton’s equations (1.8) take the form

dx1i

dt
“

Bx1i

Bxk

dxk

dt
“ ´

Bx1i

Bxk
Jkm

pxqrx
mH “ ´

Bx1i

Bxk

Bx1j

Bxm
Jkm

pxqrjH
1

” ´J 1ij
px1

qrjH
1 ,

where

J 1ij
px1

q “

Bx1i

Bxk

Bx1j

Bxm
Jkm

pxq , (1.18)

4The general formula for the di↵erential of a di↵erential form of order k is

pk ` 1qd!p⇠0, ⇠1, . . . , ⇠

k

q “
k

ÿ

i“0

p´1qi

⇠

i

!p⇠0, . . . , ⇠̂

i

, . . . , ⇠

k

q `
ÿ

0§i§j§k

p´1qi`j

!pr⇠
,

⇠

j

s, ⇠0, . . . , ⇠̂

i

, . . . , ⇠̂

j

, . . . ⇠

k

q .
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that is under coordinate transformations J transforms as a contravariant anti-symmetric tensor field.
Here H 1

px1
q “ Hpxpx1

qq. Evidently, the equations for x1 are of the hamiltonian form with the new
hamiltonian H 1

px1
q if and only if

Bx1i

Bxk

Bx1j

Bxm
Jkm

pxq “ J ij
px1

q . (1.19)

Di↵eomorphisms of the phase space which satisfy this condition are called canonical. In other words,
canonical transformations do not change the form of the Poisson (tensor) bracket. An infinitesimal
di↵eomorphism x1k

“ xk
` ⇠k is generated by a vector field ⇠. Under such a di↵eomorphism the

form of an arbitrary contravariant tensor J varies according to (1.18),

`

L⇠J
˘ij

” J ij
pxq ´ J 1ij

pxq “ ⇠k
BkJ ij

´ Bk⇠
iJkj

´ Bk⇠
jJ ik . (1.20)

Here L⇠ is the Lie derivative of J along the vector field ⇠. It is now obvious that infinitesimal
canonical transformations correspond to those ⇠ for which L⇠J “ 0.

If a manifold P is symplectic, then canonical transformations preserve the corresponding sym-
plectic form, that is

L⇠! “ 0 . (1.21)

For this reason, these transformations are also called symplectic or symplectomorphisms.

Exercise. Show that hamiltonian vector fields generate canonical transformations.

An important class of canonical transformations is comprised by the hamiltonian vector fields.
Consider a di↵eomorphism generated by a hamiltonian vector field ⇠f . From the definition (1.20) of
the Lie derivative we deduce that

`

L⇠f J
˘ij

“ ´Jkm
BmfBkJ ij

` BkpJ im
BmfqJkj

` BkpJjm
BmfqJ ik

“ Bmf
ÿ

pi,j,mq
J ik

BkJjm
“ 0 ,

where the sum over the cyclic permutation of indices i, j, k vanishes due to the Jacobi identity. The
same result follows immediately from the Cartan formula

L⇠f! “ dpi⇠f!q ` i⇠f pd!q “ ´d2f “ 0 ,

since ! is closed. Hence, any hamiltonian vector field generates a canonical transformation. If a
Poisson manifold is not symplectic, then hamiltonian vector fields generate symplectomorphisms of
the corresponding symplectic leaves.

Generally, a hamiltonian system is characterised by a triple pP, t , u, Hq: a phase space P, a
Poisson structure t , u and a hamiltonian function H. For any function f on the phase space,
evolution equation is

df

dt
“ tH, fu .

Since tH, Hu “ 0, the hamiltonian is automatically conserved. Therefore, the motion of the system
takes place on the submanifold of the phase space defined by the equation H “ E where E is a fixed
constant.
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1.2 Liouville theorem

Among a large variety of physically relevant dynamical systems, those which admit an exact solution
turn out to be rather rare. Remarkably, however, for a special class of systems solutions of the
corresponding Hamilton’s equations can always be found by quadratures, i.e. by solving a finite
number of algebraic equations and computing a finite number of definite integrals. Dynamical
systems falling in this class are generally known as Liouville integrable systems because they satisfy
the assumptions of the famous Liouville theorem. In essence, for a dynamical system with a 2N -
dimensional phase space P this theorem states that if there exist N independent functions fi P F pPq

including the hamiltonian H, which Poisson commute, tfi, fju “ 0, then the corresponding equations
of motion can be solved by quadratures. Since tH, fiu “ 0, the functions fi do not depend on time,
i.e. they are integrals of motion. In general,

::::
two

::::::::
functions

:::
on

::
a
:::::
phase

::::::
space

::::
that

:::::::
Poisson

:::::::::
commute

:::
are

::::
said

::
to

:::
be

:::
in

::::::::::
involution. Thus, Hamilton’s equations of any dynamical system that admits an

involutive family of integrals of motion which is equal to half the dimension of its phase space in
number can be solved, at least in principle, by means of well-established mathematical operations.
For this reason Liouville integrable systems are also called completely integrable systems.

Exercise. Show that the number of independent integrals in involution cannot exceed N for a
non-degenerate Poisson structure on a manifold on dimension 2N .

It may happen that a dynamical system defined on a symplectic manifold P of dimension
2N exhibits more than N integrals of motion. In this case the maximal number of independent
pairwise commuting integrals fi can not exceed N . Indeed, the hamiltonian vector fields of fi,
i “ 1, . . . , k, span a subspace V Ä TP of the tangent bundle TP at any given point x P P.
Assuming fi in involution, one gets !

ˇ

ˇ

V
“ 0 and, therefore, V Ä V K, where V K is a skew-orthogonal

complement of V in TP. The last observation implies that k “ dim V § dim V K. On the other
hand, dim V ` dim V K

“ 2N , as ! is non-degenerate. Hence, k § 2N ´ k, so that k § N .

For complete proof we need the following statement. If V is a subspace of a symplectic vector space
W “ TP, then dimV ` dim V K

“ dim W .

This can be proved as follows. There is a linear map ' : W Ñ W ˚ assigning v to the linear
transformation 'pvq : V Ñ R that sends w Ñ !pv, wq. Since ! is nondegenerate, then ' is
injective. Since W and W ˚ have the same dimension, ' is an isomorphism. The image 'pV K

q is
the space of functions in W ˚ that vanish on V , which is isomorphic to the space of functions on
W {V , i.e. ' : V K

Ñ pW {V q

˚ is injective, and in fact an isomorphism: any function on W {V is to
a function on W vanishing on V . Thus, dimV K

“ dimpW {V q

˚
“ dimpW {V q “ codimV .

To demonstrate the concept of Liouville integrability in a simple setting, consider the example
of the one-dimensional harmonic oscillator. The hamiltonian is (mass m “ 1)

H “

1

2
p2

`

!2

2
q2

and the Poisson bracket is given by tp, qu “ 1. The energy is conserved, therefore, the phase space
is fibered into ellipses H “ E. Perform a change of variables

p “ ⇢ cosp✓q , q “

⇢

!
sinp✓q .

Then for the Poisson bracket one gets t⇢, ✓u “

!
⇢ . The hamiltonian becomes H “

1

2

⇢2, so ⇢ is an
integral of motion. The variable ✓ evolves according to

9✓ “ tH, ✓u “ ⇢t⇢, ✓u “ ! Ñ ✓ptq “ !t ` ✓
0

.
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p

q

Stationary point
H = const � Energy levels

Figure 1.1: Phase space trajectories of the harmonic oscillator.

Thus, the phase space trajectories are ellipses with fixed values of ⇢.

The generalisation to the n-dimensional harmonic oscillator is straightforward. The correspond-
ing hamiltonian is5

H “

N
ÿ

i“1

ˆ

1

2
p2

i `

!2

i

2
q2

i

˙

,

while commuting integrals are

fipp, qq ”

1

2
p2

i `

!2

i

2
q2

i , i “ 1, . . . , N .

Define the common level set

Pc “ tx P P : fipp, qq “ ci, i “ 1, . . . , Nu,

where ci are constants. This set is a manifold isomorphic to an N -dimensional real torus TN . These
tori foliate the phase space and can be parametrised by N angle variables ✓i that evolve linearly in
time with frequencies !i.

Consider the equation

k
1

!
1

` . . . kN!N “ 0, (1.22)

where k “ pk
1

, . . . kN q is a vector with integer components. If (1.22) has at least one non-zero
solution solution, the frequency set p!

1

, . . . ,!N q is called resonant, otherwise it is non-resonant. For
a non-resonant set of frequencies every trajectory is dense on the torus TN and the corresponding
motion is called conditionally periodic. Evidently, if all the frequencies are commensurable (rationally
comparable), that is for any !i and !j there exist integers m and n such that

!i m “ !j n ,

then the motion is periodic.

The multi-dimensional harmonic oscillator is a beautiful example of a Liouville integrable system
as any such system exhibits a very similar structure of its phase space flows, the latter are described

5To uniformise notations, for the rest of this section we label coordinates by using lower indices.
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by the Liouville theorem. The modern version of this theorem and the corresponding proof is due
to Arnold.

Arnold-Liouville theorem. Let P be a 2N -dimensional symplectic manifold. Suppose there exist
N functions fi P F pPq that are pairwise in involution with respect to the corresponding Poisson
bracket

tfi, fju “ 0 , @i, j “ 1, . . . , N .

Consider a common level set Pc of these functions,

Pc “ tx P P : fipxq “ ci, i “ 1, . . . , Nu , (1.23)

where ci are constants. Assume that functions fi are independent on Pc, which means that the
1-forms dfi are linearly independent at each point of Pc. Then

1) Pc is a smooth manifold invariant under the hamiltonian flow with H “ Hpfiq.

2) If Pc is compact and connected then it is di↵eomorphic to the N -dimensional torus

TN
“ tp'

1

, . . . ,'N q mod 2⇡u .

3) The motion on Pc under H is conditionally periodic, that is,

d'i

dt
“ !ipcq .

4) The equations of motion can be integrated by quadratures.

We sketch the proof of the Arnold-Liouville theorem. Consider the hamiltonian vector fields ⇠i
corresponding to the functions fi. Since ⇠ifj “ 0, these vector fields are tangent to Pc and their
linear independence implies that they span the tangent space of Pc at any point. Taking into account
that the vector fields are in involution r⇠i, ⇠js “ 0, we conclude on the base of the Frobenius theorem,
that Pc is a

:::::::
maximal

::::::::
integral

:::::::::::
submanifold for the distribution spanned by ⇠i. Clearly, the manifold

Pc is invariant under the hamiltonian flow triggered by any H “ Hpfiq. Varying the constants ci,
we obtain a foliation of almost all6 P into invariant submanifolds, see Fig. 1.2.

The main part of the proof consists in showing that whenever Pc is compact and connected, it is
a torus but not, for instance, a sphere.

:::
Let

:::
gti

i ,
:::::::
ti P R,

::
be

::
a

:::::::::::::
one-parametric

::::::
group

::
of

:::::::::::::::
di↵eomorphisms

::
of

::
P

:::::::::::::
corresponding

::
to

::::
the

:::::::::::
hamiltonian

::::::
vector

::::
field

:::
⇠i. The one-parametric groups corresponding to

di↵erent vector fields commute because the vector fields commute. As a result, one can define the
following action of the abelian group RN

“ tt
1

, . . . , tN u on Pc:

gt
pxq “ gt1

1

¨ ¨ ¨ gtN
N pxq . (1.24)

Since Pc is an integral manifold for the distribution spanned by ⇠i, this action is transitive and,
therefore, Pc is a homogeneous space. Thus, Pc is di↵eomorphic to the quotient RN

{�, where � is
the isotropy subgroup of RN , i.e. a set of all points t P RN for which gt

pxq “ x. The fact that
the fields ⇠i are independent at any point of Pc implies that the action (1.24) is locally free (none
of the group elements has a fixed point) and, therefore, � must be a discrete subgroup of RN . By
assumption Pc is compact and, therefore, � should be nothing else7 but an integral lattice ZN , so
that Pc is di↵eomorphic to RN

{ZN
“ TN . By the standard construction of a homogeneous space as

a coset, the vector fields ⇠i are mapped by this di↵eomorphism to the translation-invariant vector
fields on TN . The angle variables t'i mod2⇡u parametrising the torus provide a coordinate system

6There could be values of c

i

for which the equations f

i

“ c

i

cease to be independent.
7All discrete subgroups of RN correspond to integral lattices Zk, k § N .

14



Levels of fj(x)

Figure 1.2: Foliation of a phase space by invariant tori. Each torus coincides with a level set Pc. All
trajectories on a given torus have the same frequencies !ipcq, so one may speak of the “frequency
set of a torus”.

on Pc and they can be
::::::
linearly8 expressed via t

1

, . . . , tN . The uniform motion on the torus TN

happens according to the law 'i “ '0

i ` !it and is conditionally periodic. The numbers !i “ !ipcq

are called frequencies.

The linear relation between angles and times means that

'iptq “ Ajitj ` 'p0q
i mod2⇡

for some constant matrix A that depends on the level set c. The evolution in the time direction tj
is driven by the vector ⇠j “ tfj , u and, therefore, the Hamilton’s equation for 'i has the form

d'i

dtj
“ tfj ,'iu

ˇ

ˇ

Pc
“ Aji .

From here we find that the evolution of angle coordinates with respect to H “ Hpfq will be

d'i

dt
“ tH,'iu

ˇ

ˇ

Pc
“

BH

Bfj
tfj ,'iu

ˇ

ˇ

Pc
“

BH

Bfj

ˇ

ˇ

ˇ

Pc

Aji ” !i .

Further, we note that the Arnold-Liouville theorem can be extended to the case when Pc is
not necessarily compact. With an additional assumption that the hamiltonian vector fields ⇠i are
complete9 on Pc, it is possible to show that each connected component of Pc is di↵eomorphic to
Tk

ˆ RN´k.

Action-angle variables. The variables fi,'j , i, j “ 1, . . . , N featuring in the Arnold-Liouville the-
orem are not in general canonical coordinates on P. However, such coordinates can be constructed.
First we note that in a small neighbourhood of Pc the symplectic manifold P is di↵eomorphic to
the direct product D ˆ TN , where D is a small domain in RN . It turns out that in D ˆ TN there
exist coordinates Ii, ✓j , where Ii P D, ✓j P TN such that in these variables all fi depend only on Ij

and the symplectic structure has the canonical form ! “ dIi ^ d✓i. An explicit construction of the
canonical variables Ii, ✓j proceeds as follows.

8This follows from RN {ZN “ TN .
9A vector field is complete if any of its flow curves exists for all values of time.
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It is clear that in the small neighbourhood of Pc the non-singular matrix of Poisson brackets
takes the form

ˆ

tfi, fju tfi,'ju

t'i, fju t'i,'ju

˙

“

ˆ

0 Aij

´Aji Bij

˙

. (1.25)

The matrix Aij is constant on Pc and therefore Aij “ Aijpfq. We show that Bij also depends on
fi. Consider the Jacobi identity

tfm, t'i,'juu ` t'i, t'j , fmuu ` t'j , tfm,'iuu “ 0 . (1.26)

We have

t'i, t'j , fmuu ` t'j , tfm,'iuu “ ´t'i, Amjpfqu ` t'j , Amipfqu

´

BAmj

Bfk
t'i, fku `

BAmi

Bfk
t'j , fku “

BAmj

Bfk
Aki ´

BAmi

Bfk
Akj (1.27)

which is independent on '. Thus, the bracket

tfm, t'i,'juu “ tfm, Biju “

BBij

B'k
tfm,'ku “ Amk

BBij

B'k

is also '-independent. Since the matrix A is invertible (otherwise the Poisson bracket (1.25) would

be degenerate), BBij

B'k
also depends only on f which further implies that

Bij “ cs
ijpfq's ` gijpfq .

Single-valuedness of the bracket requires that cs
ij “ 0 (otherwise, the bracket at 0 and at 2⇡ for any

of the angles will have di↵erent values although it corresponds to the one and the same value on the
torus), i.e. Bij is a function of f . One of the consequences of this fact is that the Jacobi identity
(1.26) reduces to

BAmj

Bfk
Aki ´

BAmi

Bfk
Akj “ 0 . (1.28)

Now we perform the change of variables fi “ fipIjq such that tIi,'ju “ �ij . For this we need to
solve a system of equations

Aij “ tfi,'ju “

Bfi

BIk
tIk,'ju “

Bfi

BIk
�kj “

Bfi

BIj
.

The compatibility condition for this system is

BAij

BIs
“

Bfi

BIsBIj
“

Bfi

BIjBIs
“

BAis

BIj
.

Since BAij

BIs
“

Bfk

BIs

BAij

Bfk
“

BAij

Bfk
Aks, this condition is equivalent to

BAij

Bfk
Aks “

BAis

Bfk
Akj ,

which is nothing else but the Jacobi identity (1.28) for functions fi,'j ,'s.

If the variables 'i do not commute, then we should pass to new angle coordinates ✓i mod2⇡ by
a shift 'i “ ✓i ` hipIq. The functions hi are determined from the condition

Bij “ thi, ✓ju ` t✓i, hju “

Bhi

BIj
´

Bhj

BIi
, (1.29)
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which solubility condition is equivalent to the system of equations

BBij

BIk
`

BBjk

BIi
`

BBki

BIj
“ 0

which is the same as

BBij

Bfm
Amk `

BBjk

Bfm
Ami `

BBki

Bfm
Amj “ 0 . (1.30)

Since tt'i,'ju,'ku “ tBij ,'ku “

BBij

Bfm
tfm,'ku “

BBij

Bfm
Amk, one immediately recognises that (1.30)

is just the Jacobi identity

tt'i,'ju,'ku ` tt'j ,'ku,'iu ` tt'k,'iu,'ju “ 0 .

In this way we have constructed the action-angel variables Ii,'j realising the canonical structure.

Example of an explicit construction of action-angle variables. Consider a Liouville inte-
grable system with the

::::
phase

::::::
space

::::
R2N . According to the Liouville theorem, the motion occurs on

a N -dimensional torus TN being a common level of N commuting integrals. Let �j , 1 § j § N ,
be the fundamental cycles of this torus depending continuously on the level tcju. Consider a set of
equations fjpp, qq “ cj and solve it for pj : pj “ pjpc, qq. Introduce the so-called action variables10

Ijpcq “

1

2⇡

¿

�j

pipq, cqdqi “

1

2⇡

¿

�j

↵ , (1.31)

where ↵ “ pidqi is the canonical 1-form. Since cj are time-independent as they are values of the
integrals of motion, the variables Ij “ Ijpcq are also time-independent. Moreover, assuming that
Ii are independent functions of cj , the map cj Ñ Ijpcq given by (1.31) has an inverse. The angle
variables ✓j are constructed by requiring that the transformation

ppj , qjq Ñ pIj , ✓jq (1.32)

is canonical. To construct this canonical transformation, we will use the following generating function
depending on the “old” coordinates q and the “new” momenta I

SpI, qq “

ª q

q0

pipq̃, Iqdq̃i ,

where an integration path lies on Pc. We have

pj “

BS

Bqj
Ñ pj “ pjpI, qq. (1.33)

The angle variables are introduced as

✓j “

BS

BIj
Ñ ✓j “ ✓jpI, qq . (1.34)

Thus, for the di↵erential of S we then have

dS “

BS

Bqj
dqj `

BS

BIj
dIj “ pjdqj ` ✓jdIj .

10The physical dimension of I

j

coincide with the dimension of the action that is the same as the dimension of
angular momentum.
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Acting on this relation with d and taking into account that d2S “ 0, we get

! “ dpj ^ dqj “ dIj ^ d✓j ,

which shows that Ii, ✓j are canonical variables.

A subtle point here concerns a dependence of S on the integration path. Consider a closed path:
from q

0

to q and further from q to q
0

. If this path is contractable, then by Stokes’ theorem

�S “

q0
¿

q0

↵ “

ª

d↵ “

ª

! “ 0 .

Here the vanishing of the integral of ! is due to the fact that ! vanishes on Pc

!p⇠i, ⇠jq “ tfi, fju “ 0 .

If an integration path encloses a non-trivial cycle �, the generation function undergoes a shift by an
integral of ↵ over this cycle

��S “

ª

�

↵

that depends on Ij only. As a result, going over the cycle the variables ✓j undergo a jump

��✓j “

B

BIj

ª

�

pipq, Iqdqi ,

i.e. ✓j are multi-valued functions on Pc. In particular, ��i✓j “ 2⇡�ij . This shows that ✓j are
independent angle coordinates on the cycles. The same conclusion can be also drawn from the
following consideration

¿

�j

d✓i “

¿

�j

d
BS

BIi
“

B

BIi

´

¿

�j

dS
¯

“

B

BIi

´

¿

�j

BS

Bqk
dqk

¯

“

B

BIi

´

¿

�j

pkdqk

¯

“ 2⇡�ij ,

as on �j P TN the variables Ij are constants and the function SpI, qq depends on q only.

In the variables I, ✓ the Hamiltonian is a function of I. Then equations of motion become

9Ij “ ´

BH

B✓j
“ 0 , 9✓j “

BH

BIj
” !jpIq

and they are trivially solved, Ijptq “ I0

j , ✓jptq “ ✓0j ` !jpI0

qt. On the way of constructing the angle
coordinates ✓j , algebraic operations were used to find pj from fjpp, qq “ cj and a computation of a
definite integral was implicitly done to obtain SpI, qq. Finally, the inverse of (1.32) was constructed
by solving equations (1.34) for qj “ qjpI, ✓q, which is also an algebraic operation. This way of solving
a Liouville integrable system is behind the term “quadrature”.

Note that even in the one-dimensional case the action-angle variables are not uniquely defined.
The action variable is defined up to an additive constant and the angle variable can be shifted by
an arbitrary function h of I: I Ñ I ` const, ✓ Ñ ✓ ` hpIq.
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Exercise. Construct the action-angle variables for harmonic oscillator.

We illustrate the construction of the action-angle variables by using the harmonic oscillator as an
example. We have

E “

1

2
pp2

` !2q2

q Ñ ppE, qq “ ˘

a

2E ´ !2q2

and, therefore,

I “

1

2⇡

¿

E

dq
a

2E ´ !2q2

“

2

2⇡

ª

?
2E
!

´
?

2E
!

dq
a

2E ´ !2q2

“

E

!
.

The generating function of the canonical transformation reads

SpI, qq “

ª q

dx
a

2I! ´ !2x2 ,

while for the angle variable we obtain

✓pI, qq “

BS

BI
“ !

ª q dx
?

2I! ´ !2x2

“ arctan
!q

a

2I! ´ !2q2

. (1.35)

The change of ✓ for the period of motion, which is the same as an integral over the cycle of constant
energy, is

1

2⇡

¿

E

d✓ “

1

⇡
!

ª

?

2I
!

´
?

2I
!

dx
?

2I! ´ !2x2

“ 1 . (1.36)

Inverting (1.35) with respect to q, we get

q “

c

2I

!
sin ✓ .

We can verify that the transformation to the action-angle variables is indeed canonical

dp ^ dq “

´ !dI
a

2I! ´ !2q2

´

!2qdq
a

2I! ´ !2q2

¯

^ dq

“

!
a

2I! ´ !2q2

dI ^

c

2I

!
dpsin ✓q “ dI ^ d✓ .

1.3 Some examples of integrable systems

Bose gas with delta-interaction. The so-called delta-interaction model is defined by the hamil-
tonian

H “

1

2m

N
ÿ

i“1

p2

i ` 
ÿ

i†j

�pqi ´ qjq , (1.37)

where  is a real coupling constant. For  ° 0 the interaction is repulsive and for  † 0 it is
attractive. A solution of the corresponding quantum-mechanical problem for the repulsive case was
first obtained in the case of bosons by Lieb and Liniger, while the general case of distinguishable
particles was solved by Yang. Expanded in many directions, this model serves as a prototype example
of applications of the Bethe Ansatz techniques.
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Calogero-Moser-Sutherland (CMS) models. Inverting the harmonic potential of the one-
dimensional oscillator, one obtains a model with the hamiltonian

H “

p2

2m
`

�2

mq2

.

Exercise. The corresponding dynamical system can be thought of as describing radial motion of a
free particle on a two-dimensional plane with fixed angular momentum L' attributed to the coupling
constant �, the latter has the physical dimension of the Planck constant.

The potential gives rise to centrifugal inverse-cube force. As any one-dimensional model with
conserved energy, it can be elementary solved by quadratures. It is remarkable, however, that this
model admits an integrable generalisation to many degrees of freedom

I. H “

1

2m

N
ÿ

i“1

p2

i `

�2

2m

N
ÿ

i‰j

1

q2

ij

. (1.38)

The latter model describes N particles on a line interacting by the inverse-square potential. Here
qij “ qi ´qj is the di↵erence between coordinates of i’th and j’th particle on a line. This mechanical
system with n degrees of freedom is historically tied up with names of Calogero and Moser who
solved it first in the quantum and classical cases, respectively.

It has been shown by Sutherland that the model (1.38) can be further generalised to account
for a periodic boundary conditions. The corresponding potential is a trigonometric generalisation
of the one in (1.38) and the hamiltonian is

II. H “

1

2m

N
ÿ

i“1

p2

i `

�2

2m

N
ÿ

i‰j

1

4`2 sin2

1

2`qij

. (1.39)

This is the Sutherland model.
:
It

::::
can

:::
be

:::::::
viewed

::
as

:::
an

:::::::::
integrable

::::::::::::
deformation

::
of

::::::
(1.38)

::::::::::
depending

::
on

:::
an

::::::::::
additional

::::::
length

::::::::::
parameter

::̀
.
:::::::::

Particles
::::
are

::::::::
confined

::::
here

:::
to

::
a

::::
ring

::
of
:::::::::::::
circumference

:::::
2⇡`,

:::
the

:::::::::::::::::
decompactification

:::::
limit

::::::
` Ñ 8

::::::
brings

::::::
(1.39)

:::::
back

::
to

:::
the

::::::::
rational

::::
case

:::::::
(1.38). Sutherland used

this model to study thermodynamical properties of quantum fluid based on (1.38). The Sutherland
model has an interesting variant where the length ` is analytically continued to imaginary values
` Ñ i`, giving rise to the hyperbolic model with the inverse-sinh-squared potential

III. H “

1

2m

N
ÿ

i“1

p2

i `

�2

2m

N
ÿ

i‰j

1

4`2 sinh2

1

2`qij

. (1.40)

::::
This

:::::
time

:̀::
is
:::::::::
naturally

::::::::::
interpreted

:::
as

:::
an

::::::::::
interaction

::::::
length

::::
that

::::
sets

::::
the

::::
size

::
of

::::
the

::::::
region

::::::
where

::::::::::
interactions

::::::::
between

::::::::
particles

::::
are

::::::::
sizeable. In the limit ` Ñ 8 one again recovers the long-range

model (1.38).

Evidently, the three models (1.38)-(1.40) are particular instances of the hamiltonian system with
a pairwise potential vpqq “ vp´qq

H “

1

2m

N
ÿ

i“1

p2

i `

N
ÿ

i†j

vpqijq . (1.41)

One can therefore ask a question on the most general function vpqq for which the model defined by
the hamiltonian is integrable in the Liouville sense. The answer turns out to be

IV. vpqq “

�2

m
}pqq , (1.42)
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where }pqq ” }pq|!
1

,!
2

q is the Weierstrass elliptic function with half-periods !
1

and !
2

, where we
choose !

1

, ´i!
2

to be any positive numbers, possibly infinite.11 This potential defines an elliptic
model from which the previous models follow as degenerate cases when one or both periods become
infinite. Specifically, we have

Rational case: !
1

“ 8,!
2

“ i8,

}pqq Ñ

1

q2

.

Hyperbolic case: !
1

“ 8,!
2

“ i⇡`,

}pqq Ñ

1

4`2 sinh2 q
2`

`

1

12`2
.

Trigonometric case: !
1

“ ⇡`,!
2

“ i8,

}pqq Ñ

1

4`2 sin2

q
2`

´

1

12`2
.

The rational, hyperbolic and trigonometric (potentials) models are marked as I, II and III respec-
tively, while the most general elliptic case is refereed to as IV. In the following we abbreviate the
systems I ´ IV as the CMS (Calogero-Moser-Sutherland) models. These CMS models are related
to the root system of the Lie algebra AN´1

and can be generalised to other root systems.

1.4 Lax representation and classical r-matrix

Lax representation. Let L and M be two square matrices whose entries are functions on a phase
space. Consider the following matrix equation

9L “ rM, Ls , (1.43)

where as usual dot stands for the time derivative. If equation (1.43) is identically satisfied as a
consequence of hamiltonian equations for a given dynamical system, then this dynamical system is
said to admit a Lax representation (1.43) with L being the corresponding Lax matrix. Such a pair
of matrices L and M is often referred to as Lax pair.

The importance of the Lax representation is that, once found, it allows for a simple and universal
construction of an extended set of conserved quantities as spectral invariants of the corresponding
Lax matrix. Indeed, consider

Ik “ Tr Lk .

for k P Z. We have

9Ik “ kTrpLk´1 9Lq “ kTrpLk´1

rM, Lsq “ TrrM, Lk
s “ 0 ,

i.e. the Ik are time-independent as a consequence of the hamiltonian equations implying (1.43). In
fact, the matrix equation (1.43) can be readily solved as

Lptq “ gptqLp0qgptq´1 ,

where the invertible matrix gptq is determined from the equation

Mptq “ 9gg´1 .

11The }-function is homogeneous }p�q|�!1, �!2q “ �

´2
}pq|!1, !2q. With the assumption that !1, !2 has the

physical dimension of length, this property allows one to use in }pqq the dimensionful coordinate q.
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By Newton’s identities, integrals Ik are functions of the eigenvalues of the matrix L and vice versa.
Since the eigenvalues of L are preserved in time, evolution of such a dynamical system is called
isospectral.

It should be emphasised that a Lax pair, if it exists, is not uniquely defined. First, the one and
the same dynamical system might admit Lax pairs represented by n ˆ n matrices of di↵erent size n.
Second, there is a freedom related to transformations of the type

L1
“ gLg´1 , M 1

“ gMg´1

` 9gg´1 , (1.44)

where g is an arbitrary invertible matrix possibly depending on dynamical variables. If here L, M
is a Lax pair, then L1, M 1 is another one for the same dynamical system. Indeed,

9L1
“ 9gLg´1

` grM, Lsg´1

´ gLg´1 9gg´1

“ rgMg´1

` 9gg´1, gLg´1

s ” rM 1, L1
s .

Note that M undergoes a gauge-type transformation. Lastly, for a fixed L shifting M by any
polynomial of L will not influence the Lax equation (1.43).

Exercise. Illustrate the concept of Lax representation on the simple example of a one-dimensional
system with the following hamiltonian

H “

1

2
p2

`

1

2
!2q2

`

⌫2

2q2

. (1.45)

This system can be called Calogero oscillator, as in the limiting cases ⌫ Ñ 0 and ! Ñ 0 it reduces
to the usual oscillator and the rational Calogero model, respectively. Show that for this system one
can take

L “

1

2

ˆ

p !q ´

⌫
q

!q ´

⌫
q ´p

˙

, M “

1

2

ˆ

0 ´! ´

⌫
q2

! `

⌫
q2 0

˙

. (1.46)

With this choice for L and M equation (1.43) is satisfied as a consequence of equations of motion

9q “ p and 9p “ ´!2q `

⌫2

q3 , and vice versa, satisfaction of (1.43) implies equations of motion for the

Calogero oscillator. Notice that the conserved hamiltonian is expressed as H “ TrL2

` ⌫!.

Among further examples we mention the Lax representations for the models CMS models I and III.

I. Lax representation for the rational CMS model

L “

N
ÿ

i“1

piEii ´ i�
N
ÿ

i‰j

1

qij
Eij ,

M “ i�
N
ÿ

i‰j

1

q2

ij

pEii ´ Eijq .

(1.47)

Using the canonical structure (1.9) and the Hamiltonian12 (1.38), one can verify the validity of the
Lax representation, namely, that

9L “ tH, Lu “ rL, M s . (1.48)

12For simplicity we put m “ 1.
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Exercise. Matrix unities.

The space MatpRq has a bilinear form

xA, By “ TrpABq (1.49)

and a natural basis of matrix unities. Denote by Eij P MatpRq a matrix unit, i.e. a matrix which
has only one non-trivial matrix element equal to 1 standing on the intersection of i’s row with j’s
column

pEijqkl “ �ik�jl . (1.50)

Questions:

1. Show that for the commutator and product one has

rEij , Ekls “ �jkEil ´ �ilEkj , EijEkl “ �jkEil .

Note that this basis is not orthogonal with respect to (1.49), rather TrpEijEklq “ �il�jk.

2. Introduce the matrix representation for the so-called split Casimir

C “

N
ÿ

a,b“1

Eab b Eba (1.51)

and show the matrix elements of C are

Cij,kl “

N
ÿ

a,b“1

pEabqij b pEbaqkl “ �il�jk “ TrpEijEklq . (1.52)

3. Show that for any matrix A one has

A “ EijTrpEjiAq Ñ A
1

“ Tr
2

pC
12

A
2

q .

The first two spectral invariants of L produce the total momentum P and the Hamiltonian 2H ” H
2

.
Starting from TrL3 one produces new integrals of motion that cannot be expressed via P and H.
More explicitly,

H
1

“ TrL “

ÿ

i

pi

H
2

“ TrL2

“

ÿ

i

p2

i ` �2

ÿ

i‰j

1

q2

ij

H
3

“ TrL3

“

ÿ

i

p3

i ` 3�2

ÿ

i‰j

pi

q2

ij

H
4

“ TrL4

“

ÿ

i

p4

i ` 4�2

ÿ

i‰j

p2

i `

1

2

pipj

q2

ij

` �4

ÿ

i‰j

1

q4

ij

` 2�4

ÿ

i‰j‰k

1

q2

ijq
2

jk

. . . . . .

(1.53)

As � Ñ 0 the integrals behave as Hk „

∞

j pk
j , which gives a reason to call the basis of conserved

quantities constituted by these integrals the power sum basis.

As we will discuss in the next lecture, the integrals Hk have the distinguished feature of being
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local.
::::
This

::::::
means

::::
that

:::
in

:::
the

::::::::::
asymptotic

:::::
limit

:::
of

::::
large

::::::
time,

:::::
these

::::::::
integrals

::::
take

:::
an

::::::::
additive

:::::
form

::::
with

:::::::
respect

::
to

::::
the

:::::::
number

::
of

::::::::
particles

Hk „

ÿ

j

pk
j ,

where pj is an asymptotic momentum of j’s particle.
:::::::::
Exhibiting

::
a

::::::::::::
commutative

::::::
family

::
of

:::::::::
operators

:
is
::::
not

:::::::
exciting

:::
by

:::::
itself,

::::
but

:::
the

::::
fact

::::
that

::::::
these

::::::::
operators

::::
are

::::
local

::
is

:::::
truly

:::::::::::
remarkable. For instance,

powers of the hamiltonian, although commuting, are not local operators. Thus, the existence of
local commuting operators adds to the notion of (quantum) integrability.

III. Lax representation for the hyperbolic CMS model. It is convenient to introduce Q i “ eqi . In
terms of this variable the Lax pair reads

L “

N
ÿ

i“1

piEii ´ i�
N
ÿ

i‰j

Q j

Q ij

Eij ,

M “ i�
N
ÿ

i‰j

Q iQ j

Q 2

ij

pEii ´ Eijq .

(1.54)

One can verify that (1.48) holds for the canonical structure (1.9) and the Hamiltonian (1.40), the
latter takes in terms of Q -variables the form

H “

1

2

ÿ

i

p2

i `

�2

2

ÿ

i‰j

Q iQ j

Q 2

ij

.

Computing the spectral invariants of L, we generate the conservation laws for this model

H
1

“ TrL “

ÿ

i

pi

H
2

“ TrL2

“

ÿ

i

p2

i ` �2

ÿ

i‰j

Q iQ j

Q 2

ij

H
3

“ TrL3

“

ÿ

i

p3

i ` 3�2

ÿ

i‰j

Q iQ j

Q 2

ij

pi

H
4

“ TrL4

“

ÿ

i

p4

i ` 4�2

ÿ

i‰j

Q iQ j

Q 2

ij

´

p2

i `

1

2

pipj

¯

` �4

ÿ

i‰j

Q 2

i Q 2

j

Q 4

ij

` 2�4

ÿ

i‰j‰k

Q iQ 2

j Q k

Q 2

ijQ 2

jk

. . . . . .

(1.55)

These formula share the features of the rational case.

Babelon-Viallet theorem and dynamical r-matrix.
:::
The

::::
Lax

:::::::::::::
representation

::::::
makes

:::
no

::::::::
reference

::
to

::
a

:::::::
Poisson

:::::::::
structure.

:::::::::
Spectral

:::::::::
invariants

::
of

::::
the

::::
Lax

::::::
matrix

::::
are

::::::::
integrals

::
of
:::::::
motion

::::
but

::::::::
without

:::::::::
specifying

::::
this

::::::::
structure

::
it

::
is

::::::::::
impossible

::
to

:::::::::
conclude

::::::::
anything

::::::
about

::::
their

::::::::::
involutive

::::::::
property.

:

A relation of integrals to the underlying Poisson structure gets established due to the Babelon-
Viallet theorem. According to this theorem, having the involutive property of the eigenvalues of
L P MatnpCq is equivalent to the existence of a function r on the phase space with values in
MatnpCq

b2 such that the Poisson bracket between the entries of L is

tL
1

, L
2

u “ rr
12

, L
1

s ´ rr
21

, L
2

s . (1.56)

Here and throughout the book L
1

and L
2

stand for two di↵erent embeddings of L in the tensor
product MatnpCq

b2, namely, L
1

“ L b and L
2

“ b L, so that tL
1

, L
2

u “ tL b, Lu represents a
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collection of all possible Poisson brackets between the entries of L. Correspondingly, the indices 1 and
2 of r

12

refer to the first and second matrix components of MatnpCq

b2, respectively. As an explicit
matrix, r

12

” prij,klq, where i, j “ 1, . . . , n correspond to the first matrix space and k, l “ 1, . . . , n
to the second one. The matrices on the right hand side of (1.56) are multiplied according to the
standard rule of matrix multiplication. Thus, being written in components, formula (1.56) looks like

tLij , Lklu “ ris,klLsj ´ Lisrsj,kl ´ rks,ijLsl ` Lksrsl,ij , @ i, j, k, l P 1, . . . , n ,

where we have separated the indices belonging two di↵erent matrix spaces of r
12

by comma. Clearly,
the use of the concise notation as in (1.56) saves a su�cient amount of work and space.

The matrix r is called dynamical r-matrix, which reflects the possibility for this matrix to depend
on the phase space variables. Note that the bracket (1.56) is manifestly skew-symmetric. To obtain
(1.56), we assume that L is diagonalisable,

L “ S⇤S´1 ,

where ⇤ is a diagonal matrix whose entries ⇤i are prospective integrals of motion. Assuming that
the phase space is equipped with a Poisson structure such that t⇤i,⇤ju “ 0 for any i, j, we compute

tL
1

, L
2

u “ tS
1

⇤
1

S´1

1

, S
2

⇤
2

S´1

2

u “

“ tS
1

, S
2

u⇤
1

S´1

1

⇤
2

S´1

2

` S
1

t⇤
1

, S
2

uS´1

1

⇤
2

S´1

2

´ S
1

⇤
1

S´1

1

tS
1

, S
2

uS´1

1

⇤
2

S´1

2

`S
2

tS
1

,⇤
2

u⇤
1

S´1

1

S´1

2

´ S
1

⇤
1

S
2

S´1

1

tS
1

,⇤
2

uS´1

1

S´1

2

´ S
2

⇤
2

S´1

2

tS
1

, S
2

uS´1

2

⇤
1

S´1

1

´S
2

⇤
2

S´1

2

S
1

t⇤
1

, S
2

uS´1

2

S´1

1

` S
1

⇤
1

S´1

1

S
2

⇤
2

S´1

2

tS
1

, S
2

uS´1

1

S´1

2

.

Introducing the notation

k
12

“ tS
1

, S
2

uS´1

1

S´1

2

, q
12

“ S
2

tS
1

,⇤
2

uS´1

1

S´1

2

, q
21

“ S
1

tS
2

,⇤
1

uS´1

1

S´1

2

,

we have

tL
1

, L
2

u “ k
12

L
1

L
2

` L
1

L
2

k
12

´ L
1

k
12

L
2

´ L
2

k
12

L
1

´ q
21

L
2

` q
12

L
1

´ L
1

q
12

` L
2

q
21

.

From the explicit form of k
12

one sees that k
21

“ ´k
12

. This allows one to further rearrange the
bracket as

tL
1

, L
2

u “ rk
12

L
2

´ L
2

k
12

, L
1

s ` rq
12

, L
1

s ´ rq
21

, L
2

s

“

1

2

rrk
12

, L
2

s, L
1

s ´

1

2

rrk
21

, L
1

s, L
2

s ` rq
12

, L
1

s ´ rq
21

, L
2

s .

The last expression has precisely the form (1.56), where the corresponding r-matrix is

r
12

“ q
12

`

1

2

rk
12

, L
2

s .

Note that r
12

is not assumed to have any specific symmetry properties. Also, it is not uniquely
defined: one can readily see that a shift r

12

Ñ r
12

` r�
12

, L
2

s, where �
12

“ �
21

, does not influence
the right hand side of (1.56). Also, the bracket (1.56) does not change its form under symmetry
transformations (1.44), although the r-matrix does.

Proceeding with our example of the Calogero oscillator, the r-matrix corresponding to L in (1.46)
can be chosen as

r “

!q2

` ⌫

2qp!q2

´ ⌫q

´

E
12

b E
21

´ E
21

b E
12

¯

, (1.57)

which can be verified by straightforward calculation. The matrix is dynamical but depends on q
only.
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Concerning the Jacobi identity for (1.56), it yields the following constraint on the r-matrix

rL
1

, rr
12

, r
13

s ` rr
12

, r
23

s ` rr
32

, r
13

s ` tL
2

, r
13

u ´ tL
3

, r
12

us ` cycl. perm “ 0 .

In the case when r is independent of the dynamical variables, the last equation simplifies to

rL
1

, rr
12

, r
13

s ` rr
12

, r
23

s ` rr
32

, r
13

ss ` cycl. perm “ 0 .

In particular, the Jacobi identity will be satisfied if r obeys the following equation

rr
12

, r
13

s ` rr
12

, r
23

s ` rr
32

, r
13

s “ 0 . (1.58)

Another important point about the Poisson structure (1.56) is that it yields the Lax represen-
tation for evolution equations driven by any of the hamiltonians Hk “ TrLk, k P Z. Indeed, from
(1.56) one gets

dL

dtk
“ tHk, Lu “ rMk, Ls , (1.59)

where Mk “ ´kTr
1

pr
21

Lk´1

1

q and tk is the time evolution parameter along the hamiltonian flow
triggered by Hk. One can verify that for the Calogero oscillator with H “ TrL2, the corresponding
matrix M constructed in this way coincides with the one in (1.46).
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Lecture 2

Classical scattering and

integrability

It is natural to start from the picture of scattering in classical mechanics. Here we deal with
well-defined classical trajectories and the simplest situation corresponds to a single non-relativistic
particle scattering elastically o↵ a fixed (heavy) target modelled by a potential with a finite interac-
tion range. Asymptotic trajectories describing the motion of a particle far away from an interaction
region are straight lines.1 Restraining to a one-dimensional situation, this means that before the
collision, as t Ñ ´8, the actual orbit asymptotes to a free orbit

qptq Ñ q
in

ptq ” q´
` v´t , t Ñ ´8 , (2.1)

for some fixed pq´, v´
q. Analogously, after the collision,

qptq Ñ q
out

ptq ” q`
` v`t , t Ñ `8 . (2.2)

The scattering process is completely characterised by q
in

ptq and q
out

ptq, the incoming and outgoing
asymptotic orbits. The pairs pq˘, v˘

q represent the classical scattering data and a transformation
from pq´, v´

q to pq`, v`
q defines a classical scattering operator, also known as classical S-matrix.

Scattering of several particles interacting with each other via an admissible pair-wise potential is
considered in a similar manner. Every particle trajectory has well-defined in- and out-asymptotics
and scattering results to a transformation of incoming into outgoing scattering data.

To understand what is special about scattering processes in an integrable model, we consider the
example of N particles of equal mass m “ 1 governed by an integrable hamiltonian

H “

1

2

N
ÿ

j“1

p2

j `

N
ÿ

i†j

vpqijq . (2.3)

We assume that the potential v is symmetric: vpqq “ vp´qq, repulsive and impenetrable, and falls o↵
su�ciently rapidly with the distance between particles, to guarantee the existence of an asymptotic
region. Concretely, one can think about the rational or hyperbolic CMS models, which potentials
satisfy the above-mentioned conditions. Classical integrability for these models follows from the
existence of the Lax representation with the matrix L given by

L “

N
ÿ

j“1

pjEjj `

N
ÿ

i†j

upqijqEij (2.4)

with an appropriate function upqq.

1We exclude bounded orbits which might exist for the case of attractive potentials.
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Figure 2.1: The picture of scattering in one dimension. Integrability implies that scattering is
non-di↵ractive.

2.1 Non-di↵ractive scattering

Since the potential is repulsive and impenetrable, particles cannot overtake each other and one can
label them according to the order

q
1

ptq † q
2

ptq † . . . † qN ptq , @t , (2.5)

see Fig. 2.1. For t Ñ ´8 the asymptotic condition has the form

qiptq “ p´
i t ` q´

i ` op1q , p´
i ” pip´8q , (2.6)

and it is described by 2N numbers pp´
i , q´

i q. Analogously, for t Ñ `8,

qiptq “ p`
i t ` q`

i ` op1q , p`
i ” pip`8q . (2.7)

From (2.5) that is valid for any t, in particular, for the asymptotic conditions (2.6) and (2.7), we
deduce that

p´
1

° p´
2

° . . . ° p´
N ,

p`
1

† p`
2

† . . . † p`
N .

Because of the asymptotic conditions, |qi´qj | “ Optq as t Ñ ˘8, the Lax matrix has the asymptotic
limits Lp˘8q, where it becomes diagonal; the diagonal supports the set of eigenvalues �j of L.

:::::
These

::::::::::
eigenvalues

:::
are

::::::::
integrals

::
of

:::::::
motion, and if we set p´

j “ �j then,

�
1

° �
2

° . . . ° �N .

Obviously, the same order of eigenvalues must be found at t “ `8, which is only possible if Lp`8q

has the same eigenvalues as Lp´8q but in the reversed order:

Lp´8q “

¨

˝

p

´
1

. . .

p

´
N

˛

‚, Lp`8q “

¨

˝

p

`
N

. . .

p

`
1

˛

‚.

This implies in turn a very simple relation between the scattering data:

p`
N`1´j “ p´

j . (2.8)
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Thus, the set of incoming asymptotic momenta tp´
i u coincides with the set of outgoing ones tp`

i u.
This central result is usually referred to as conservation of asymptotic momenta and the correspond-
ing scattering process is described as non-di↵ractive. Note that (2.8) is independent of the value of
the coupling constant.

2.2 Classical phase shift

Due to the coincidence of the sets of incoming and outgoing momenta, we can reinterpret the
scattering picture in a di↵erent way. Namely, we can associate to each particle a unique asymptotic
momentum and assume that the order of particles is the same as that of their momenta. In particular,
before scattering the fastest particle is the most left one, and after the scattering it reappears on
the right of all the others, as if interactions would be completely absent. This is the so-called
transmission representation of scattering in comparison to the reflection representation we started
with. We have to say more on these interpretations when it comes to the discussion of quantum
scattering.

:::::
From

:::
the

:::::::::::
transmission

::::::
point

::
of

:::::
view,

:::::::::
individual

::::::::
particles

::::::
always

:::::
keep

::::
their

:::::::::::
asymptotic

::::::::
momenta,

while scattering shows up in the discontinuity dj of the asymptotic coordinates

dj “ q`
N`1´j ´ q´

j

“ lim
tÑ`8

`

qN`1´jptq ´ qjp´tq ´ 2p´
j t

˘

.
(2.9)

The quantity dj , also known as the classical phase shift, completely characterises the scattering
process: it shows how much the jth particle has advanced in comparison to a freely moving particle
with momentum pj . Our next goal is to understand how to compute dj , especially for an integrable
model with the hamiltonian (2.3).

We start with the two-body problem. For the two-particle case the equations of motion can be
solved in quadratures by making use of the conservation laws of energy and momentum

p2

1

2
`

p2

2

2
` vpq

12

q “

pp´
1

q

2

2
`

pp´
2

q

2

2
,

p
1

` p
2

“ p´
1

` p´
2

.

Indeed, introducing k “ p´
1

´ p´
2

° 0, from these equations we get

p
1,2 “

1

2
pp´

1

` p´
2

q ˘

1

2

a

k2

´ 4vpq
12

q . (2.10)

To correctly associate the particle labels to the signs on the right hand side of the last formula,
we recall that for t Ñ ´8 the potential vpq

12

q vanishes and from equations above we restore the
asymptotic conditions for particle momenta, we have chosen

p
1

ptq “

1

2
pp´

1

` p´
2

q `

1

2

a

k2

´ 4vpq
12

q ,

p
2

ptq “

1

2
pp´

1

` p´
2

q ´

1

2

a

k2

´ 4vpq
12

q .
(2.11)

As time goes, p
1

decreases, while p
2

increases and
::
at

:::
the

:::::
value

::
t
0:::::

such
::::
that

::::::::::::
k2

“ 4vpx
0

q,
:::::::::
x

0

” xpt
0

q,
the particle momenta become equal. The di↵erence xptq “ q

2

ptq ´ q
1

ptq ° 0 is governed by the
equation

Potential is

symmetric

vpq12q “ vpq21q

9xptq “ p
2

´ p
1

“ ´

a

k2

´ 4vpxptqq . (2.12)
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As time grows starting from ´8, the distance between particles diminishes and at t “ t
0

it
reaches its minimum x “ x

0

. By continuity, after passing the value t
0

, p
1

and p
2

continue to
decrease and increase, respectively, which for t ° t

0

enforces the identification

p
1

ptq “

1

2
pp´

1

` p´
2

q ´

1

2

a

k2

´ 4vpq
12

q ,

p
2

ptq “

1

2
pp´

1

` p´
2

q `

1

2

a

k2

´ 4vpq
12

q .

The distance between the particles starts to increase again according to

9xptq “

a

k2

´ 4vpxptqq . (2.13)

This discussion provides a qualitative picture of the dynamics, see Fig. 2.2. In particular, the
center–of-mass undergoes free motion in accordance with the prescribed asymptotic behaviour

q
1

` q
2

“ pp´
1

` p´
2

qt ` q´
1

` q´
2

“ pp`
1

` p`
2

qt ` q`
1

` q`
2

, (2.14)

which, together with (2.8), yields

⇠⇠⇠⇠⇠
pp´

1

` p´
2

qt ` q´
1

` q´
2

“⇠⇠⇠⇠⇠
pp`

1

` p`
2

qt ` q`
1

` q`
2

Ñ q`
1

` q`
2

“ q´
1

` q´
2

that implies for the discontinuities (2.9) that �
1

` �
2

“ 0.

Equations (2.12) and (2.13) are solved by quadrature

t “ ´

ª x dx
a

k2

´ 4vpxq

, t § t
0

,

t “

ª x dx
a

k2

´ 4vpxq

, t • t
0

.

(2.15)

t = �� t = +�t = t
0

p�
1

p�
2

p+

1

p+

2

p
1

(t)p
2

(t)

Figure 2.2: Time evolution of particle mo-
menta in the two-body problem.

Before we proceed with a general vpqq, let us con-
sider the two concrete examples of the rational and
hyperbolic CMS models corresponding to the poten-
tials

vpqq “

�2

q2

and vpqq “

�2

4`2 sinh2 q
2`

.

In the latter case the parameter ` controls the inter-
action range and we set ` “ 1 to simplify consider-
ations. For these models, performing integration in
the first equation of (2.15) yields

t “ ´

1

k

c

x2

´

4�2

k2

`

a

k
pratq ,

t “ ´

2

k
log

˜

cosh
x

2
` sinh

x

2

d

1 ´

�2

k2 sinh2 x
2

¸

`

a

k
phyperq,

where in both cases a is an integration constant. This constant is found by matching the above
formulae with the asymptotic expansion

xptq “ q2 ´ q1 is

always positive.

xptq “ ´kt ` pq´
2

´ q´
1

q ` a
1

{t ` a
2

{t2 ` . . . ,
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for t Ñ ´8. In both cases we find a “ q´
2

´ q´
1

. For t ° t
0

the solution of the second equation in
(2.15) is

t “

1

k

c

x2

´

4�2

k2

´

b

k
pratq ,

t “

2

k
log

˜

cosh
x

2
` sinh

x

2

d

1 ´

�2

k2 sinh2 x
2

¸

´

b

k
phyperq .

(2.16)

The integration constant b is found from the condition that at t “ t
0

corresponding to x “ x
0

,
solutions obtained for t § t

0

and t • t
0

must coincide. This gives b “ ´a for the rational case and
b “ ´a ` 4 log cosh x0

2

for the hyperbolic one. Matching now the asymptotics

xptq “ kt ` pq`
2

´ q`
1

q ` b
1

{t ` b
2

{t2 ` . . .

for t Ñ 8 with that of (2.16), one gets

q`
2

´ q`
1

“ b “ ´a “ q´
1

´ q´
2

pratq ,

q`
2

´ q`
1

“ b “ ´a ` 4 log cosh x0
2

“ q´
1

´ q´
2

` 4 log cosh x0
2

phyperq .

Combining these formulae with (2.14), yields

d
1

“ 0 “ d
2

pratq ,

d
1

“ log cosh2 x0
2

“ log
´

1 `

�2

k2

¯

“ ´ d
2

phyperq ,
(2.17)

where we used the fact that x
0

is defined by sinh2 x0
2

“ �2

{k2. In particular, if we restore the
physical dimensions and the dependence on `, the answer for the hyperbolic case dpkq ” d

1

reads
as

dpkq “ ` log
´

1 `

�2

k2`2

¯

. (2.18)

These examples make clear how to treat the case of a generic potential vpxq. A general solution
of (2.15) can be written as

t “ ´

ª x

x0

dx
a

k2

´ 4vpxq

` t
0

, t § t
0

,

t “

ª x

x0

dx
a

k2

´ 4vpxq

` t
0

, t • t
0

,

(2.19)

:::::
where

:::
t
0 ::

is
::::::
chosen

:::::
such

::::
that

:::
for

::::::::::
x

0

“ xpt
0

q

::::
one

::::
has

:::::::::::
4vpx

0

q “ k2. When x Ñ 8, due to the rapid
decrease of the potential at infinity, the first formula in (2.19) admits a well-defined asymptotic
expansion

t “ ´

ª x

x0

dx

˜

1

k
`

2

k3

vpxq `

6

k5

vpxq

2

` . . .

¸

` t
0

“ ´

«

1

k
px ´ x

0

q `

2

k3

V
1

pxq

ˇ

ˇ

ˇ

x

x0

`

6

k5

V
2

pxq

ˇ

ˇ

ˇ

x

x0

` . . .

�

` t
0

,

where V 1
1

pxq “ vpxq, V 1
2

“ vpxq

2 and so on.
kt “ ´px ´ x0q
´2{k2pV pxq ´ V px0qq`
. . . ` kt0 as

t Ñ ´8.
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Assuming V pxq Ñ const for x Ñ 8 and similar behaviour for other terms in the above expansion,
one sees that ´x{k gives the leading term of the asymptotics t Ñ ´8, while the constant term equal
to q´

2

´ q´
1

should be identified with

q´
2

´ q´
1

“ kt
0

` x
0

´ k

«

2

k3

´

V p8q ´ V px
0

q

¯

`

6

k5

´

V
2

p8q ´ V
2

px
0

q

¯

. . .

�

“ kt
0

` x
0

´ k

ª 8

x0

dx
´ 1

a

k2

´ 4vpxq

´

1

k

¯

.

This expresses the constant t
0

in terms of the asymptotic data and the potential. Analogously,
considering the asymptotics of the second formula in (2.19) for x Ñ 8, we find

q`
2

´ q`
1

“ ´kt
0

` x
0

´ k

ª 8

x0

dx
´ 1

a

k2

´ 4vpxq

´

1

k

¯

“ q´
1

´ q´
2

` 2x
0

´ 2

ª 8

x0

dx
´ k

a

k2

´ 4vpxq

´ 1
¯

.

This ultimately gives the coordinate discontinuity d
1

” dpkq for a generic potential subject to the
requirements formulated above2

dpkq “ x
0

pkq ´

ª 8

x0pkq
dx

¨

˝

1
b

1 ´

4vpxq
k2

´ 1

˛

‚ , (2.20)

where x
0

“ x
0

pkq is found from 4vpx
0

q “ k2. Obviously, the
::::::::::::
discontinuity

::::::::
depends

::::
only

:::
on

::::
the

::::::::
di↵erence

::
k
::
of

::::::::::
asymptotic

:::::::::
momenta

::::
but

:::
not

:::
on

:::
the

:::::::::::
asymptotic

::::::::::
coordinates

:::
q´
i . From (2.20) we also

read that dpkq is an even function of k. Now we can turn to the case of many particles.

2.3 Factorisation of the classical S-matrix

First we recall the notion of the scattering matrix in classical theory. Let fpp, qq be an observable
defined on a phase space P “ R2N with the canonical bracket (1.9). Given fpp, qq at some moment
of time, say at t “ 0, we can find its value fpp, q, tq ” fppptq, qptqq at any moment t through the
hamiltonian equations. Assuming the time-dependence is continuous, we may expand fpp, q, tq in
powers of t

fpp, q, tq “ f `

t

1!
9f `

t2

2!
:f `

t3

3!
;f ` . . .

Using the hamiltonian equations this can be rewritten as

fptq “ f `

t

1!
tH, fu `

1

2!
t2tHtH, fuu `

t3

3!
tHtHtH, fuuu ` . . .

Formally, this series can be viewed as an action on f of a certain evolution operator Ut

fpp, q, tq “ ettH, ¨ u
˝ fpp, qq ” pUtfqpp, qq .

2As a check of the formula (2.20), we substitute vpxq “ �

2{q2 for the rational CMS. We then directly find

dpkq “ x0pkq ´
˜

q

d

1 ´ 4�

2

k

2
q

2
´ q

¸

ˇ

ˇ

ˇ

ˇ

ˇ

8

x0pkq
“ x0

d

1 ´ 4�

2

k

2
x

2
0

“ 0 ,

where x

2
0 “ 4�

2{k2.
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The evolution operator Ut defines a one-parametric continuous group of canonical transformations:

Utptf, huq “ tUtpfq, Utphqu .

In the context of scattering theory we assume the existence of in- and out-asymptotics, namely,

ppiptq, qiptqq Ñ pp˘
i , p˘

i t ` q˘
i q , t Ñ ˘8 , (2.21)

where pp˘
i , q˘

i q are coordinates on the asymptotic phase spaces

P´
“ tpp´, q´

q P R2N , p´
1

° p´
2

° . . . ° p´
N u ,

P`
“ tpp`, q`

q P R2N , p`
1

† p`
2

† . . . † p`
N u .

sectorial regions

Since the time evolution preserves the Poisson brackets between canonical variables, the asymp-
totic data pp´

i , q´
i q and pq`

i , p`
i q also form canonical pairs, i.e. the asymptotic spaces are symplectic.

In terms of evolution maps, eq.(2.21) can be written as

ettH, ¨ u
˝ ppi, qiq Ñ ettH˘

0 , ¨ u
˝ pp˘

i , q˘
i q t Ñ ˘8 , (2.22)

where H˘
0

are the free hamiltonians constructed from the asymptotic momenta

H˘
0

“

1

2

N
ÿ

j“1

pp˘
j q

2 . (2.23)

This allows one to define the classical analogue of the quantum-mechanical Møller operators (the
wave maps) ⌦˘ : P¯

Ñ P, 3

⌦˘ “ lim
tÑ¯8

e´ttH, ¨ u
˝ ettH¯

0 , ¨ u (2.24)

The wave maps are canonical and they are used to construct the classical S-matrix

S
class

“ ⌦´1

´ ⌦` : P´
Ñ P` , (2.25)

which is also a canonical transformation.

Coming back to the problem of finding the phase shifts dj for many-body scattering, we note
that this can be done by relying on canonicity of the asymptotic phase spaces and the relations
(2.8). Indeed, we have

�ij “ tp`
N`1´i, q

`
N`1´ju “ tp´

i , q´
j ` dju “ �ij `

B dj
Bq´

i

.

This shows that B dj{Bq´
i “ 0, that is �j depends on p´ only and, therefore, it can be immediately

found by arranging the asymptotic data q´
1

, . . . , q´
N , such that collisions take place pairwise, with

asymptotically large times in between of any two subsequent collisions.4 This shows that the multi-
body phase shift can be found by simply summing up the two-body phase shifts arising from collisions
of j’s particle with the rest5

dj “ q`
N´j`1

´ q´
j “

ÿ

k°j

dpp´
j ´ p´

k q

loooooooomoooooooon

right particles

´

ÿ

k†j

dpp´
j ´ p´

k q

loooooooomoooooooon

left particles

. (2.26)

3We define ⌦˘ following the tradition of the quantum scattering theory.
4Times of collision, like t0, do depend on q

´
i

.
5In the S-matrix picture where particles are labelled according to their conserved asymptotic momenta, initially

j’s particle has j ´ 1 particles on its left and N ´ j on its right, and, after all the collisions, it will have N ´ j particles
on its left and j ´ 1 on its right.
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·
j�s particle

(j � 1) particles (N � j) particles ·
j�s particle

(j � 1) particles(N � j) particles

Before scattering After scattering

Figure 2.3: Multi-body phase shift

This strikingly simple answer is, of course, a consequence of the existence of a complete set of
integrals of motion responsible for (2.8). There are no separate three- and higher-body events and
the multi-particle scattering process is completely characterised by the two-body phase shift. A
direct argument supporting this statement is based on using evolution equations produced by higher
commuting integrals to rearrange the scattering process into a sequence of two-body events.

Finally, to determine the classical S-matrix for the scattering problem at hand, we consider the
generating function �pq´, p`

q of the canonical transformation pq´
i , p´

i q Ñ pq`
i , p`

i q, namely,

p´
i “

B�pq´, p`
q

Bq´
i

“ p`
N`1´i , q`

i “

B�pq´, p`
q

Bp`
i

“ q´
N`1´i ` dN`1´i , (2.27)

where, according to (2.26),

dN`1´i “

ÿ

k°N`1´i

dpp´
N`1´i ´ p´

k q ´

ÿ

k†N`1´i

dpp´
N`1´i ´ p´

k q

“

ÿ

k°N`1´i

dpp`
i ´ p`

N`1´kq ´

ÿ

k†N`1´i

dpp`
i ´ p`

N`1´kq

“

ÿ

i°N`1´k

dpp`
i ´ p`

N`1´kq ´

ÿ

i†N`1´k

dpp`
i ´ p`

N`1´kq

“

ÿ

k†i

dpp`
i ´ p`

k q ´

ÿ

k°i

dpp`
i ´ p`

k q .

Integrating (2.27), we find

�pq´, p`
q “

N
ÿ

i“1

q´
i p`

N`1´i `

N
ÿ

i†j

✓pp`
i ´ p`

j q , (2.28)

where ✓pkq is an integrated phase shift

✓pkq “ kx
0

pkq ´ k

ª 8

x0pkq
dx

˜

c

1 ´

4vpxq

k2

´ 1

¸

,
B✓

Bk
“ dpkq . (2.29)
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Exercise. Prove (2.28).

We have

ÿ

i†j

B

Bp`
k

✓pp`
i ´ p`

j q “

ÿ

i†j

«

✓1
pp`

i ´ p`
j q

Bp`
i

Bp`
k

´ ✓1
pp`

i ´ p`
j q

Bp`
j

Bp`
k

�

“

ÿ

i†j

«

dpp`
i ´ p`

j q�ik ´ dpp`
i ´ p`

j q�jk

�

“

ÿ

k†j

dpp`
k ´ p`

j q ´

ÿ

i†k

dpp`
i ´ p`

k q

“

ÿ

k†i

dpp`
i ´ p`

k q ´

ÿ

i†k

dpp`
i ´ p`

k q

where in the first sum we replaced the summation index j for i and use the fact that dpkq is an
even function.

Obviously, ✓pkq is an odd function of k. Were the theory free, the relation between P` and P´

would reduce to relabelling of particles described by the generating function

�
0

pq´, p`
q “

N
ÿ

i“1

q´
i p`

N`1´i . (2.30)

Thus, the non-trivial part of the generating function can be identified with the classical S-matrix
that is, therefore, is given by

S
cl

“

N
ÿ

i†j

✓pp`
i ´ p`

j q . (2.31)

This quantity has the physical dimension of the action: rS
cl

s “ r~s and, from the point of view of
the correspondence between classical and quantum mechanics, can be thought of as the leading term
in the semi-classical expansion of the phase ✓ of the quantum-mechanical wave function  “ ae

i
~ ✓

in powers of ~.
A fundamental fact about this classical S-matrix is that it has a factorised structure, i.e. it is

written as the sum of two-body integrated phase shifts. This is a direct consequence of integrability
for scattering theory and, as we will see, it will persist in the quantum case as well.
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Lecture 3

Bethe wave function and S-matrix

Now we come to multi-body scattering in quantum mechanics. In the coordinate representation a
quantum-mechanical system is described by a multi-variable wave function  pq

1

, . . . , qN q. In the
time-independent approach the wave function is a solution of the stationary Schrödinger equation
(~ “ 1)

´

1

2m

N
ÿ

i“1

B

2

Bq2

i

 pq
1

, . . . , qN q `

ÿ

i‰j

vpqi ´ qjq pq
1

, . . . , qN q “ E pq
1

, . . . , qN q . (3.1)

The potential v is translation invariant, so that the total momentum P is conserved, rH, P s “ 0. For
the case of two particles, the corresponding wave function is then searched as a common eigenstate
of two commuting operators, H and P , and is naturally labeled by the asymptotic momenta p

1

and
p
2

. In the scattering process asymptotic momenta are conserved, i.e. incoming and outgoing plane
waves are built on the one and the same set of asymptotic momenta.

For a generic potential there are no conservation laws beyond energy and momentum and, as a
result, scattering is di↵ractive if more than two particles are involved. To make this evident, consider
scattering for an initial state |p

1

, p
2

, p
3

y corresponding to three particles with fixed asymptotic
momenta p

1

, p
2

and p
3

. For large separation between the particles, this state is described by an
incoming wave  

in

„ ei
∞3

i“1 piqi that solves the free Schrödinger equation. After scattering happens,
one expects to find an outgoing wave  

out

, also given by a superposition of plane waves, albeit with
all possible asymptotic momenta permitted by the conservation laws of energy and momentum

 
out

„

ÿ

k1,k2,k3

Apk
1

, k
2

, k
3

qeik1q1`ik2q2`ik3q3�
´

ÿ

i

ki ´ P
¯

�
´

ÿ

i

Epkiq ´ E
¯

.

where Epkq “ k2

{2m. Obviously, the two conservation laws are not anymore enough to forbid a
continuous distribution of momenta among scattering constituents, hence, di↵raction and genuine
three-body events may occure.

3.1 Conservation laws and Bethe wave function

Let us now assume that our quantum-mechanical model is integrable in the sense that there exists
a family of N linearly independent, local in particle momenta, pairwise commuting operators Hm,
m “ 1, . . . , N , with H and P included in this family. In this case we can search for the wave function
as a common solution of N compatible eigenvalue problems

Hm pq
1

, . . . , qN q “ hm pq
1

, . . . , qN q , m “ 1, . . . , N . (3.2)
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q
1

colour(red)

where it sits

q
i

runs through coloures
or spin polarisations

Figure 3.1: The meaning of a label of a distingushable particle. The value of q itself shows where
the classical particle is or it gives the value of coordinate of the wave function.

Solutions to this system are thus labelled by the set th
1

, . . . , hN u constituting the common spec-
trum of the commutative operator family. Further, we assume that Hm are deformations of the

conservation laws Hp0q
m ppiq of free theory, the latter being symmetric functions of particle momenta

pi. For instance, for the hyperbolic CMS model Hm’s are given by (1.53) or by (1.55) and Hp0q
m is

obtained from Hm by putting � “ 0. Our immediate goal is to show that the system (3.2) implies its
scattering solutions to have a

:::::::
peculiar

::::::::::
asymptotic

:::::
form compatible with non-di↵ractive scattering.

To simplify the discussion, we assume hereafter that particles are distinguishable, see Fig. 3.1.

Consider a special kinematic domain where particle coordinates are arranged as

q
1

† q
2

† . . . † qN . (3.3)

Further, consider a special asymptotic regime in which distances between any two neighbouring
particles become very large in comparison to the interaction range set by the potential. In this
regime the system (3.2) turns into

Hp0q
m  pq

1

, . . . , qN q “ hm pq
1

, . . . , qN q , m “ 1, . . . , N , (3.4)

where Hp0q
m are free conservation laws. For the corresponding asymptotic form of wave function we

make the following ansatz

 „ eip1q1`...ipNqN , (3.5)

with
:::::::
numbers

::
pi::::::

called
:::
the

:::::::::::
asymptotic

::::::::
momenta. Substitution of (3.5) into (3.4) yields a system of

equations for the asymptotic momenta

Hp0q
m ppiq “ hm , m “ 1, . . . , N . (3.6)

Given a set of hm, this system imposes very tight restrictions on possible values of the asymptotic
∞N

j“1 pm
j “ hm.

momenta. Suppose we found a particular solution of (3.6) for which the individual momenta are
enumerated according to the ordering pattern

p
1

° p
2

° . . . ° pN . (3.7)

Since Hp0q
m are assumed to be symmetric functions of the pi, it is plausible that all the other solution

to (3.6) are simply obtained by permutations of the set (3.7). Thus, in the domain (3.3), called
the fundamental sector, the asymptotic wave function is given by a superposition of plane waves
constructed from the set of asymptotic momenta obeying (3.6). Explicitly,

 pq
1

, . . . , qN q “

ÿ

⌧PSN

Ap⌧qeiq1p⌧p1q`...`iqNp⌧pNq , (3.8)
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sector

p
1

p
2

q
1

q
2

1st particle

Figure 3.2: Interpretation of quantum-mechanical scattering in the transmission representation.
Under scattering particles always keep their momenta. The position of a particle is rigidly tight
with the colour (q

1

is red, q
2

is yellow). Under reflection the original order of colours along the line
pertains, while it gets interchanged under transmission.

where the sum runs over all permutations ⌧ from the symmetric group SN , which act on indices of
the asymptotic momenta, the latter form an ordered set according to (3.7).

In general, the configuration space RN can be divided into N ! disconnected domains, each domain
corresponds to a certain ordering of coordinates

q�p1q † q�p2q † . . . † q�pNq , (3.9)

where the latter are labelled by permutations � P SN . The domain (3.9) will be called �-sector.
In particular, � “ e corresponds to the fundamental sector (3.3). In each �-sector we zoom in on
the asymptotic region where the di↵erence between any two neighbouring coordinates is very large
so that the contribution of the potential terms in (3.2) is negligibly small. Thus, for any �-sector
(3.9) we will have the one and the same asymptotic system (3.4) with the same kind of asymptotic
solution (3.8) which we write in the form

 pq
1

, . . . , qN |�q “

ÿ

⌧PSN

Ap�|⌧qeiq�p1qp⌧p1q`...`iq�pNqp⌧pNq , (3.10)

where the complex amplitudes Ap�|⌧q naturally form a N ! ˆ N ! matrix depending on the particle
momenta.

The expression (3.10) is the celebrated Bethe wave function that goes back to the Bethe hypothesis
on the form of the wave function in the spin-wave problem It was introduced by C. N. Yang in his
work on the delta-interaction Bose gas. The variable � indicates that coordinates are restricted to lie
in the domain (3.9). Di↵erent domains contribute with di↵erent and a priori unrelated amplitudes.

To deal with all sectors at once, it is convenient to introduce the following object

⇥
`

q�p1q † . . . † q�pNq
˘

“

N´1

π

i“1

⇥
`

q�pi`1q ´ q�piq
˘

,
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where ⇥pxq is the Heaviside ⇥-function. Multiplying (3.10) with this object to explicitly account to
the sector restriction, we then sum over all sectors to obtain

 pq
1

, . . . , qN q “

ÿ

�PSN

ÿ

⌧PSN

Ap�|⌧qeiq�p1qp⌧p1q`...`iq�pNqp⌧pNq⇥
`

q�p1q † . . . † q�pNq
˘

. (3.11)

Here the coordinates of  are asymptotically unrestricted and since the sectors are not overlapping,
the a�liation of a given coordinate configuration to one of them will be automatically detected by
the Heaviside function present on the right hand side.

It is important to realise that the Bethe form of the asymptotic wave function is only possible due
to integrability. Far away from the boundaries of a given �-sector the Schrödinger equation becomes
free and has a general solution given by a superposition of free waves.

:::
The

::::
set

::
of

:::::::::::
asymptotic

::::::::
momenta

:::
is,

::::::::
however,

::::
the

::::
one

::::
and

::::
the

:::::
same

:::
for

:::::
each

::::::
sector

::::
and

:::
for

::::
any

:::::
type

::
of

::::::::::
scattering

:::::
wave

:::::::::
(incoming,

::::::::::
outgoing),

:::::::
because

::::
this

:::
set

::
is

::::::::
uniquely

:::::::::::
determined

::::
from

:::::::::
equations

:::::
(3.6)

::::::
driven

:::
by

::::::
global

:::::::
spectral

:::::::::
invariants

::::
hm. In turn, the fact that any asymptotic wave is determined by the same

set of momenta of the incoming wave, up to permutations, means that the scattering process is
non-di↵ractive. Three- and higher-body events that would lead to a continuous redistribution of
momenta are prohibited by a su�ciently large number of conservation laws. Further insight into
the structure of (3.10) can be thus derived from a relatively simple picture of successive two-body
scatterings of classical particles.

Transmission and reflection representations. The fact that we deal with distinguishable par-
ticles can be made explicit by indicating the nature of a particle’s identity. This can be, for instance,
colour, or any other quantum number, like spin or charge. For now we take colour as an additional
(internal) quantum number, so that all particles have di↵erent colours. We assume for simplicity
that under collisions no new colours can be created, i.e. when they collide particles either keep or
interchange their colours.
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Figure 3.3: Sectors for N “ 3.

A collision process in which particles keep
the same order of colours along the line before
and after the collision is called reflection (back-
ward scattering), and a process in which they in-
terchange this order is called transmission (for-
ward scattering), see Figs. 3.2 and 3.4. Were
the particles to have the same colour, we would
not be able to distinguish between reflection and
transmission.

Regardless of colour, we have to decide on
how to associate initial asymptotic momenta to
particles after their two-body collision. Two dif-
ferent assignments are possible and they give
rise to the so-called transmission and reflection
representations of scattering. These are two al-
ternative but equivalent ways to describe the
scattering theory.

In the transmission representation particles
are uniquely associated with their momenta, the latter are kept intact through collisions.

::
If

:::
the

::::
i’th

:::::::
particle

::
in

:::
an

:::::
initial

:::::
state

::::
has

::::::::::
momentum

:::
pi,:::::

after
:::
all

:::::::
possible

::::::::
collisions

:::
we

:::::
have

::
to

::::::::
identify

:::
the

::::
i’th

:::::::
particle

::
as

:::
the

::::
one

::::::
which

:::
has

::::
the

:::::
same

::::::::::
momentum

:::
pi.::

In
::::
this

:::::::::::::
representation

::::
the

::::::
colour

::
of

::
a

:::::::
particle

:
is
:::::::
rigidly

::::
tight

:::
to

:::
the

:::::::::::::
corresponding

:::::::::
coordinate

::::::
label.1 Formula (3.10) gives the Bethe wave function

in the transmission representation, therefore, implying that we associate to each �-sector a unique
order of colours. Transition from sector to sector happens due to transmission. For instance, in

1Say, q1 is a coordinate of a red particle, q2 of a yellow one and so on.
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Fig. 3.3 we pictured 6 sectors arising for the case of N “ 3 particles. Each sector is associated to
the corresponding permutation � P S

3

and it comes with a particular colour ordering. Note that
making in (3.11) a change of the summation variable ⌧ Ñ �⌧ , we can write the Bethe wave function
in the form

 pq
1

, . . . , qN q “

ÿ

�PSN

ÿ

⌧PSN

Ap�|�⌧qeiq1p⌧p1q`...`iqNp⌧pNq⇥
`

q�p1q † . . . † q�pNq
˘

. (3.12)

If interactions are completely absent, the incoming wave  
in

„ eiqipi propagates to all sectors
without changing its amplitude, which corresponds to perfect transmission; From the viewpoint of
(3.12) perfect transmission means that Ap�|�⌧q “ �⌧e. Note that the conventional definition of the
S-matrix relies on the use of the transmission representation. In the simplest two-body situation
this transmission-diagonal representation follows by changing the order of amplitudes in the column

ˆ

Ap21|21q

Ap12|21q

˙

“ S

ˆ

Ap12|12q

Ap21|12q

˙

. (3.13)

Here S is the 2 ˆ 2 two-body S-matrix made of the reflection A and transmission B coe�cients

S “

ˆ

B A
A B

˙

(3.14)

The matrix acting on the column of amplitudes becomes diagonal for reflectionless potentials.

In the transmission representation (3.10) each �-sector has a unique colour ordering, so that the
notations of �- and colour sector are in fact equivalent and one can use them interchangeably. The
situation, however, is di↵erent for the reflection representation of the scattering process which we
now describe.

Type of represen-

tation is defined

by assigning what

happens to parti-

cle momenta under

collisions

::
In

:::
the

:::::::::
reflection

:::::::::::::
representation

::
a
::::::::
collision

::
is

:::
an

:::::
event

::::::
where

::::::::
particles

:::::::
always

:::::::::::
interchange

:::::
their

:::::::::
momenta.

:
Because of this interchange, particles cannot overtake each other, i.e. in this represen-

tation scattering happens within the fundamental sector and the Bethe wave function is understood
as

 
refl

pq
1

, . . . , qN |�q “

ÿ

⌧PSN

Ap�|⌧qeiq1p⌧p1q`...`iqNp⌧pNq , (3.15)

where qi satisfy (3.3). As usual, under collisions colours can be kept (reflection) or interchanged
(transmission).

::::::::::::
Permutations

::
�
::::
are

::::
now

:::
in

:::::::::
one-to-one

:::::::::::::::
correspondence

::
to

::::::
colour

::::::::::
orderings,

::::::
which

:::
are

::::
now

:::::::::
unrelated

::
to

:::::::::::
coordinates

:::
qi, :::

the
:::::
latter

:::::::
always

::
lie

:::::::
within

:::
the

::::::::::::
fundamental

:::::
sector

::::
and

:::::::
cannot

::
be

:::::::::
continued

::::::::
outside. In the reflection representation, Fig. 3.3 would look the same as it looks,

except now, regardless of its colour, the most left particle on the line will always be labelled as q
1

,
the second to it as q

2

and so on. Elementary reflections are characterised by passing from one plane
wave to another one with interchanged momenta of two particles, but in the same sector which
signifies no colour change. Elementary transmissions are the same but they necessarily involve the
change of the sector. In this reflection-diagonal representation In the simplest two-body case the
scattering process would give rise to the following relation between the amplitudes

ˆ

Ap12|21q

Ap21|21q

˙

“ Y

ˆ

Ap12|12q

Ap21|12q

˙

, (3.16)

where the scattering matrix Y is the 2 ˆ 2 matrix

Y “

ˆ

A B
B A

˙

. (3.17)

Comparing our discussion here with the treatment of classical scattering in section 2, we note that
we started there with scattering in the reflection representation, which is, of course, physically very
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Figure 3.4: Interpretation of quantum-mechanical scattering in reflection representation. Under
scattering momenta are always interchanged. Since particles cannot overtake each other, they live
in a single sector q

1

† q
2

. Transmission corresponds to a scattering channel where particles exchange
their colours. Under reflection colours are preserved.

appealing if we deal with a repulsive potential. Specifying (2.8) to the two-particle case, we found
that p`

1

“ p´
2

and p`
2

“ p´
1

, which corresponds to the situation of interchanging the asymptotic
momenta under scattering. To compute the classical phase shift, which is the same as the classical
S-matrix, we then changed to the transmission representation, see the discussion around (2.9).

Note also that the energy and momentum are

E “

1

2

N
ÿ

j“1

p2

j ,

P “

N
ÿ

j“1

pj .

(3.18)

In terms of asymptotic momenta the spectrum is additive, which is a characteristic feature of inte-
grable models.

Lieb-Liniger model for distinguishable particles. As an explicit realisation of the Bethe wave
function construction above, we consider the two-body problem for the Lieb-Liniger model described
by the Hamiltonian (1.37). The Bethe wave function (3.11) for the two-particle case reads as

 pq
1

, q
2

q “ ⇥pq
1

† q
2

q

!

Ap12|12qeipp1q1`p2q2q
` Ap12|21qeipp2q1`p1q2q

)

`⇥pq
2

† q
1

q

!

Ap21|12qeipp1q2`p2q1q
` Ap21|21qeipp2q2`p1q1q

)

.
(3.19)

Thus, we have four amplitudes involved. Separating the center of mass

q “ q
1

´ q
2

, Q “ q
1

` q
2

,

so that

q
1

“

Q ` q

2
, q

2

“

Q ´ q

2
,
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we get

 pq
1

, q
2

q “ e
i
2

pp1`p2qQ pqq , (3.20)

where

 pqq “ ✓p´qq

"

Ap12|12qe
i
2

pp1´p2qq
` Ap12|21qe´ i

2

pp1´p2qq
*

` ✓pqq

"

Ap21|12qe´ i
2

pp1´p2qq
` Ap21|21qe

i
2

pp1´p2qq
*

.

Continuity of  pqq at 0 requires

Ap12|12q ` Ap12|21q “ Ap21|21q ` Ap21|21q . (3.21)

The left and right derivatives at zero are

 1
p`0q “ ´

i

2
pp

1

´ p
2

qAp21|12q `

i

2
pp

1

´ p
2

qAp21|21q

 1
p´0q “

i

2
pp

1

´ p
2

qAp12|12q ´

i

2
pp

1

´ p
2

qAp12|21q

The wave function for the relative motion is the subject of the following Schrödinger equation

´ 2
pxq ` �pxq pxq “

k2

4
 pxq , k “ p

1

´ p
2

. (3.22)

We then integrate both sides of equation (3.22) over a small segment r´✏, ✏s and then send ✏ Ñ 0.
Due to continuity of the wave function, we get an equation for the discontinuity of its derivative at
the origin

 1
p`0q ´  1

p´0q “  p0q . (3.23)

Substituting here the derivatives found above, we get

i

2
pp

1

´ p
2

q

!

´ Ap21|12q ` Ap21|21q ´ Ap12|12q ` Ap12|21q

)

“ 
!

Ap12|12q ` Ap12|21q

)

. (3.24)

By using (3.21) we first remove from this equation Ap21|21q

i

2
pp

1

´ p
2

q

!

´ Ap21|12q `⇠⇠⇠⇠⇠Ap12|12q ` Ap12|21q ´ Ap21|12q ´⇠⇠⇠⇠⇠Ap12|12q ` Ap12|21q

)

“ 
!

Ap12|12q ` Ap12|21q

)

,

so that

Ap12|21q ´ Ap21|12q “ ´x
12

!

Ap12|12q ` Ap12|21qA
)

, (3.25)

where we have introduced

x
12

“

i

p
1

´ p
2

. (3.26)

The last equation can be solved for Ap12|21q

Ap12|21q “ ´

x
12

1 ` x
12

Ap12|12q `

1

1 ` x
12

Ap21|12q . (3.27)

42



Now we look at (3.24) again and remove this time Ap12|21q by using (3.21)

i

2
pp

1

´ p
2

q

!

´⇠⇠⇠⇠⇠Ap21|12q ` Ap21|21q ´ Ap12|12q `⇠⇠⇠⇠⇠Ap21|12q ` Ap21|21q ´ Ap12|12q

)

“ 
!

Ap21|21q ` Ap21|21q

)

.

This gives

Ap21|21q “ ´

x
12

1 ` x
12

Ap21|12q `

1

1 ` x
12

Ap12|12q . (3.28)

Equations (3.27) and (3.28) can be compactly written as

�p21q “ Y
12

�p12q , Y
12

“ ´

x
12

1 ` x
12

`

1

1 ` x
12

⇡
12

, (3.29)

where �p⌧q are columns of Ap�|⌧q, namely,

�p12q “

ˆ

Ap12|12q

Ap21|12q

˙

, �p21q “

ˆ

Ap12|21q

Ap21|21q

˙

. (3.30)

Comparing (3.29) to the general form (3.17), we read o↵ the reflectiona and transmission coe�cients
for the Lieb-Liniger model

A “ ´

i

p
1

´ p
2

` i
, B “

p
1

´ p
2

p
1

´ p
2

` i
. (3.31)

The vector �p21q is fully determined by �p12q, on the other hand �p12q remains arbitrary, i.e.
amplitudes in di↵erent sectors remain unrelated. This is unsurprising because we did not impose on
the wave function any symmetry requirements.

3.2 S-matrix

The S-matrix of the problem is an N ! ˆ N ! matrix, the elements of which encode how one of the N !
initial configurations of particles on a line couples to each of the final N ! configurations. To obtain
the whole S-matrix it is enough to consider one distinguished configuration as an initial state. For
instance, if we set up an incoming wave in the fundamental sector

eip1q1`ip2q2`...`ipNqN , (3.32)

where momenta satisfy (3.7) to guarantee that scattering happens, then in the �-sector we register
an outgoing wave

eipNq�p1q`ipN´1q�p2q`...`ip1q�pNq (3.33)

with the amplitude given by the S-matrix element Sp�|$q, where ⌧ “ $ is the reversed permutation

$ ”

ˆ

1

N

2

N ´ 1
¨ ¨ ¨

N

1

˙

. (3.34)

In particular, (3.33) for � “ e is a reflected wave in the fundamental sector. The remaining elements
of the N ! ˆ N ! matrix are obtained by permutations of particles in the initial state.

:::::
Thus,

:::::::
finding

:::
the

::::::::
S-matrix

::::::::
requires

:::
an

::::::::::::
extrapolation

:::
of

:::
the

:::::
wave

::::::::
function

:::::
from

:::
one

:::::::::::
asymptotic

:::::
sector

::
to

::::::::
another

:::::::
through

::::::::
sectorial

::::::::::
boundaries

:::::
where

:::::::
particle

:::::::::::
interactions

:::
are

::::::::
essential

::::
and

::::::
cannot

:::
be
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:::::::::
neglected.

:
Solving the multi-body interacting problem is, in general, very complicated. However,

one could notice the following: consider two sectors which di↵er only by a permutation of two
neighbouring particles with coordinates qi and qj , so that in the first sector qi † qj and qi ° qj

in the second. Geometrically, these sectors are neighbours and have the hyperplane qi “ qj as a
common boundary. Extrapolation of the wave function through this boundary can always be done in
the asymptotic regime where all the other coordinates are kept far away from qi « qj and from each
other. Physically, this extrapolation corresponds to a two-body scattering event. Starting from any
sector, one can obviously reach any other by passing through the adjacent sectorial boundaries, albeit
not in a unique way. The sectors are thus connected by simple transpositions ↵j , j “ 1, . . . , N ´ 1,
the latter generate the symmetric group SN .

Scattering operators in the reflection representation. The scattering process is described
most elementary in the reflection representation. If we have two neighbouring particles at qj and
qj`1

, then under collision they interchange their momenta p⌧pjq and p⌧pj`1q. If this collision is a
pure reflection, then colours are preserved, if this is a pure transmission then also the colour sector
changes as � Ñ ↵j�. This picture suggests that for these two pure processes the amplitudes must
be related as

Ap�|↵j⌧q “ App⌧pjq, p⌧pj`1qqAp�|⌧q ,

Ap↵j�|↵j⌧q “ Bpp⌧pjq, p⌧pj`1qqAp�|⌧q ,
(3.35)

where A and B are reflection and transmission coe�cients, respectively. They depend on the mo-
menta of scattered particles. The second formula in (3.35) is equivalent to

Ap�|↵j⌧q “ Bpp⌧pjq, p⌧pj`1qqAp↵´1

j �|⌧q “ Bpp⌧pjq, p⌧pj`1qqp⇡p↵jqAqp�|⌧q ,

where we have written the final result via the action of the left regular representation ⇡ of SN .
To combine two scattering processes into one formula, we introduce a column vector �p⌧q which
comprises the amplitudes in all the sectors corresponding to the same permutation ⌧ of momenta

�p⌧q ” tAp�|⌧q, � P SN u . (3.36)

Then (3.35) can be combined into a single formula

�p↵j⌧q “ Yjpp⌧pjq, p⌧pj`1qq�p⌧q , (3.37)

where we introduced Yang’s scattering operators Yj

Yjpp
1

, p
2

q “ App
1

, p
2

q ` Bpp
1

, p
2

q⇡p↵jq , (3.38)

where j “ 1, . . . , N ´ 1. Each Yj is a N ! ˆ N ! matrix which acts on the vector �p⌧q. This
matrix can be naturally viewed as a momentum-dependent connection on the symmetric group that
defines the transport of the vector �p⌧q by a “discrete” amount ↵j . As such, it must satisfy certain
compatibility conditions that render the system of pN ´1qpN !q2 equations (3.37) for pN !q2 unknowns
Ap�|⌧q consistent. Indeed, we have

�p↵2

j⌧q “ Yj

`

pp↵j⌧qpjq, pp↵j⌧qpj`1q
˘

�p↵j⌧q “ Yjpp⌧pj`1q, p⌧pjqqYjpp⌧pjq, p⌧pj`1qq�p⌧q ,

where we have taken into account that according to our rules p↵j⌧qpjq “ ⌧p↵jpjqq “ ⌧pj ` 1q and
p↵j⌧qpj ` 1q “ ⌧p↵jpj ` 1qq “ ⌧pjq. The defining relation ↵2

j “ e then demands the fulfilment of the
following relation

Yjpp
1

, p
2

qYjpp
2

, p
1

q “ . (3.39)

Analogously, the second relation in (5.74) implies that

�p↵j↵j`1

↵jq “ �p↵j`1

↵j↵j`1

q ,
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so that Yj must satisfy

Yjpp
2

, p
3

qYj`1

pp
1

, p
3

qYjpp
1

, p
2

q “ Yj`1

pp
1

, p
2

qYjpp
1

, p
3

qYj`1

pp
2

, p
3

q . (3.40)

Finally, the third relation in (5.74) leads to

YiYj “ YjYi (3.41)

for |i ´ j| • 2.

Provided the matrices Yj satisfy the conditions above, the system (3.37) is consistent. Since ↵j

generate the whole SN , the connection (3.37) transports the value of � at one point, for instance,
at the identity e, to any other point of the group. The value �peq is thus an initial condition for
(3.37), it depends on N ! arbitrary parameters which are nothing else but the amplitudes Ap�|eq of
purely incoming waves. Note that if the transmission is absent, i.e. B “ 0, then each Yj is the
identity matrix times the reflection coe�cient A, justifying the name reflection for the corresponding
representation of the Bethe wave function. Thus, Yj can be interpreted as the two-body scattering
matrices in the reflection representation. In particular, for N “ 2 there is only one transposition ↵
represented by the matrix

⇡p↵q “

ˆ

0 1
1 0

˙

, (3.42)

and, therefore, Y coincides with S-matrix (3.17).

Now we are ready to construct the full scattering matrix. The momenta of the incoming wave
(3.7) are related to those of the outgoing wave by means of permutation (3.34) that acts as $pjq “

N ´j`1. Writing $ in two-line notation makes it obvious that it can be represented as the following
product of transpositions

$ “ p1 |Nqp2 |N ´ 1qp3 |N ´ 2q . . . . (3.43)

In turn, each of the transpositions entering this expression can be represented as a product of simple
transpositions

p1|Nq “ p1|2qp2|3qp3|4q . . . pN ´ 2|N ´ 1qpN ´ 1|NqpN ´ 2|N ´ 1q . . . p3|4qp2|3qp1|2q ,

p2|N ´ 1q “ p2|3qp3|4q . . . pN ´ 3|N ´ 2qpN ´ 2|N ´ 1qpN ´ 3|N ´ 2q . . . p3|4qp2|3q ,

p3|N ´ 2q “ p3|4q . . . pN ´ 4|N ´ 3qpN ´ 3|N ´ 2qpN ´ 4|N ´ 3q . . . p3|4q

and so on. Successively multiplying these expressions and using the defining relations of SN , one
finds that $ reduces to

$ “ p1|2q ¨ p2|3qp1|2q ¨ p3|4qp2|3qp1|2q ¨ . . . ¨ pN ´ 1|NqpN ´ 2|N ´ 1q . . . p1|2q , (3.44)

where to make the structure of $ more visible, we separated the groups of simple transpositions by
an explicit multiplication sign. Taking this structure of $ into account, formula (3.37) yields

�p$q “ Y
1

ppN´1

, pN q

ˆ Y
2

ppN´2

, pN qY
1

ppN´2

, pN´1

q

ˆ Y
3

ppN´3

, pN qY
2

ppN´3

, pN´1

qY
1

ppN´3

, pN´2

q (3.45)

ˆ . . .

ˆ YN pp
1

, pN qYN´1

pp
1

, pN´1

q . . . Y
1

pp
1

, p
2

q �peq .

Here the order of Y matrices follows the pattern of simple transpositions in (3.44). The arguments
of Y ’s were determined according to the scattering history built in (3.44).
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To illustrate the last point, consider an example of N “ 4. As the first step of using the
connection formula (3.37), we have

�pp1|2q ¨ p2|3qp1|2q ¨ p3|4qp2|3qp1|2qq “ Y
1

pp$p1qp1q, p$p1qp2qq�pp2|3qp1|2q ¨ p3|4qp2|3qp1|2qq .

Here $p1q is the permutation

$p1q
“ p2|3qp1|2q ¨ p3|4qp2|3qp1|2q “ p3421q ,

so that $p1q
p1q “ 3 and $p1q

p2q “ 4. Therefore,

�pp1|2q ¨ p2|3qp1|2q ¨ p3|4qp2|3qp1|2qq “

“ Y
1

pp
3

, p
4

qY
2

pp$p2qp2q, p$p2qp3qq�pp1|2q ¨ p3|4qp2|3qp1|2qq ,

where $p2q
“ p1|2q ¨ p3|4qp2|3qp1|2q “ p3241q yielding $p2q

p2q “ 2 and $p2q
p3q “ 4. Thus, we have

�pp1|2q ¨ p2|3qp1|2q ¨ p3|4qp2|3qp1|2qq “ Y
1

pp
3

, p
4

qY
2

pp
2

, p
4

q�pp1|2q ¨ p3|4qp2|3qp1|2qq .

Continuing along the same lines, we will arrive at the final expression

�pp1|2q ¨ p2|3qp1|2q ¨ p3|4qp2|3qp1|2qq “

“ Y
1

pp
3

, p
4

qY
2

pp
2

, p
4

qY
1

pp
2

, p
3

qY
3

pp
1

, p
4

qY
2

pp
1

, p
3

qY
1

pp
1

, p
2

q�peq ,

which is a specification of (3.45) to the four-particle case.

S-matrix in the transmission representation. More generally, we can associate the scattering
operator of Yang with an arbitrary transposition ↵ij , namely,

Yijpp
1

, p
2

q “ App
1

, p
2

q ` Bpp
1

, p
2

q⇡p↵ijq ,

so that Yj ’s introduced in (3.38) are Yj ” Yjj`1

. In turn, by using Yij , we define the following
matrix

Sijpp
1

, p
2

q ” ⇡p↵ijqYij “ Bpp
1

, p
2

q ` App
1

, p
2

q⇡p↵ijq . (3.46)

Due to (5.73), we observe the following “braiding” property

Skj⇡p↵ikq “ ⇡p↵ikqSij . (3.47)

Now we rewrite the main formula (3.45) via Sij and, using (3.47), bring the answer to the following
form

�p$q “ ⇡p$q ¨ SN´1 N ppN´1

, pN q

ˆ SN´2 N ppN´2

, pN qSN´2 N´1

ppN´2

, pN´1

q

ˆ SN´3 N ppN´3

, pN qSN´3 N´1

ppN´3

, pN´1

qSN´3 N´2

ppN´3

, pN´2

q

ˆ . . .

ˆ S
1N pp

1

, pN qS
1 N´1

pp
1

, pN´1

q . . . S
12

pp
1

, p
2

q �peq , (3.48)

where $ is the permutation (3.43). A welcome feature of this formula is that the index of each S-
matrix perfectly matches with the index of the momenta on which this S-matrix depends. Thus, in
the future we may not indicate the momentum dependence of S, as the latter can be unambiguously
restored from the S-matrix subscript. Note that this is not true for the Y -representation (3.45). If
we introduce

S ” SN´1 N ¨ SN´2 NSN´2 N´1

¨ . . . ¨ S
1NS

1 N´1

. . . S
12

, (3.49)
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Figure 3.5: Two topologically di↵erent three-body space-time diagrams and factorisation of the
three-body S-matrix. The result of the three-body scattering process does not depend on the order
in which two-body scattering events take place.

then, keeping in mind that $2

“ e, we obtain

⇡p$q�p$q “ S �peq . (3.50)

The expression on the left hand side is ⇡p$q�p$q “ Ap$�|$q. This is the amplitude of the outgoing
wave in the $�-sector where

$� “

ˆ

1

N

2

N ´ 1
¨ ¨ ¨

N

1

˙ ˆ

1

�p1q

2

�p2q

¨ ¨ ¨

N

�pNq

˙

“

ˆ

1

�pNq

2

�pN ´ 1q

¨ ¨ ¨

N

�p1q

˙

.

It is clear that in this sector pi couples to q�piq, i.e. precisely in the same way as in the incoming
wave in the �-sector. The incoming wave in the �-sector

eip1q�p1q`ip2q�p2q`...`ipNq�pNq

with an amplitude Ap�|eq is transmitted to the $�-sector

eipNqp$�qp1q`ipN´1qp$�qp2q`...`ip1qp$�qpNq
“ eip1q�p1q`ip2q�p2q`...`ipNq�pNq

with the amplitude Ap$�|$q. Thus, S in (3.50) is nothing else but the S-matrix in the transmission
representation. In particular, if the reflection coe�cient A “ 0 the S-matrix is diagonal, as can be
seen from (3.46).

The structure of the scattering matrix encoded in (3.48) and (3.49) has also a very clear physical
meaning: in the transmission picture the fastest particle with momentum p

1

, which is the most left
before scattering should undergo collisions with the remaining particles with momenta p

2

, p
3

, . . . ,
pN to appear the most right after scattering. Every time it transfers through the i’th particle, its
amplitude undergoes a change (a phase shift) by the corresponding two-body S-matrix S

1ipp1

, piq.
After all these collisions the accumulated change of the amplitude is

S
1NS

1 N´1

. . . S
12

�peq.

Then the p
2

-particle, which is now the most left, goes to cross p
3

, p
4

, . . . , pN and take its position
in between pN and p

1

. This leads to further accumulation of successive amplitude changes and we
get

S
2NS

2 N´1

. . . S
23

¨ S
1NS

1 N´1

. . . S
12

�peq.
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Continuing in the same fashion, we find that after all particles crossed and reached the final order
pN , pN´1

, . . . , p
1

, the initial amplitude turns into S�peq, where S is exactly the S-matrix (3.48).
Obviously, the number of two-body collisions that happens before the final configuration is reached
is

N ´ 1 ` N ´ 2 ` N ´ 3 ` . . . ` 1 “

NpN ´ 1q

2
.

Hence, the N -body S-matrix factorises into the product of NpN ´ 1q{2 two-body S-matrices. This
factorised structure of the S-matrix is a consequence of a large number of conservation laws that
prohibit di↵raction and render the wave function in each asymptotic domain to be a superposition
of a finite number of waves.

Another important observation about the factorised structure of the S-matrix is that the order in
which NpN ´1q{2 two-body collisions occur does not matter. This statement is a consequence of the
consistency conditions obeyed by the two-body scattering matrix. These conditions can be imme-
diately derived from those satisfied by the corresponding S-matrix in the reflection representation.
Indeed, using the relation (3.46), the formulae (3.39) and (3.40) yield

S
12

pp
1

, p
2

qS
21

pp
2

, p
1

q “ (3.51)

and

S
12

pp
1

, p
2

qS
13

pp
1

, p
3

qS
23

pp
2

, p
3

q “ S
23

pp
2

, p
3

qS
13

pp
1

, p
3

qS
12

pp
1

, p
2

q , (3.52)

respectively. In addition, it follows from (3.46) that SijSkl “ SklSij , if among the indices i, j, k and
l there are no two coincident ones.

Relation (3.52) is the Yang-Baxter equation for the two-body S-matrix. Physically, it expresses
the equivalence of two di↵erent ways to factorise a three-body S-matrix S

123

into a product of
two-body S-matrices, see Fig. 3.5. Thus, integrability implies consistent factorisation of scattering
process and the corresponding S-matrix in a sequence of two-body events and S-matrices, giving
rise to the notion of Factorised Scattering Theory. This result is of fundamental nature, it reduces
the problem of calculating the multi-body S-matrix in an integrable model to the one just for the
two-body S-matrix, making the latter the main object of study, at least in the context of scattering
theory.

Among further properties of the S-matrix, we point out that it is unitary and symmetric. Uni-
tarity of (3.49) follows immediately if we require the two-body S-matrix to be unitary. Taking into
account the unitarity of the representation ⇡, the latter requirement reduces to the familiar condi-
tions: |A|

2

`|B|

2

“ 1 and ĀB`B̄A “ 0. As to the symmetric property required by the time-reversal
invariance of the interaction, using the fact that the two-body S-matrix is symmetric,2 we have

St
“ S

12

. . . S
1 N´1

S
1N ¨ . . . ¨ SN´2 N´1

SN´2 N ¨ SN´1 N .

Now by successive use of (3.52) the right hand side of the last formula can be brought to the original
form (3.49) that proves the relation St

“ S.

3.3 Bethe wave function and statistics

First we recall the standard treatment of a quantum-mechanical system of many particles with
internal degrees of freedom. Suppose that the hamiltonian of such a system does not involve terms

2Representation ⇡ is orthogonal and, since for permutation ⇡p↵
ij

q2 “ e, one gets ⇡p↵
ij

q “ ⇡p↵
ij

qt.
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acting on internal degrees of freedom. In this situation the wave function  can be searched in a
factorised form

 px
1

, . . . , xN q “  pq
1

, . . . , qN q�ps
1

, . . . , sN q , (3.53)

where  depends on the particle coordinates qi, while � – on variables si describing internal degrees
of freedom (spin). The variables xi stand for the pairs pqi, siq. The Schrödinger equation determines
the coordinate wave function  only, leaving � arbitrary. Indistinguishable particles are either
bosons or fermions. Accordingly, the wave function  is symmetric or anti-symmetric, which can
only be possible if there is a rigid correlation between symmetry properties of  and � with respect
to simultaneous permutations of their respective arguments.

�

| {z }

z }| {

. . .

. . .
. . . . . .

| {z }

N � 2M boxes

N � M boxes

M boxes

Figure 3.6: Young diagram �̄ “ rN ´ M, M s

represents an irrep of SN under which the spin
wave function of electrons with the total spin
S “ 1{2pN ´ 2Mq transforms.

Assume that the hamiltonian is invariant un-
der permutations of particles, and, therefore,
commutes with all operators representing per-
mutations. Permutations, however, do not all
commute with each other, and, as a conse-
quence, can not be simultaneously brought to
a diagonal form. This means that the spec-
trum of the hamiltonian is degenerate, and, in
general, there will be several solutions  of
the Schrödinger equation with the same energy
transforming into each other under the action
of the symmetric group. In other words, these
solutions can be combined into an irreducible
multiplet � of SN . Correspondingly, the wave
function  � is labelled by an index � and is said
to be of the symmetry type �. Similarly, the ac-
tion of SN on � can also be decomposed into the sum of irreducible components.

Now, it is well known how to choose � such that it can be combined with the coordinate wave
function of a given symmetry type � to produce symmetric or anti-symmetric . Namely, if particles
are bosons, then the symmetry of  and � must be defined by the same Young diagram, and the full
symmetric wave function is expressed via certain bilinear combinations of those. If particles are spin-
1

2

fermions, then the full wave function is anti-symmetric and the Young diagrams of the coordinate
and the spin wave functions must be conjugate, i.e. one is obtained from the other by replacing
rows for columns and vice versa. This follows from the fact that if ⇡�p�q is the representation of
SN corresponding to the partition �, then the representation corresponding to the conjugate (the
same as “transposed”) partition �̄ is ⇡

¯�p�q “ signp�q⇡�p�q, � P SN . Hence,

 “

ÿ

�PGN

 �pq�p1q, . . . , q�pNqq�
¯�ps�p1q, . . . , s�pNqq . (3.54)

For the purpose of our present discussion, the most convenient way to describe representations �
(or �̄) of SN in the space of functions of N -variables is to use Hund’s method [?]. According to this
method, a function  �pq

1

, . . . qN q has a definite symmetry type �, i.e. it is one of the basis functions
of a representation � “ r�

1

, �
2

, . . . , �ls of SN , if

1) it is anti-symmetric in a set of �
1

arguments, anti-symmetric in another set of �
2

arguments
and so on,

2) it satisfies the Fock symmetry conditions
”

´

ÿ

kP�i

↵km

ı

 “ 0 , (3.55)

where ↵km is a transposition such that m is in �j for all choices of �i and �j with �i • �j .
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One usually writes a function  satisfying the first condition as

 
`

rq
1

, . . . , q�1srq�1`1

, . . . , q�1`�2s . . . rqN´�l´�l´1`1

, . . . , qN´�lsrqN´�l`1

, . . . , qN s

˘

,

meaning that it is separately anti-symmetric in the �
1

variables q
1

, . . . , q�1 , in the �
2

variables
q�1`1

, . . . q�1`�2 , and so forth.

Later, by using a di↵erent realisation of irreducible representations of SN , we show that for
electrons the spin wave functions are associated to the two-row Young diagrams �̄ depicted in Fig.
(3.6). Any such diagram with N boxes has N ´ M boxes in the first row and M boxes in the second
row, where M takes values from 0 to the integer part of N{2. For a fixed M the slp2q-representation
associated with this diagram has spin S “ 1{2pN ´ 2Mq. Therefore, for electrons the corresponding
coordinate wave function must transform in the representation � depicted in Fig 3.7 and, according
to Hund’s method, be of the type

 prq
1

, . . . , qN´M srqN´M`1

, . . . , qN sq , (3.56)

and satisfy the Fock condition

«

´

N´M
ÿ

i“1

↵ij

�

 “ 0 , j ° N ´ M . (3.57)

This completes our recollection of the standard treatment of multi-particle systems in quantum
mechanics.

z
}|

{
N

�
M

|
{z

}

M

...

Figure 3.7: Young diagram
� “ r2M , 1N´2M

s for a coor-
dinate function of electrons.

Coming back to the Bethe wave function, we would like to un-
derstand the conditions it must satisfy in order to be of a definite
symmetry type. To this end, we consider this function in the trans-
mission representation (3.10) and determine how it transforms under
permutations of coordinates. For any particle configuration from the
�-sector the wave function is

 pq
1

, . . . , qN q “

ÿ

⌧PSN

Ap�|⌧qeiq�piqp⌧piq . (3.58)

Consider  pq&p1q, . . . q&pNqq, where & is any permutation. Denote
q1
i ” q&piq, so that qi “ q1

&´1piq. Replacing in the last equality the

index i with �piq, we get q�piq “ q1
&´1p�piqq “ q1

�&´1piq. This means

that the configuration of q1
i belongs to the �&´1-sector and we have

 pq&p1q, . . . q&pNqq “

ÿ

⌧PSN

Ap�&´1

|⌧qe
iq1

�&´1piqp⌧piq
“

ÿ

⌧PSN

Ap�&´1

|⌧qeiq�piqp⌧piq .(3.59)

Comparison of (3.58) with (3.59) shows that the action of the symmetric group on the wave function
by permuting its arguments induces the following action on the amplitudes

Ap�|⌧q Ñ Ap�&´1

|⌧q , (3.60)

or for the vector �p⌧q

�p⌧q Ñ ⇡1
p&´1

q�p⌧q , (3.61)

where this time ⇡1 is the right regular representation of SN . It is now clear that if we want the Bethe
wave function to be of the symmetry type �, the vector �p⌧q for any ⌧ must obey the following two
conditions:
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1) The anti-symmetry requirement

⇡1
p↵iq�p⌧q “ ´�p⌧q , (3.62)

where i P t1, . . . �
1

´ 1u Y t�
1

` 1, . . . , �
1

` �
2

´ 1u Y . . . Y tN ´ �l ` 1, . . . , N ´ 1u.

2) The Fock condition

«

´

ÿ

kP�i

⇡1
p↵kmq

�

�p⌧q “ 0 , (3.63)

where m is in �j for all choices of �i and �j with �i • �j .

It is now time to recall that � transforms linearly under the left regular representation ⇡ of SN .
Because ⇡1 and ⇡ commute, if � satisfies the constraints (3.62) and (5.106), the vector ⇡p�q� will also
satisfy them for any �. In fact, these constraints project out in decomposition (5.77) all components
but one that coincides with �. Thus, we arrive at the important conclusion that the requirement for
the Bethe wave function to have the symmetry type � is equivalent for the amplitude vector � to
transform in the irreducible representation � of the symmetric group [?].

Example. To illustrate how the constraints (3.62) and (5.106) single out an irreducible component
of ⇡, we look at a simple example of N “ 3 particles. The group S

3

and its representations ⇡ and
⇡1 were discussed in 5.5. Consider the diagram � “ r2, 1s and fill it as

1 3

2
.

This gives one of two possible standard tableaux. There is one anti-symmetry condition on the
six-dimensional vector �, namely,

⇡1
p�

2

q� “ ´� , (3.64)

where �
2

“ ↵
12

is the second element from the list (5.79). The Fock condition is3

”

´ ⇡1
p�

4

q ´ ⇡1
p�

6

q

ı

� “ 0 , (3.65)

where �
4

and �
6

are the corresponding permutations from the same list. A solution of the first
equation leaves 3 parameters undetermined, while a subsequent imposition of the second equation
leaves a two-dimensional vector space

�t
“ pu

1

´ u
2

, ´u
1

` u
2

, ´u
1

, ´u
2

, u
2

, u
1

q , u
1

, u
2

P C .

It is not hard to see that this is a two-dimensional invariant subspace of the representation ⇡. On
this subspace ⇡ acts irreducibly and coincides, in fact, with one of the irreducible components ⇡r2,1s
in the decomposition (5.81).

Analogously, we can consider the second standard tableau

1 2

3
.

3One cannot anisymmetrise the 3d particle with the first and the second.
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The conditions on � are

⇡1
p�

4

q� “ ´� ,
”

´ ⇡1
p�

2

q ´ ⇡1
p�

6

q

ı

� “ 0 .

Together they single out another two-dimensional invariant subspace

�t
“ p´v

2

, ´v
1

´ v
2

, v
1

` v
2

, v
2

, ´v
1

, v
1

q , v
1

, v
2

P C ,

on which ⇡ acts irreducibly and coincides with another component ⇡r2,1s in (5.81).

Further, there is an anti-symmetric representation

1

2

3

.

It is singled out by the conditions

⇡1
p�

2

q� “ ´� , ⇡1
p�

6

q� “ ´� ,

that have the solution �t
“ wp1, ´1, 1, ´1, 1, ´1q. Finally, the trivial representation r3s completes

the list of irreducible components appearing in (5.81) for the regular representation of S
3

.

Compatibility of scattering with statistics. Recall that the action of scattering operators on
amplitudes is realised through the left regular representation ⇡. Taking into account that ⇡ and ⇡1

commute, we conclude that imposition of symmetry conditions on the wave function should also be
compatible with scattering. More precisely, by construction the S-matrix is an element of the group
algebra of SN evaluated in the left regular representation ⇡. This representation is reducible and
its decomposition into a sum of irreducibles is given by (5.77). Projecting the Bethe wave function
on an irreducible component �, we obtain the wave function with a type of symmetry described
by the Young diagram �. The corresponding S-matrix is still given by (3.49), where the two-body
S-matrices are substituted with

Sijpp
1

, p
2

q “ B�pp
1

, p
2

q ` A�pp
1

, p
2

q⇡�p↵ijq ,

where the subscript � of A and B is used to emphasise that these scattering coe�cients can be, in
fact, di↵erent for di↵erent representations. If � “ r1N

s is the anti-symmetric representation, then
⇡�p↵ijq “ ´1 and S “ B ´ A. If � “ rN s is the symmetric representation, then ⇡�p↵ijq “ 1 and
S “ A ` B. In both cases the S-matrices are scalar.

Example. Consider the delta-interaction model (1.37) for the case of fermions. The delta-function
potential produce no e↵ect and the two-body S-matrix is trivial, S “ B ´A “ 1. Since we deal with
fermions, the Bethe wave function must transform in the anti-symmetric representation for which
⇡�p↵ijq “ ´1. Therefore, from (3.37) we obtain the following equation

�p↵j⌧q “ pA ´ Bq�p⌧q “ ´pB ´ Aq�p⌧q “ ´�p⌧q.

It follows from here that for an arbitrary & the vector � satisfies �p&⌧q “ signp&q�p⌧q, the latter
equation is obviously solved as �p⌧q “ signp⌧q�peq. Further, the requirement (3.62) of anti-symmetry
of the wave function allows one to completely determine the amplitudes Ap�|⌧q “ signp�´1⌧qApe|eq.
Up to an overall normalisation factor Ape|eq, the Bethe wave function (3.10) is then given by the
Slater determinant

 pq
1

, . . . , qN q “

ÿ

⌧PSN

signp�´1⌧qeiq�piqp⌧piq

“

ÿ

⌧PSN

signp⌧qeiqip⌧piq
“ detNˆN

`

eiqipj
˘

. (3.66)

This completes our discussion of the fermionic delta-interaction model.
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Lecture 4

Coordinate Bethe Ansatz

4.1 Periodicity condition for the Bethe wave function

Consider a system of N interacting particles confined in a one-dimensional box. The full description
of this system requires an imposition of certain boundary conditions. In the following we choose
periodic boundary conditions. These conditions relate the quantum-mechanical amplitude for finding
a particle with given colour and momentum at one end of the box to the amplitude for finding a
particle with the same colour and momentum at the other end. To be able to use the Bethe function
formalism developed in the previous section, we assume that the size L of the box is large enough
to fit in a kinematic configuration corresponding to asymptotically free particles.

Under these assumptions, let us recall the Bethe wave function  in the transmission represen-
tation (3.11)

 pq
1

, . . . , qN q “

ÿ

�PSN

ÿ

⌧PSN

Ap�|⌧qe
i

N
∞

i“1
q�piqp⌧piq

⇥
`

q�p1q † . . . † q�pNq
˘

. (4.1)

Coordinates qi can take any values but now within a segment of length L, that is 0 § qi § L for @i.
The periodic boundary conditions for  mean that

 pq
1

, . . . , qj “ 0, . . . , qN q “  pq
1

, . . . , qj “ L, . . . , qN q , @j . (4.2)

For the left hand side of this equation, denoted by LHS, we get

LHS “

ÿ

�PSN
�p1q“j

ÿ

⌧PSN

Ap�|⌧qe
i

N
∞

k“2
q�pkqp⌧pkq

⇥
`

q�p2q † . . . † q�pNq
˘

, (4.3)

while for the right hand side called RHS,

RHS “

ÿ

�PSN
�pNq“j

ÿ

⌧PSN

Ap�|⌧qeiLp⌧pNqe
i

N
∞

k“1
q�pkqp⌧pkq

⇥
`

q�p1q † . . . † q�pN´1q
˘

, (4.4)

where in the exponent we have now q�pNq “ qj “ 0.

To compare (4.4) with (4.3), we introduce the following element ⇠ P SN (cyclic permutation)

⇠ “ ↵N´1

. . .↵
1

“

ˆ

1

2

2

3
¨ ¨ ¨

N ´ 1

N

N

1

˙

(4.5)
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and make a replacement of the summation variable � as � Ñ ⇠�. Since � obeys �p1q “ j, then
⇠�pNq “ �p⇠pNqq “ �p1q “ j, and we get

RHS “

ÿ

�PSN
⇠�pNq“j

ÿ

⌧PSN

Ap⇠�|⌧qeiLp⌧pNqe
i

N
∞

k“1
q⇠�pkqp⌧pkq

⇥
`

q⇠�p1q † . . . † q⇠�pN´1q
˘

“

ÿ

�PSN
�p1q“j

ÿ

⌧PSN

Ap⇠�|⌧qeiLp⌧pNqe
i

N
∞

k“1
q�pkqp⇠´1⌧pkq

⇥
`

q�p2q † . . . † q�pNq
˘

.

Here the argument of the theta-function and the condition �p1q “ j are precisely the same as in the
expression LHS. Further, making a change of variable ⌧ Ñ ⇠⌧ , we arrive at

RHS “

ÿ

�PSN
�p1q“j

ÿ

⌧PSN

Ap⇠�|⇠⌧qeiLp⇠⌧pNqe
i

N
∞

k“2
q�pkqp⌧pkq

⇥
`

q�p2q † . . . † q�pNq
˘

, (4.6)

where we have taken into account that q�p1q “ qj “ 0. Note also that p⇠⌧pNq “ p⌧p⇠pNqq “ p⌧p1q.
Finally, comparison of (4.6) with LHS yields the following equations

Ap�|⌧q “ Ap⇠�|⇠⌧qeiLp⌧p1q . (4.7)

This is a requirement on the coe�cients of the asymptotic wave function in order for the latter to
satisfy periodic boundary conditions. Using the left regular representation ⇡ of SN , equations (4.7)
can be written as conditions for the vector �p⌧q defined in (3.36):

⇡p⇠q�p⌧q “ eiLp⌧p1q�p⇠⌧q . (4.8)

To make further progress, we note that (4.8) must be satisfied for any momentum ordering ⌧ , which
means that, in order to proceed, we can make for ⌧ a convenient choice. We take

⌧ “ ↵
1

. . .↵j´1

“

ˆ

1

j

2

1

3

2
¨ ¨ ¨

j

j ´ 1

j ` 1

j ` 1
¨ ¨ ¨

N

N

˙

,

so that ⇠⌧ “ ↵N´1

. . .↵j . With this choice ⌧p1q “ j and (4.8) boils down to

⇡p↵N´1

. . .↵
1

q�p↵
1

. . .↵j´1

q “ eiLpj �p↵N´1

. . .↵jq . (4.9)

Next, we evaluate both sides of the last expression with the help of connection formula (3.37) and
get

⇡p↵j´1

q . . .⇡p↵
1

q Y
1

pp
1

, pjq . . . Yj´1

ppj´1

, pjq�peq

“ eiLpj ⇡p↵jq . . .⇡p↵N´1

qYN´1

ppj , pN q . . . Yjppj , pj`1

q�peq .

Using the definition (3.46) of the two-body S-matrix, the last expression can be rewritten in the
following elegant form

Sj`1 jSj`2 j . . . SNj ¨ S
1j . . . Sj´1 j �peq “ eiLpj �peq . (4.10)

If we introduce the following matrix operators

Tj “ Sj`1 jSj`2 j . . . SNj ¨ S
1j . . . Sj´1 j , (4.11)

then (4.10) tells that |�y ” �peq is a common eigenvector for N matrix operators Tj

Tj |�y “ ⇤j |�y , (4.12)
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where j “ 1, . . . , N . In the following we refer to (4.12) as the (matrix) Bethe-Yang equations. Once
a common eigenvalue, which is a function of momenta, is found, one is left to solve a system of
(scalar) Bethe equations

⇤j “ eiLpj , (4.13)

to determine the momenta pj .

Compatibility of the system (4.12) requires that matrices Tj for various j pair-wise commute.
The important fact that they do so is a consequence of the condition (3.51) and the Yang-Baxter
equation (3.52). In the case of scalar S-matrices, where � is one-dimensional, the diagonalisation
problem of Tj does not arise.

As was argued in subsection 3.3, demanding the Bethe wave function to be of the symmetry type
� implies that the vector |�y transforms in the same representation. Correspondingly, the scattering
operators and the operators Tj are also restricted to �. The problem now is to solve the system
(4.12) for a given irreducible representation of SN and, subsequently, use this solution to reconstruct
the corresponding Bethe wave function.

Lieb-Liniger model for two particles. The matrix Bethe-Yang equations are

S
21

�peq “ eiLp1�peq ,

S
12

�peq “ eiLp2�peq ,
(4.14)

where

S
12

“

p
1

´ p
2

p
1

´ p
2

` i
´

i

p
1

´ p
2

` i

ˆ

0 1
1 0

˙

, (4.15)

It is trivial to diagonalise S
12

by hand. This S-matrix has two di↵erent eigenvalues

� “ 1 , � “

p
1

´ p
2

´ i

p
1

´ p
2

` i
, (4.16)

corresponding to the anti-symmetric representation, where particles are speenless fermions, and the
symmetric one, where particles are indistinguishable bosons. Correspondingly, we have for �peq the
following expressions

� peq “

ˆ

1
´1

˙

, � peq “

ˆ

1
1

˙

, (4.17)

where we recall that

�peq “

ˆ

Ap12|12q

Ap21|12q

˙

. (4.18)

Starting from three particles, in addition to the anti-symmetric and symmetric representations

& ,

there appears also a hook corresponding to spin- 1

2

fermions

.
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4.2 Incarnations of the Lieb-Liniger model

To shed more light on the Bethe-Yang equations (4.12), we consider a few concrete examples. The
first example is provided by the delta-interaction model for three cases di↵erent by the nature of
interacting particles.

1) Interacting particles with internal degrees of freedom,
:::
the

:::::::::::::
representation

:
�
:::
for

:::
the

:::::
wave

::::::::
function

:::::::
remains

:::::::::::
unspecified.1 Using the expression (3.31) for the reflection and transmission coe�-

cients, we can write down for the Yang operator and the two-body S-matrix the following
expressions

Yjpp
1

, p
2

q “ ´

i

p
1

´ p
2

` i
`

p
1

´ p
2

p
1

´ p
2

` i
⇡�p↵jq , (4.19)

Sijppi, pjq “

pi ´ pj

pi ´ pj ` i
´

i

pi ´ pj ` i
⇡�p↵ijq , (4.20)

where ⇡�p↵ijq is the transposition ↵ij evaluated in the representation �. In this case Tj are
matrices, and the non-trivial problem of their diagonalisation will be discussed later.

2) The case of
:::::::
spinless

::::::::
fermions corresponds to picking up the anti-symmetric representation,

� “ r1N
s, so that the wave function is anti-symmetric. Since for this case for any ↵ij we have

⇡�p↵ijq “ ´1, formula (4.19) yields S “ 1. As a result, equations (4.12) become the familiar
quantisation condition eipjL

“ 1 for momenta of free fermions put on a circle of length L.

To find the wave function, we notice that Yj “ ´1 for this case. Therefore, from (3.37) we
obtain the following equation

�p↵j⌧q “ Yj�p⌧q “ ´�p⌧q.

It follows from here that for an arbitrary & the vector � satisfies �p&⌧q “ signp&q�p⌧q, the latter
equation is obviously solved as �p⌧q “ signp⌧q�peq. Since �peq belongs to the anti-symmetric
irrep � “ r1N

s, we have �peq “ Ap�|eq “ signp�´1

qApe|eq. Up to an overall normalisation
factor Ape|eq, the Bethe wave function (3.10) is then given by the Slater determinant

 tpjupq
1

, . . . , qN q “

ÿ

⌧PSN

signp�´1⌧qeiq�piqp⌧piq

“

ÿ

⌧PSN

signp⌧qeiqip⌧piq
“ det

`

eiqipj
˘

. (4.21)

3) The Lieb-Liniger model describes Bose gas with repulsive delta-function interaction (1.37).
The corresponding wave function transforms in the symmetric representation, � “ rN s. The
two-body S-matrix is scalar and reads as

Spp
1

, p
2

q “

p
1

´ p
2

´ i

p
1

´ p
2

` i
, (4.22)

where  ° 0 is the coupling constant. Equations (4.12) reduce to

eipjL
“

N
π

k“1

k‰j

Skjppk, pjq “

N
π

k“1

k‰j

pj ´ pk ` i

pj ´ pk ´ i
“ ´

N
π

k“1

pj ´ pk ` i

pj ´ pk ´ i
. (4.23)

1Later, considering the case of spin-1{2 fermions, we specify � as the permutation module M

rN´M,Ms.
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This set of N equations determine the allowed values of the particle momenta in this model.The
vector � in (4.8) is one-dimensional, i.e. the amplitude Ap�|⌧q does not depend on �. From
(3.37) we then have

Ap↵j⌧q “

p⌧pjq ´ p⌧pj`1q ´ i

p⌧pjq ´ p⌧pj`1q ` i
Ap⌧q .

The last equation has a unique, up to an overall normalisation, solution

Ap⌧q “ a
π

i†j

p⌧piq ´ p⌧pjq ` i

p⌧piq ´ p⌧pjq
, (4.24)

where a is ⌧ -independent constant that might be a function of p. To preclude singularities at
coincident momenta, we choose it as

a “

π

i†j

ppi ´ pjq .

Then due to the identity2

π

i†j

`

p⌧piq ´ p⌧pjqq

˘

“ sign ⌧
π

i†j

ppi ´ pjq , (4.25)

we will have

Ap⌧q “ sign ⌧
π

i†j

`

p⌧piq ´ p⌧pjq ` i
˘

.

Substituting this expression into the Bethe wave function (3.11), we find

 pq
1

, . . . , qN q “

ÿ

�PSN

ÿ

⌧PSN

e
i

N
∞

k“1
q�pkqp⌧pkq

ˆ sign ⌧
π

i†j

`

p⌧piq ´ p⌧pjq ` i
˘

N´1

π

i“1

⇥
`

q�pi`1q ´ q�piq
˘

.

Using the invariance of the scalar product and making the shift ⌧ Ñ �⌧ , we write

 pq
1

, . . . , qN q “

ÿ

⌧PSN

e
i

N
∞

k“1
qkp⌧pkq

sign ⌧

ˆ

ÿ

�PSN

sign�
π

i†j

`

p⌧p�piqq ´ p⌧p�pjqq ` i
˘

N´1

π

i“1

⇥
`

q�pi`1q ´ q�piq
˘

.

The sum over � can be taken explicitly with the following result3

ÿ

�PSN

sign�
π

i†j

`

p⌧p�piqq ´ p⌧p�pjqq ` i
˘

N´1

π

i“1

⇥
`

q�pi`1q ´ q�piq
˘

(4.26)

“

π

i†j

`

p⌧piq ´ p⌧pjq ´ i ✏pqi ´ qjq

˘

.

2We recall that
±

N

i†j

px
i

´ x

j

q “ det x

N´j

i

is the Vandermond determinant.
3See appendix 5.8 for the sketch of the proof.
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Finally, using again (4.25), we find for the wave function the following expression

 tpjupq
1

, . . . , qN q “

N
π

i†j

ppi ´ pjq

ÿ

⌧PSN

e
i

N
∞

k“1
qkp⌧pkq

N
π

i†j

„

1 ´

i ✏pqi ´ qjq

p⌧piq ´ p⌧pjq

⇢

.

The wave function is parametrised by a set of N momenta tpju which was reflected in its nota-
tion above. The function is symmetric under permutations of coordinates and anti-symmetric
under permutations of momenta, so that it vanishes if any two momenta coincide. The coordi-
nate symmetry of the wave function is compatible with the boson statistics. In the momentum
space the particles behave rather like fermions: each value of momentum can be occupied by
at most one particle. To emphasise this behaviour, in the expression for  we singled out the
overall anti-symmetric factor

±

i†jppj ´ piq, without which the wave function would be sym-
metric under permutations of momenta. Dropping this factor is not allowed, however, because
this would lead to an ill-defined wave function that would not be bounded on the whole RN

when two momenta coincide.

4.3 Low-dimensional eigenvalues

In this section we would like to describe one approach to solve the eigenvalue problem

Tj |�y “ ⇤j |�y , (4.27)

for the commuting operators

Tj “ Sj`1 jSj`2 j . . . SNjS1j . . . Sj´1 j (4.28)

acting in a given irreducible representation of the symmetric group SN . This approach, known as
the Nested Bethe Ansatz, is an extension of the original treatment of Yang of the Lieb-Liniger model
for spin- 1

2

electrons and it is based on the generalised Bethe hypothesis. It is therefore natural to
first demonstrate how the latter model was solved by Yang.

Due to the simple relationship between representations � and �̄, for the S-matrix in the repre-
sentation � we can write

Sij “

ppi ´ pjq ´ i⇡�p↵ijq

pi ´ pj ` i
“

ppi ´ pjq ` i⇡
¯�p↵ijq

pi ´ pj ` i
. (4.29)

and think about the S-matrix as acting in the representation �̄. Recall that for spin- 1

2

electrons
� “ r2M , 1N´2M

s and, therefore, the original eigenvalue problem (4.27) with |�y transforming in
this irrep is fully equivalent to the one where the operators (4.28) act in the conjugate irrep �̄ “

rN ´M, M s and |�y belongs to the corresponding representation space. Recall that �̄ “ rN ´M, M s

is the representation in which the spin wave function of electrons transforms. Thus, we want to find
the eigenbasis for the commuting operators (4.28) acting in the space of rN ´ M, M s.

The direct evaluation of eigenvalues of commuting operators (4.28) becomes straightforward if
the representation for the module S� for � “ rN ´ M, M s is explicitly known. The experience with
representations of SN shows, however, that representation matrices for an irreducible Specht module
are rather intricate as typically they contain `1 and ´1 as their matrix elements, the position of
those depend on a basis chosen. Moreover, when the dimension of an irrep S� becomes su�ciently
high the straightforward diagonalisation of Tj becomes technically problematic. On the other hand,
permutation modules have rather simple representation matrices having only `1 as their matrix
elements, the latter are distributed in a controllable way. In addition, any permutation module M�

contains the Specht module, S�
Ä M�, as a sub-representation with multiplicity one. Thus, instead
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of diagoinalising Tj on SrN´M,Ms, one can diagonalise them on M rN´M,Ms and then single out those
eigenvalues which correspond to the sub-representation SrN´M,Ms. Before we present the general
Yang’s construction, we worked out the eigenvalues of Tj on various modules we studied above. This
gives us further intuition of how these eigenvalues present themselves.

In the following we will often use the more concise notation

Sij “ aij ` bij ⇡ij , (4.30)

where

aij “

pi ´ pj

pi ´ pj ` i
, bij “

i

pi ´ pj ` i
, (4.31)

and depending on the context transposition ⇡ij is realised as an operator acting either in the repre-
sentation space M rN´M,Ms or in SrN´M,Ms. Note the relation aij ` bij “ 1 which we always use in
the evaluation of Tj .

It is enough to look at eigenvalues of T
1

and compute them numerically by picking up a random
value of momenta and . Throughout our analysis we use the following values

p
1

“

1

5
, p

2

“

11

13
, p

3

“

17

37
, p

4

“

19

81
, p

5

“

81

377
,  “

1

15
. (4.32)

The group S
3

. We have 3 commuting operators

T
1

“ S
21

S
31

T
2

“ S
32

S
12

T
3

“ S
13

S
23

In the following it is enough to look at eigenvalues of one matrix, for instance, T
1

. Specifying the
relevant representation and computing the eigenvalues µ

1

of T
1

we find

Permutation module :

µ
1

“

!

0.8403 ´ 0.5421i, 0.9908 ´ 0.1353i, 1
)

Specht module :

µ
1

“

!

0.8403 ´ 0.5421i, 0.9908 ´ 0.1353i
)

In comparison to the Specht module, the permutation module contains one more eigenvalue equal
to 1 which corresponds to the trivial sub-representation.

The group S
4

. We have 4 commuting operators

T
1

“ S
21

S
31

S
41

T
2

“ S
32

S
42

S
12

T
3

“ S
43

S
13

S
23

T
4

“ S
14

S
24

S
34

Permutation module :

µ
1

“

!

´0.7245 ´ 0.6892i, 0.9270 ´ 0.3751i, 0.9918 ´ 0.1275i, 1
)
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Specht module :

µ
1

“

!

´ 0.7245 ´ 0.6892i, 0.9270 ´ 0.3751i, 0.9918 ´ 0.1275i
)

Once again, the permutation module contains one more eigenvalue equal to 1 which corresponds to
the trivial sub-representation.

Permutation module :

µ
1

“

!

´0.7245 ´ 0.6892i, ´0.7167 ´ 0.6974i , 0.86660 ´ 0.5001i,

0.9270 ´ 0.3751i, 0.9918 ´ 0.1275i , 1
)

Specht module :

µ
1

“ t´0.7167 ´ 0.6974i, 0.8660 ´ 0.5001iu

In addition to two eigenvalues of the Specht module (uderlined with one line), the permutation
module gives rise to three eigenvalues which coincide with those in the Specht module r3, 1s. In
addition, there is again the eigenvalue 1 that corresponds to the trivial representation. This result
is in accord with the decomposition of the permutation module into the following sum of Specht
modules

M r2,2s
“ r4s ` r3, 1s ` r2, 2s .

The group S
5

. We have 5 commuting operators

T
1

“ S
21

S
31

S
41

S
51

T
2

“ S
32

S
42

S
52

S
12

T
3

“ S
43

S
53

S
13

S
23

T
4

“ S
45

S
14

S
24

S
34

T
5

“ S
15

S
25

S
35

S
45

Permutation module :

µ
1

“

!

´0.8899 ` 0.4561i, 0.0498 ´ 0.9988i, 0.9436 ´ 0.3312i, 0.9924 ´ 0.1227i, 1
)

Specht module :

µ
1

“

!

´ 0.8899 ` 0.4561i, 0.0498 ´ 0.9988i, 0.9436 ´ 0.3312i, 0.9924 ´ 0.1227i
)

Once again, the permutation module contains one more eigenvalue equal to 1 which corresponds to
the trivial sub-representation.

Permutation module :

µ
1

“

!

´0.8899 ` 0.4561i, ´0.8845 ` 0.4666i, ´0.8580 ` 0.5136i, ´0.2534 ´ 0.9674i,
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´0.0248 ´ 0.9997i, 0.0498 ´ 0.9988i, 0.8949 ´ 0.4463i,

0.9436 ´ 0.3312i, 0.9924 ´ 0.1227i, 1
)

Specht module :

µ
1

“

!

´ 0.8845 ` 0.4666i, ´0.8580 ` 5136i, ´0.2534 ´ 0.9674i,

´0.0248 ´ 0.9997i, 0.8949 ´ 0.4463i
)

The structure of the eigenvalues reflects the following decomposition of the permutation module over
the Specht modules

M r3,2s
“ r5s ` r4, 1s ` r3, 2s .

4.4 Spin chain representation of the permutation module

It is possible to realise permutation modules M rN´M,Ms of SN in a more convenient and physically
appealing way by embedding them in a larger vector space of dimension 2N . This is a spin chain
representation of the permutation modules which is constructed as follows.

Figure 4.1: Spin chain. A state of the
spin chain can be represented as | y “

| ÒÓÒÓÓ ¨ ¨ ¨ ÒÓy.

Consider a discrete circle which is a collection of or-
dered points labelled by the index n with the identifica-
tion n ” n ` N reflecting periodic boundary conditions.
Here N is a positive integer which plays the role of the
length (volume) of the space. The numbers n “ 1, . . . , N
form the fundamental domain. To each integer n along the
chain we associate a two-dimensional vector space V “ C2

with a basis

|Òy ”

ˆ

1
0

˙

, |Óy ”

ˆ

0
1

˙

. (4.33)

As this notation suggests, the basis elements are identified
as “spin up” and “spin down”, see Fig. 4.1. The Hilbert
space H of the spin chain is the tensor product of N
copies of V , H “ V bN , and has dimension 2N .

The symmetric group SN acts in H in the following way. Each transposition ↵ij when acting on
an individual basis element permutes the spins standing in the i’s and j’s position. With the help
of the standard 2 ˆ 2 matrix unities, its action on spin chain states can be written as

Pij “

2

ÿ

a,b“1

b . . . b

i
Ó
Eab b b . . . b b

j
Ó
Eba b . . . b , (4.34)

where the matrices Eab and Eba occur in the tensor product at positions i and j, respectively. From
transpositions the action is extended on arbitrary elements by using the group property. Obviously,
the action of SN preserves a subspace of H with M down spins. Within each subspace with M
down spins, the latter has dimension CM

N , the action of SN coincides precisely with the one on
the permutation module M rN´M,Ms. This can be seen from identifying the basis of the M -particle
permutation module

|n
1

, . . . , nM y , 1 § n
1

† n
2

† . . . † nM § N , (4.35)
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with states of the spin chain with M down spins occurring in the positions n
1

, n
2

, . . . , nM along the
chain. Thus, with respect to the action of SN the Hilbert space of the spin chain decomposes as

H “

N
à

M“0

M rN´M,Ms

which is, of course, compatible with counting dimensions 2N
“

∞N
M“0

CM
N . The wave function (4.38)

is then naturally interpreted as an element of H lying in the subspace spanned by states with M
down spins.

4.5 Generalised Bethe hypothesis

We consider the eigenvalue problem

Tj |�y “ ⇤j |�y , (4.36)

for the commuting operators

Tj “ Sj`1 jSj`2 j . . . SNjS1j . . . Sj´2 jSj´1 j , (4.37)

where j “ 1, . . . , N . The matrix Sij “ aij ` bijPij .

The generalised Bethe hypothesis gives an ansatz for a vector |�y P M rN´M,Ms which diago-
nalises the commuting operators Tj on the sub-representation corresponding to the Specht mod-
ule SrN´M,Ms. The hypothesis also provides an expression for the corresponding eigenvalues ⇤j .
Namely, the following expression for |�y is postulated

|�y “

ÿ

1§n1†n2†...†nM§N

cn1...nM |n
1

, . . . , nM y , (4.38)

where the coe�cients are

cn1...nM “

ÿ

⌧PSM

Ap⌧qF pv⌧p1q, n1

q ¨ ¨ ¨ F pv⌧pMq, nM q . (4.39)

Here ni with i “ 1, . . . , M are distinct integers 1 § ni § N and |n
1

, . . . , nM y are CM
N states (4.35)

which form a basis of the permutation module M rN´M,Ms. In the spin chain picture N is identified
with the number of spin chain sites and M with the number of down spins. To solve the eigenvalue
problem for Tj , the function F pv, nq must be chosen as

F pv, nq “

i

pn ´ v ´

i
2

n´1

π

j“1

pj ´ v `

i
2

pj ´ v ´

i
2

, (4.40)

while a set of unequal numbers v
1

, . . . , vM must solve the following set of Bethe-Yang equations

N
π

j“1

pj ´ vk `

i
2

pj ´ vk ´

i
2

“

M
π

l‰k

vk ´ vl ´ i

vk ´ vl ` i
. (4.41)

The eigenvalues of Tj on the irreducible Specht module rN ´ M, M s are then given by

⇤j “

M
π

k“1

pj ´ vk `

i
2

pj ´ vk ´

i
2

. (4.42)
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Finally, the coe�cients Ap⌧q are given by (up an overall normalisation)

Ap⌧q “

π

1§k†l§M

v⌧pkq ´ v⌧plq ´ i

v⌧pkq ´ v⌧plq
. (4.43)

Formula (4.38) is similar to the one which was suggested by Bethe for describing the wave function
of the Heisenberg spin chain, the role of plane waves4

eipn
“

˜

v ´

i
2



v `

i
2



¸n

(4.44)

in the original Bethe ansatz is now played by the factors F pv, nq. The formula (4.44) follows from
´pv´

i
2

qF pv, nq in the homogeneous limit pj Ñ 0. This is the reason why the ansatz (4.38) is referred
to as the generalised Bethe hypothesis. It described the wave function of the inhomogeneous XXX
model. In the following we will prove this hypothesis for M “ 1, 2.

One-particle case. We start out consideration with the simplest case of one overturned spin

|�y “

N
ÿ

n“1

cn|ny , (4.45)

where |ny denotes a state of the spin chain with all spins up except one, which is the down spin
at position n and cn is the corresponding amplitude. Consider the operator Sj´1 j . If n ‰ j and
n ‰ j ´ 1, then this operator leaves |ny invariant, Sj´1 j |ny “ |ny, because aj´1 j ` bj´1 j “ 1. On
the other hand,

Sj´1 j

”

. . . ` cj´1

|j ´ 1y ` cj |jy ` . . .
ı

“

”

. . . ` paj´1 jcj´1

` bj´1 jcjq|j ´ 1y ` paj´1 jcj ` bj´1 jcj´1

q|jy ` . . .
ı

.

Now we note that none of the remaining operators in Tj will act on the overturned spin at position
j ´ 1 and, therefore, the corresponding amplitude must obey

⇤jcj´1

“ aj´1 jcj´1

` bj´1 jcj ,

so that

⇤j “ aj´1 j ` bj´1 j
cj

cj´1

.

Next, we denote cp1q
j “ aj´1 jcj ` bj´1 jcj´1

and consider the action of Sj´2 j on the previous result

Sj´2 j

”

. . . ` cj´2

|j ´ 2y ` cp1q
j |jy ` . . .

ı

“

”

. . . ` paj´2 jcj´2

` bj´2 jc
p1q
j q|j ´ 2y ` paj´2 jc

p1q
j ` bj´2 jcj´2

q|jy ` . . .
ı

.

The remaining operators in Tj will not act on |j ´ 2y and, therefore, we should have

⇤j “ aj´2 j ` bj´2 j

cp1q
j

cj´2

.

Analogously, we introduce

cp2q
j “ aj´2 jc

p1q
j ` bj´2 jcj´2

.

4From the formula below the rapidity v is related to the particle momentum p as v “ ´ 

2 cot p

2 .
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Proceeding in the same manner, we formulate a recurrent scheme

⇤j “ aj´k j ` bj´k j

cpk´1q
j

cj´k
,

cpkq
j “ aj´k jc

pk´1q
j ` bj´k jcj´k .

(4.46)

Since the number of the S-matrices in Tj is N ´ 1, here k “ 1, . . . , N ´ 1 with understanding that
a´m j ” aN´m j , b´m j ” bN´m j for any m “ 0, . . . , N ´ j ´ 1. The first of these equations implies

that ⇤j depends on neither k nor j ´ k. We use this equation to solve for cpk´1q
j

cpk´1q
j “

⇤j ´ aj´k j

bj´k j
cj´k “

⇤jpaj´k j ` bj´k jq ´ aj´k j

bj´k j
cj´k

“

”

⇤j ` p⇤j ´ 1q

aj´k j

bj´k j

ı

cj´k .

Changing here k Ñ k ` 1 gives

cpkq
j “

”

⇤j ` p⇤j ´ 1q

aj´k´1 j

bj´k´1 j

ı

cj´k´1

. (4.47)

We substitute these formulae in the second equation of (4.46) and get

”

⇤j ` p⇤j ´ 1q

aj´k´1 j

bj´k´1 j

ı

cj´k´1

“ aj´k j

”

⇤j ` p⇤j ´ 1q

aj´k j

bj´k j

ı

cj´k ` bj´k jcj´k

“

”

aj´k j⇤j ` bj´k j ` p⇤j ´ 1q

a2

j´k j

bj´k j

ı

cj´k “

”

1 ` p⇤j ´ 1q

aj´k j

bj´k j

ı

cj´k ,

from where upon substituting the explicit expressions for a and b in terms of particle momenta, we
obtain

cj´k

cj´k´1

“

⇤j ` p⇤j ´ 1q

aj´k´1 j

bj´k´1 j

1 ` p⇤j ´ 1q

aj´k j

bj´k j

“

i⇤j

⇤j´1

` pj´k´1

´ pj

i
⇤j´1

` pj´k ´ pj

. (4.48)

Now, setting j ´ k “ n, for the ratio of two successive coe�cients we find

cn

cn´1

“

i
⇤j´1

` pn´1

´ pj ` i
i

⇤j´1

` pn ´ pj

. (4.49)

Here the right hand side has an apparent dependence on the index j. On the other hand, the
left hand side must depend on the index n only to account for the fact that |�y is a simultaneous
eigenvector for all Tj .5 Thus, the right hand side, should not depend on j as well, which is possible
only if i

⇤j´1

´ pj is some constant, which we choose for further convenience as

i

⇤j ´ 1
´ pj “ ´v ´

i

2
. (4.50)

Hence,

cn

cn´1

“

pn´1

´ v `

i
2

pn ´ v ´

i
2

.

5This is precisely the place where we use the information that we diagonalise the commuting family tT
j

u rather
than one matrix.
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Iterating this equation, we find

cn “ c
1

n´1

π

j“1

pj ´ v `

i
2

pj`1

´ v ´

i
2

“ c
1

p
1

´ v ´

i
2

pn ´ v ´

i
2

n´1

π

j“1

pj ´ v `

i
2

pj ´ v ´

i
2

. (4.51)

The coe�cient c
1

remains arbitrary and we choose it6

c
1

“

i

p
1

´ v ´

i
2

, (4.52)

so that

cn “

i

pn ´ v ´

i
2

n´1

π

j“1

pj ´ v `

i
2

pj ´ v ´

i
2

. (4.53)

From equation (4.50) we obtain the eigenvalue ⇤j

⇤j “

pj ´ v `

i
2

pj ´ v ´

i
2

. (4.54)

Equation p4.47q yields

cpkq
j “

pj´k´1

´ v `

i
2

pj ´ v ´

i
2

cj´k´1

. (4.55)

In these formulae v plays the role of integration constant. In the following it is convenient to
introduce the following variables

xj “

i

pj ´ v ´

i
2

, y
j

“ 1 ` xj “

pj ´ v `

i
2

pj ´ v ´

i
2

. (4.56)

In terms of this variables formula (4.53) reads as

cn “ y
1

. . . y
n´1

xn . (4.57)

We then find that

cpkq
j “

pj´k´1

´ v `

i
2

pj ´ v ´

i
2

i

pj´k´1

´ v ´

i
2

y
1

. . . y
j´k´2

“

i

pj ´ v ´

i
2

y
1

. . . y
j´k´1

“ x1
jy

1

. . . y
j´k´1

y
j´k

. . . y
j´1

y
j´k

. . . y
j´1

“

cj

y
j´k

. . . y
j´1

.

and the formulae (4.46) can be now regarded as identities satisfied by functions cj , namely,

aj´k j
cj

y
j´k`1

. . . y
j´1

` bj´k jcj´k “

cj

y
j´k

. . . y
j´1

,

aj´k jcj´k ` bj´k j
cj

y
j´k`1

¨ ¨ ¨ y
j´1

“ y
j
cj´k .

(4.58)

We have not yet solved the eigenvalue problem completely. Indeed, choose j “ N . Then, after
all k “ N ´ 1 applications of the S-matrices, we will be left with

TN |�y “ S
1N . . . SN´1 N |�y “ ⇤N

”

c
1

|1y ` . . . ` cN´1

|N ´ 1y

ı

` cpN´1q
N |Ny . (4.59)

6The choice c1 “ 1 was implemented in the original work [?].
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Thus, to satisfy the eigenstate equation TN |�y “ ⇤N |�y, we have to require that

cpN´1q
N “ ⇤NcN . (4.60)

Plugging here the value of cpN´1q
N and ⇤N “ y

N
, we get

cN

y
1

¨ ¨ ¨ y
N´1

“ y
N

cN .

Thus, satisfaction of the last relation requires that

N
π

j“1

y
j

“ 1 . (4.61)

Explicitly, it reads as

N
π

j“1

pj ´ v `

i
2

pj ´ v ´

i
2

“ 1 . (4.62)

This is the Bethe equation to determine v. It implies, in particular, that c
1

“ cN`1

, as follows from
(4.53) provided pN`1

“ p
1

. As a result, identifying |N ` 1y “ |1y we render |�y as a state of the
periodic spin chain that is also an eigenstate of the commuting operators Tj .

In this way we have proved the validity of the generalised Bethe Ansatz and the expression for
the eigenvalues in the one-particle sector. The Bethe equation (4.62) is a polynomial equation for v
of degree N ´ 1 and, therefore, for generic momenta pj it has N ´ 1 roots. Thus, formula (4.54) for
⇤j does not give all the eigenvalues of Tj on the permutation module, but only N ´ 1 eigenvalues
on the Specht submodule rN ´ 1, 1s. One extra eigenvalue of Tj is equal to 1 and it corresponds to
the trivial submodule.

We conclude our consideration of the one-particle case with numerical results. Using the same set
of momenta and the coupling constant (4.32), we solve equation (4.62) for di↵erent values N “ 3, 4, 5
and find for each case the corresponding solutions which we enumerate as vpiq, i “ 1, . . . , N ´1. Once

the roots are found, we evaluate the eigenvalue ⇤piq
1

for each of them. The results are summarised
below

N “ 3 , :
v

p1q “ 0.3332

⇤p1q
1 “ 0.8403 ´ 0.5421i

,

v

p2q “ 0.6906

⇤p2q
1 “ 0.9908 ´ 0.1353i

;

N “ 4 , :
v

p1q “ 0.2133

⇤p1q
1 “ ´0.7245 ´ 0.6892i

,

v

p2q “ 0.3713

⇤p2q
1 “ 0.9270 ´ 0.3751i

,

v

p3q “ 0.7206

⇤p3q
1 “ 0.9918 ´ 0.1275i

;

N “ 5 , :
v

p1q “ 0.1920

⇤p1q
1 “ ´0.8899 ` 0.4561i

,

v

p2q “ 0.2350

⇤p2q
1 “ 0.0498 ´ 0.9988i

,

v

p3q “ 0.3956

⇤p3q
1 “ 0.9436 ´ 0.3312i

;

v

p4q “ 0.7414

⇤p4q
1 “ 0.9924 ´ 0.1227i

.

One can see that the eigenvalues found here coincide precisely with those obtained earlier through
the direct diagonalisation of T

1

.

Two-particle case. To consider multi-particle excitations, it is convenient to reintroduce a set of
functions

Fj ” F pv, jq “

i

pj ´ v ´

i
2

j´1

π

k“1

pk ´ v `

i
2

pk ´ v ´

i
2

“ y
1

. . . y
j´1

xj , (4.63)
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which coincide with cj from the one-particle problem, but now we attach to them an independent
meaning as to the set of basis functions satisfying the identities

aj´k j
Fj

y
j´k`1

. . . y
j´1

` bj´k jFj´k “

Fj

y
j´k

. . . y
j´1

,

aj´k jFj´k ` bj´k j
Fj

y
j´k`1

¨ ¨ ¨ y
j´1

“ y
j
Fj´k .

(4.64)

These identities can be verified in a direct manner using the definitions (4.56) and (4.64). We also
reintroduce

F pkq
j “

Fj

y
j´k

. . . y
j´1

(4.65)

and regard this function as as a result, of k-th iteration of Fj .

For the two particle case we then try the following ansatz

cmn “ AF pv, mqF pv1, nq ` A1F pv1, mqF pv, nq . (4.66)

For conciseness in the following we denote F pv, mq ” Fm and F pv1, mq ” F 1
m, on other words,

cmn “ AFmF 1
n ` A1F 1

mFn ” AFmF 1
n ` conj . (4.67)

The ansatz requires two terms with coe�cients A and A1 to be present, as well as two di↵erent
integration constants v and v1. Operating on the coe�cients cij with Tj , we need to consider only
the fate of the first term in (4.67), as the second one is obtained from it by replacing A Ø A1 and
v Ø v1,7 and so we will not write the second term and its transformations explicitly. For simplicity
we assume that we act on the two-particle state

|�y “

ÿ

m†n

cmn|mny .

with the operator Tj with j “ N , so there are no overturned spins on the right of j. Under the
action of Sj´1 j all amplitudes remain invariant unless there is a down spin either at j ´ 1 or j. We
have8

S

j´1,j

«

. . . `
ÿ

i§j´2

AF

i

F

1
j´1|i, j ´ 1y `

ÿ

i§j´1

AF

i

F

1
j

|i, jy
�

“ S

j´1,j

«

. . . `
ÿ

i§j´2

AF

i

”

F

1
j´1|i, j ´ 1y ` F

1
j

|i, jy
ı

` AF

j´1F
1
j

|j ´ 1, jy
�

“ . . . `
ÿ

i§j´2

AF

i

”

y

1
j

F

1
j´1|i, j ´ 1y

::::::::::::

` F

1p1q
j

|i, jy
ı

` AF

j´1F
1
j

|j ´ 1, jy
::::::::::::::

,

where we have taken into account that the state |j ´ 1, jy with two neighbouring spins down is
invariant under Sj´1 j and use identities (4.64). To be able to use recurrent formulae (4.64) after
the second step, we will try to impose on A and A1 the requirement that

AFj´1

F 1
j ` A1F 1

j´1

Fj “ y1
j
AF p1q

j F 1
j´1

` y
j
A1F 1p1q

j Fj´1

. (4.68)

7In the present context we call this operation of replacement of primed for unprimed quantities conjugation.
8For more visibility we separated the positions of spins i and j in |i, jy by comma.

67



With this requirement the result above reads as

pIq . . . ` y1
j
AF 1

j´1

”

ÿ

i§j´2

Fi|i, j ´ 1y ` F p1q
j |j ´ 1, jy

ı

` A
ÿ

i§j´2

FiF
1p1q
j |i, jy .

Now we are prepared to act on pIq with Sj´2 j . In the application of Sj´2 j we have activated (in
red) a set of terms in |�y which will now undergo a non-trivial action

S

j´2,j

«

. . . `
ÿ

i§j´3

AF

i

F

1
j´2|i, j ´ 2y ` y

1
j

AF

1
j´1

”

ÿ

i§j´2

F

i

|i, j ´ 1y ` F

p1q
j

|j ´ 1, jy
ı

` A
ÿ

i§j´2

F

i

F

1p1q
j

|i, jy
�

“ . . . ` y

1
j

AF

1
j´1

ÿ

i§j´3

F

i

|i, j ´ 1y ` y

1
j

AF

1
j´1 S

j´2,j

”

F

j´2|j ´ 2, j ´ 1y ` F

p1q
j

|j ´ 1, jy
ı

` AS

j´2,j

”

ÿ

i§j´2

F

i

F

1p1q
j

|i, jy `
ÿ

i§j´3

AF

i

F

1
j´2|i, j ´ 2y

ı

“ . . . ` y

1
j

AF

1
j´1

”

ÿ

i§j´3

F

i

|i, j ´ 1y ` F

p2q
j

|j ´ 1, jy
ı

` y

j

y

1
j

AF

j´2F

1
j´1|j ´ 2, j ´ 1y

:::::::::::::::::::::

`A
ÿ

i§j´3

F

i

”

pa
j´2 j

F

1p1q
j

` b

j´2 j

F

1
j´2q|i, jy ` pb

j´2 j

F

1p1q
j

` a

j´2 j

F

1
j´2q|i, j ´ 2y

ı

` AF

1p1q
j

F

j´2|j ´ 2, jy

“ . . . ` y

1
j

AF

1
j´1

”

ÿ

i§j´3

F

i

|i, j ´ 1y ` F

p2q
j

|j ´ 1, jy
ı

` y

j

y

1
j

AF

j´2F

1
j´1|j ´ 2, j ´ 1y

:::::::::::::::::::::

`
ÿ

i§j´3

AF

i

”

y

1
j

F

1
j´2|i, j ´ 2y ` F

1p2q
j

|i, jy
ı

` AF

1p1q
j

F

j´2|j ´ 2, jy .

Here the underwaved term will stay unchanged under action of any further S-matrices, and, therefore,
from the eigenvalue equation, we find

⇤j “ y
j
y1

j
. (4.69)

To proceed and bring the result to the form similar to the one obtained after the first application
and, therefore, to prepare it to the third application, it would be nice to require that

AFj´2

F 1p1q
j ` A1F 1

j´2

F p1q
j “ y1

j
AF 1

j´2

F p2q
j ` y

j
A1Fj´2

F 1p2q
j , (4.70)

although it is not at all clear if a simultaneous solution of (4.68) and (4.70) does exist. Nevertheless,
accepting (4.70), after two applications we will have

pIIq . . . ` Ay1
j
F 1

j´1

«

ÿ

i§j´3

Fi|i, j ´ 1y ` F p2q
j |j ´ 1, jy

�

`y
j
y1

j
AFj´2

F 1
j´1

|j ´ 2, j ´ 1y

` Ay1
j
F 1

j´2

«

ÿ

i§j´3

Fi|i, j ´ 2y ` F p2q
j |j ´ 2, jy

�

`

ÿ

i§j´3

AFiF
1p2q
j |i, jy ,

where we have omitted the underwaved unchangeable term. This result is similar to pIq and is ready
for the next application of Sj´3 j . We get

pIIIq . . . ` Ay1
j
F 1

j´1

«

ÿ

i§j´4

Fi|i, j ´ 1y ` F p3q
j |j ´ 1, jy

�

(4.71)

`y
j
y1

j
AFj´3

F 1
j´1

|j ´ 3, j ´ 1y ` y
j
y1

j
AFj´2

F 1
j´1

|j ´ 2, j ´ 1y

` Ay1
j
F 1

j´2

«

ÿ

i§j´4

Fi|i, j ´ 2y ` F p3q
j |j ´ 2, jy

�
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` y
j
y1

j
AFj´3

F 1
j´2

|j ´ 3, j ´ 2y

` Ay1
j
F 1

j´3

«

ÿ

i§j´4

Fi|i, j ´ 3y ` F p3q
j |j ´ 3, jy

�

`

ÿ

i§j´4

AFiF
1p3q
j |i, jy .

We see that more and more applications of S-matrices “work out” more and more terms into their
eigenstate form with the unique eigenvalue ⇤j “ y

j
y1

j
. Proceeding in the same manner, after k steps

we will have the result

. . . ` Ay1
j
F 1

j´1

«

ÿ

i§j´k´1

Fi|i, j ´ 1y ` F pkq
j |j ´ 1, jy

�

(4.72)

` y
j
y1

j

«

AFj´k`1

F 1
j´1

|j ´ k ` 1, j ´ 1y ` . . . ` AFj´2

F 1
j´1

|j ´ 2, j ´ 1y

�

` ¨ ¨ ¨

`y
j
y1

j
AFj´kF 1

j´k`1

|j ´ k, j ´ k ` 1y

` Ay1
j
F 1

j´k

«

ÿ

i§j´k´1

Fi|i, j ´ ky ` F pkq
j |j ´ k, jy

�

`

ÿ

i§j´k´1

AFiF
1pkq
j |i, jy .

All spin states |i, my, where i † m, with

j ´ k § i § j ´ 2 ,

j ´ k ` 1 § m § j ´ 1

have been brought to the eigenstate form. To be able to write down this formula, before performing
the k-th application, we require that

AFj´kF 1pk´1q
j ` A1F 1

j´kF pk´1q
j “ y1

j
AF 1

j´kF pkq
j ` y

j
A1Fj´kF 1pkq

j , (4.73)

which is

A
Fj´kF 1

j

y1
j´k`1

. . . y1
j´1

` A1 F 1
j´kFj

y
j´k`1

. . . y
j´1

“ A
y1

j
F 1

j´kFj

y
j´k

. . . y
j´1

` A1 y
j
Fj´kF 1

j

y1
j´k

. . . y1
j´1

.

From here we have an equation

A
A1 “

Fj´kF 1
jy

j

y1
j´k

...y1
j´1

´

F 1
j´kFj

y
j´k`1

...y
j´1

Fj´kF 1
j

y1
j´k`1

...y1
j´1

´

F 1
j´kFjy1

j

y
j´k

...y
j´1

“

y
j´k

y1
j´k

Fj´kF 1
j y

j´k`1

. . . y
j

´ F 1
j´kFj y1

j
. . . y1

j´1

Fj´kF 1
j y

j´k
. . . y

j´1

´ F 1
j´kFj y1

j´k`1

. . . y1
j

.

which must be satisfied independent of k. Substituting here the expressions for F -functions in terms
of y, see (4.63), and cancelling the common factor y

1

. . . y
j´1

y1
1

. . . y1
j´1

, we arrive at

A
A1 “

p1´v´ i
2

pj´k´v´ i
2

p1´v1´ i
2

pj´v1´ i
2

y
j

´

p1´v´ i
2

pj´v´ i
2

p1´v1´ i
2

pj´k´v1´ i
2

y
j´k

p1´v´ i
2

pj´k´v´ i
2

p1´v1´ i
2

pj´v1´ i
2

y1
j´k

´

p1´v´ i
2

pj´v´ i
2

p1´v1´ i
2

pj´k´v1´ i
2

y1
j

.
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Substituting here the expressions for y, we observe remarkable cancellations leaving us the result

A
A1 “

v ´ v1
´ i

v ´ v1
` i

, (4.74)

which is independent of k, as desired.

We recall that for the operator TN we have j “ N , and we can perform applications of S-matrices
down to k “ N ´ 1. At the end we will be left with all the terms in the eigenstate form except a
certain number of them (these are the underlined terms in (4.71) and in (4.72), where in (4.72) only
the first and the last of k such terms are shown explicitly). Namely, after the full application of TN ,
we will be left over with

N´1

ÿ

k“1

”

Ay1
N

F 1
N´kF pN´1q

N ` pA Ø A1, v Ø v1
q

ı

|N ´ k, Ny

“ y
N

y1
N

N´1

ÿ

k“1

”

AFN´kF 1
N ` pA Ø A1, v Ø v1

q

ı

|N ´ k, Ny

which we have equated above to the right hand side of the eigenstate equation. This equation can
be satisfied by requiring the “cross-cancelation”, namely,

Ay1
N

F 1
N´kF pN´1q

N “ y
N

y1
N

A1F 1
N´kFN , A1y

N
FN´kF 1pN´1q

N “ y1
N

y
N

AFN´kF 1
N

that is

A
A1 “

y
N

FN

F pN´1q
N

“

N
π

j“1

y
j
,

A1

A “

y1
N

F 1
N

F 1pN´1q
N

“

N
π

j“1

y1
j
.

(4.75)

These are Bethe-Yang equations which have the following explicit form

v
1

´ v
2

´ i

v
1

´ v
2

` i
“

N
π

j“1

pj ´ v
1

`

i
2

pj ´ v
1

´

i
2

“

F pv
1

, N ` 1q

F pv
1

, 1q

,

v
1

´ v
2

` i

v
1

´ v
2

´ i
“

N
π

j“1

pj ´ v
2

`

i
2

pj ´ v
2

´

i
2

“

F pv
2

, N ` 1q

F pv
2

, 1q

,

(4.76)

where we have written the product of y’s via F -functions by assuming the periodic identification
pN`1

“ p
1

and set v “ v
1

and v1
“ v

2

.

Finally, let us give some numerical results which will allow to understand further restrictions on
relevant values Bethe roots. Using the same set of momenta and the coupling constant (4.32), we
solve equation (4.76) for N “ 4 and get the following ordered pairs9 pv

1

, v
2

q:

p0.2165, 0.6536q; p0.4350 ´ 0.0659i, 0.4350 ` 0.0659iq;

p0.8525, 0.8525q; p0.4656, 0.4656q; p0.2483, 0.2483q; p0.1738, 0.1738q .

We got 6 pairs of roots but only the first two pairs, where v
1

and v
2

are not equal, give rise to
physical eigenvalues

⇤p1q
1

“ ´0.7167 ´ 0.6974i , ⇤p2q
1

“ 0.8660 ´ 0.5001i ,

9Solutions which di↵er by permutations of roots lead to the same eigenvalue ⇤1.
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which agree with the direct generalisation of T
1

on the Specht module r2, 2s. Similar results hold for
higher N . We thus conclude that the physically relevant solutions of the Bethe equations (4.41) are
those for which Bethe roots are pairwise di↵erent. If Bethe roots coincide, v

1

“ v
2

, then A “ ´A1

and the wave function (4.67) vanishes.

The results obtained for the one- and two-particle cases are generalised to multi-particle ones
according to (4.38), (4.41) and (4.42). In the next section we provide an independent and general
derivation of the Bethe-Yang equations (4.41) as the cyclicity condition for the coe�cients cn1...nM

of the wave function (4.38).
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Lecture 5

Transfer Matrix Method

Here we explain another method of solving the inhomogeneous spin-1/2 chain by using the concept
of the transfer matrix. We therefore introduce the transfer matrix for this chain and show that the
problem of its diagonalisation is equivalent to finding the eigenbasis for the commuting family tTju.
We then diagonalise the transfer matrix by Lieb’s method as explained in Gaudin’s book.

5.1 Transfer matrix

Now, to treat all Tj at once and, most importantly, to prove their commutativity, we use the spin
chain representation to introduce the concept of transfer matrix. Consider the following object

Mppq “ S
1app

1

, pqS
2app

2

, pq . . . SNappN , pq . (5.1)

Here “a” stands for an extra copy of V , called “auxiliary space” and p is an associated auxiliary
momentum variable. The quantity Mppq is called monodromy matrix or simply monodromy. The
monodromy acts on the space V bN

b Va.

Taking the trace of Mppq with respect to the auxiliary space, we obtain an operator

T ppq “ Tra Mppq “ Tra

”

S
1app

1

, pqS
2app

2

, pq . . . SNappN , pq

ı

, (5.2)

called transfer matrix. The transfer matrix is an operator on the configuration space of the spin
chain

T ppq : V bN
Ñ V bN .

The fundamental property of the transfer matrix is that it is a generating function for the
commuting operators Tj . According to (3.46), the two-body S-matrix for coincident momenta de-
generates into a permutation Sijpp, pq “ Pij , which is, of course, compatible with the condition
(3.51). We then evaluate the transfer matrix at p “ pj

T ppjq “ Tra

”

S
1app

1

, pjqS
2app

2

, pjq . . . Sjappj , pjq . . . SNappN , pjq

ı

“ Tra

”

S
1app

1

, pjqS
2app

2

, pjq . . . Pja . . . SNappN , pjq

ı

.

Then, using the braiding property (3.47), we pull Pja to the left

T ppjq “ Tra

”

PjaS
1jpp

1

, pjq . . . Sj´1jppj´1

, pjq ¨ Sj`1appj`1

, pjq . . . SNappN , pjq

ı

.
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Here we separated by ¨ two strings of S-matrices. Since the indices of any S-matrix from one string
are di↵erent from those for any S-matrix from other string, these two strings commute and we can
interchange their position under the trace

T ppjq “ Tra

”

PjaSj`1appj`1

, pjq . . . SNappN , pjq ¨ S
1jpp

1

, pjq . . . Sj´1jppj´1

, pjq

ı

.

Next, we move Pja into the position between two strings to get

T ppjq “ Sj`1jppj`1

, pjq . . . SNjppN , pjq ¨ TrapPjaq ¨ S
1jpp

1

, pjq . . . Sj´1jppj´1

, pjq .

It remains to note that due to TrapPjaq “ , we get T ppjq “ Tj , where Tj is given by (4.11).

Working with the spin chain representation and the transfer matrix has an advantage that it
allows for an easy proof of commutativity of Tj . It follows from the commutation relation between
two monodromy matrices, Mappq and Mbpqq, each of which is defined with the help of its own
independent auxiliary spaces, Va and Vb, respectively. This commutation relation is derived as
follows. Let us consider

Sabpp, qqMbpqqMappq , (5.3)

where Sab is the S-matrix which acts on auxiliary spaces only. Using the definition of the mon-
odromies, we write

Sabpp, qqMbpqqMappq “ Sabpp, qqS
1bpp

1

, qq . . . SNbppN , qqS
1app

1

, pq . . . SNappN , pq

“ Sabpp, qqS
1bpp

1

, qqS
1app

1

, pq

´

S
2bpp

1

, qq . . . SNbppN , qqS
2app

1

, pq . . . SNappN , pq

¯

,

Here we freely moved the matrix S
1a next to S

1b because it commutes with all the matrices on its
way until it meets S

1b. Now we can use the Yang-Baxter equation

Sabpp, qqS
1bpp

1

, qqS
1app

1

, pq “ S
1app

1

, pqS
1bpp

1

, qqSabpp, qq

that yields at this stage the following answer

Sabpp, qqMbpqqMappq “

S
1app

1

, pqS
1bpp

1

, qqSabpp, qq

´

S
2bpp

1

, qq . . . SNbppN , qqS
2app

1

, pq . . . SNappN , pq

¯

.

Clearly, the matrices S
1a and S

1b interchanged their initial order and Sab stands again in front of
monodromies, the latter being reduced by the elements S

1a and S
1b. Clearly, we can now repeat

the same manipulation for S
2b and S

2a, and so on until we commute with the help of repeated
application of the Yang-Baxter equation the matrix Sab to the right of all the matrices. As a result
of these manipulations, we obtain the the following commutation relation between the components
of the monodromy matrix

Sabpp, qqMbpqqMappq “ MappqMbpqqSabpp, qq . (5.4)

This relation is of fundamental importance, it provides a starting point for the algebraic Bethe Ansatz
approach, which will be discussed later. Here we note that (5.4) immediately implies commutativity
of Tj . Indeed, we rewrite it as

MappqMbpqq “ Sabpp, qqMbpqqMappqS´1

ab pp, qq

and then take the trace with respect to each of the two auxiliary spaces. This gives

T ppqT pqq “ Tra,b

´

Sabpp, qqMbpqqMappqS´1

ab pp, qq

¯

“ T pqqT ppq .
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Thus, the values of the transfer matrix at di↵erent values of momenta commute

T ppqT pqq “ T pqqT ppq . (5.5)

Taking p “ pj and q “ pk completes the argument.

Considering the system (4.12) in the context of the spin chain representation, we can replace the
problem of diagonalising the set tTju by an equivalent problem of diagonalising the transfer matrix1

T “ Tr
0

S
10

pp
1

, pq . . . SN0

ppN , pq (5.6)

for all values of p. If we denote by ⇤ppq an eigenvalue of the transfer matrix, that is,

T |�y “ ⇤|�y , (5.7)

then (4.12) results into a set of Bethe equation

eipjL
“ ⇤ppj |tpkuq , j “ 1, . . . , N , (5.8)

where by tpku we have indicated an implicit dependence of the eigenvalue on all the other momenta
than pj . Equations (5.8) are implications of the periodicity condition for the real space wave function
and they can be thought of as the quantisation conditions for asymptotic momenta. The range of
their applicability is the same as of the asymptotic wave function.

5.2 Diagonalisation of the transfer matrix by Lieb’s method

Here we explain how to diagonalise the transfer matrix. First we introduce a local spin algebra
generated by the spin operators S↵

n , where ↵ “ 1, 2, 3, with commutation relations

rS↵
m, S�

ns “ i✏↵��S�
n�mn . (5.9)

The spin operators have the following realisation in terms of the Pauli matrices: S↵
n “

1

2

�↵. Spin
variables are subject to the periodic boundary condition S↵

n ” S↵
n`N . We then introduce the raising

and lowering operators S˘
n “ S1

n ˘ iS2

n. They are realised as

S`
n “

ˆ

0 1
0 0

˙

, S´
n “

ˆ

0 0
1 0

˙

.

The spin operators S˘
n , S3

n acts non-trivially only on the n’th site of the chain, where this action
reads as

S`
n | Òny “ 0 , S`

n | Óny “ | Òny , S3

n| Òny “

1

2

| Òny ,

S´
n | Óny “ 0 , S´

n | Òny “ | Óny , S3

n| Óny “ ´

1

2

| Óny .

The Hilbert space of the spin chain carries a tensor product representation of the Lie algebra slp2q;
the corresponding generators are realised as

S↵
“

N
ÿ

n“1

b ¨ ¨ ¨ b S↵
n b ¨ ¨ ¨ b . (5.10)

In particular, S˘
“ S1

˘ iS2 are the raising and lowering operators. The transfer matrix has the
property that it commutes with S↵, rT, S↵

s “ 0. In particular, rT, S3

s “ 0. The later property
implies that the matrix elements

xm
1

, . . . , mM | T |n
1

, . . . , nRy (5.11)

1 Here we denote the auxiliary space by 0.
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n
1

m
1

m
2

n
2

n
3

m
3

n
4

m
4

n
1

n
2

n
3

n
4

n
5

m
1

m
2

m
3

m
4

m
5

T
+

T�

where we factored out
ˆ

0 0
0 b

m1`1 . . . b
n2´1an2

˙

“

ˆ

0 0
b
m1`1 . . . b

n2´1cn2 0

˙

˜

0
a

n2
c

n2

0 0

¸

(2.99)

Finally, we can take away the common factor y “ y1, . . . yN

, obtaining

xm|T̀ |ny “

1

y

ˆ

0 0
x

n1 0

˙

ˆ

ˆ

0 y
n1`1 . . . y

m1´1xm1

0 0

˙

ˆ

ˆ

0 0
x

n2 0

˙

ˆ

˜

0
y

n2
x

n2

0 0

¸

ˆ

ˆ

0 0
x

n3 0

˙

ˆ . . . ˆ

ˆ

0 0
0 1

˙

Thus, multiplying all the matrices and taking the trace over the auxiliary space, we will
end up with the following answer

xm|T`|ny “

1

y
Dp0n1qDpn1m1qDpm1n2qDpn2m2q . . . Dpn

M

m
M

qDpm
M

N ` 1q , (2.100)

where we have introduced

Dpmnq “ x
n

, m † n

Dpnnq “

1

x
n

, m “ n

Dpnmq “ y
n`1yn`1 . . . y

m´1xm

, n † m

Dpnnq “

y
n

x
n

, n “ m .

(2.101)

where we have to assume that x0 “ x
N`1 “ 1. In the example depicted in Fig. ?? the term

with Dpnnq does not arise, but it will arise when, for instance, m1 “ m2 and we will get
the structure

xm|T`|ny “

1

y
Dp0n1qDpn1m1qDpm1n2qDpn2m2q . . . , (2.102)

where the highlighted term has coincident arguments m1 “ n2.

D

2.4 Nested coordinate Bethe Ansatz

One has to distinguish two cases – one can consider SUp2q chain but in di↵erent represen-
tations corresponding to di↵erent spin or one can consider higher rang groups like SUp3q

and SUpNq in general.

As a working example let us consider the diagram
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Figure 5.1: Matrix elements of the transfer matrix T .

are non-zero if and only if M “ R, because T preserves the number of the overturned spins. The
operator Sn0

entering the monodromy is the following 2 ˆ 2-matrix in the auxiliary space “0”

Sn0

“

¨

˝

an

´

1

2

` S3

n

˘

` bn

´

1

2

´ S3

n

¯

cnS´
n

cnS`
n an

´

1

2

´ S3

n

¯

` bn

´

1

2

` S3

n

¯

.

˛

‚ ,

where

an “ 1 , bn “

1

yn
, cn “

xn

yn
, (5.12)

and we have introduced

xn “

i

pn ´ p
, yn “ 1 ` xn . (5.13)

The matrix Sn0

has operator-valued entries that in the local spin basis give rise to the following
matrix elements

xÒn |Sn0

| Òny “

ˆ

an 0
0 bn

˙

, xÓn |Sn0

| Óny “

ˆ

bn 0
0 an

˙

,

xÒn |Sn0

| Óny “

ˆ

0 0
cn 0

˙

, xÓn |Sn0

| Òny “

ˆ

0 cn

0 0

˙

,

The next important observation is that Sn0

defines the six-vertex model of statistical mechanics.
The vertices of this model satisfy the ice rule which allow for the transfer matrix to have in the spin
basis non-zero matrix elements of only two types symbolically depicted in the Fig. 5.1.

Construction of the transfer matrix. Computing the matrix elements of the monodromy M
for the spin spin configuration on the upper picture of Fig. 5.1, we find

xm|M|ny

ˇ

ˇ

ˇ

1st conf

“

ˆ

a
1

. . . an1´1

0
0 b

1

. . . bn1´1

˙ ˆ

0 0
cn1 0

˙
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ˆ

ˆ

an1`1

. . . am1´1

0
0 bn1`1

. . . bm1´1

˙ ˆ

0 cm1

0 0

˙

ˆ

ˆ

am1`1

. . . an2´1

0
0 bm1`1

. . . bn2´1

˙ ˆ

bn2 0
0 an2

˙

ˆ

ˆ

an2`1

. . . an3´1

0
0 bn2`1

. . . bn3´1

˙ ˆ

0 0
cn3 0

˙

ˆ . . .

. . . ˆ

ˆ

amM`1

. . . aN 0
0 bmM`1

. . . bN

˙

.

Using the projector nature of upper and lower triangular matrices, we can first replace the redundant
matrix elements by zeros

xm|M|ny

ˇ

ˇ

ˇ

1st conf

“

ˆ

0 0
0 b

1

. . . bn1´1

˙ ˆ

0 0
cn1 0

˙

ˆ

ˆ

an1`1

. . . am1´1

0
0 0

˙ ˆ

0 cm1

0 0

˙

ˆ

ˆ

0 0
0 bm1`1

. . . bn2´1

˙ ˆ

0 0
0 an2

˙

ˆ

ˆ

0 0
0 bn2`1

. . . bn3´1

˙ ˆ

0 0
cn3 0

˙

ˆ . . . ˆ

ˆ

0 0
0 bmM`1

. . . bN

˙

.

Then we multiply the matrices pairwise to get

xm|M|ny

ˇ

ˇ

ˇ

1st conf

“

ˆ

0 0
b
1

. . . bn1´1

cn1 0

˙

ˆ

ˆ

0 an1`1

. . . am1´1

cm1

0 0

˙

ˆ

ˆ

0 0
bm1`1

. . . bn2´1

cn2 0

˙

ˆ

ˆ

0
an2
cn2

0 0

˙

ˆ

ˆ

0 0
bn2`1

. . . bn3´1

cn3 0

˙

ˆ . . . ˆ

ˆ

0 0
0 bmM`1

. . . bN

˙

,

where we factored out
ˆ

0 0
0 bm1`1

. . . bn2´1

an2

˙

“

ˆ

0 0
bm1`1

. . . bn2´1

cn2 0

˙ ˆ

0
an2
cn2

0 0

˙

Finally, we can take away the common factor y “ y
1

, . . . yN , obtaining

xm|M|ny

ˇ

ˇ

ˇ

1st conf

“

1

y

ˆ

0 0
xn1 0

˙

ˆ

ˆ

0 yn1`1

. . . ym1´1

xm1

0 0

˙

ˆ

ˆ

0 0
xn2 0

˙

ˆ

ˆ

0
yn2
xn2

0 0

˙

ˆ

ˆ

0 0
xn3 0

˙

ˆ . . . ˆ

ˆ

0 0
0 1

˙

Thus, multiplying all the matrices, we will end up with the following answer

xm|M|ny

ˇ

ˇ

ˇ

1st conf

“

ˆ

0 0
0 xm|T`|ny

˙

. (5.14)

Here

y xm|T`|ny “ Dp0n
1

qDpn
1

m
1

qDpm
1

n
2

qDpn
2

m
2

q . . . DpnMmM q , (5.15)
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where

1 § n
1

§ m
1

§ . . . § nM § mM § N (5.16)

and we have introduced the set of basis functions

Dpmnq “ xn , m † n

Dpnnq “

1

xn
, m “ n

Dpnmq “ yn`1

yn`1

. . . ym´1

xm , n † m

Dpnnq “

yn

xn
, n “ m .

(5.17)

In the example depicted in Fig. 5.1 the term with Dpnnq does not arise, but it will arise when, for
instance, n

2

“ m
1

and we will get the structure

y xm|T`|ny “ Dp0n
1

qDpn
1

m
1

qDpm
1

n
2

qDpn
2

m
2

q . . . , (5.18)

where the highlighted term has coincident arguments n
2

“ m
1

.

Proceeding in a similar way, we compute the matrix elements of M for the spin spin configuration
on the lower picture of Fig. 5.1

xm|M|ny

ˇ

ˇ

ˇ

2nd conf

“

ˆ

a
1

. . . am1´1

0
0 b

1

. . . bm1´1

˙

ˆ

ˆ

0 cm1

0 0

˙

ˆ

ˆ

am1`1

. . . an1´1

0
0 bm1`1

. . . bn1´1

˙

ˆ

ˆ

0 0
cn1 0

˙

ˆ . . .

. . . ˆ

ˆ

anM`1

. . . aN 0
0 bnM`1

. . . bN

˙

.

Further simplifying this result, we find

xm|M|ny

ˇ

ˇ

ˇ

2nd conf

“

1

y

ˆ

0 0
0 y

1

. . . ym1´1

xm1

˙

ˆ

ˆ

0 0
xn1 0

˙

ˆ . . .

. . . ˆ

ˆ

ynM`1

. . . yN 0
0 0

˙

.

Thus, multiplying the matrices, we will have

xm|M|ny

ˇ

ˇ

ˇ

2nd conf

“

ˆ

xm|T´|ny 0
0 0

˙

.

Here

y xm|T´|ny “ Dp0m
1

qDpm
1

n
1

qDpn
1

m
2

q . . . DpmMnM q ynM`1

. . . yN , (5.19)

where

1 § n
1

§ m
1

§ . . . § mN § N . (5.20)

In this way we have computed the matrix elements of the monodromy for arbitrary configuration of
admissible spin states with the following result

xm|M|ny “

ˆ

xm|T´|ny 0
0 xm|T`|ny

˙

.
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Taking the trace in the auxiliary space, we finally find the matrix elements of the transfer matrix

xm|T |ny “ xm|T`|ny ` xm|T´|ny , (5.21)

where the quantities xm|T˘|ny are given by (5.15) and (5.19), with restrictions (5.16) and (5.20),
respectively.

Eigenvalue equation. An equation for the amplitudes cn1...nM which diagonalise the transfer
matrix reads as

ÿ

n1†...†nM

!

xm|T`|ny ` xm|T´|ny

)

cn1...nM “ ⇤ cm1...mM . (5.22)

Although we already know the coe�cients cn1...nM that satisfy this equation from Yang’s tratment,
it is instructive to derive them again by using a di↵erent method, the latter admits a generalisation
to the problem of arbitrary spin.

Note that (5.15) can be written as

y xm|T`|ny “

M
π

j“1

Dpmj´1

njqDpnjmjq , (5.23)

where we by definition set m
0

“ mM ´ N § 0.

Assuming the periodicity conditions xk`N “ xk and so that yk`N “ yk, we can write

ynM`1

. . . yN Dp0m
1

q “ ynM`1

. . . yN ¨ y
1

. . . ym1´1

xm1

“ ynM`1

. . . yN ¨ yN`1

. . . yN`m1´1

xm1`N “ DpnMmM`1

q ,

where we identify mM`1

“ m
1

` N . This allows us to obtain the more concise expression analogous
to (5.23)

y xm|T´|ny “ Dpm
1

n
1

qDpn
1

m
2

q . . . DpmMnM qDpnMmM`1

q

“

M
π

j“1

DpmjnjqDpnjmj`1

q . (5.24)

To perform the summation in (5.22), we assume that the coe�cients cn1...nM can be extended
outside the interval 1 § ni § N with the condition of their cyclic invariance, that is

cn1n2...nM “ cn0n1...nM´1 “ cn2n3...nM`1 , (5.25)

where n
0

“ nM ´ N and nM`1

“ n
1

` N . Then we have

ÿ

1§n1†...†nM§N

xm|T`|nycn1...nM “

1

y

ÿ

1§n1†...†nM§N

M
π

j“1

Dpmj´1

njqDpnjmjqcn1...nM .

Here we make the change of the summation variables

n
1

Ñ n
0

, n
2

Ñ n
1

, . . . nM Ñ nM´1

so that inequalities (5.16) becomes

1 § n
0

§ m
1

§ n
1

§ m
2

§ . . . § nM´1

§ mM § N (5.26)
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and the sum takes the form

1

y

ÿ

1§n0†...†nM´1§N

M
π

j“1

Dpmj´1

nj´1

qDpnj´1

mjqcn0n1...nM´1

“

1

y

ÿ

1†n1...†nM´1§N†nM

M
π

j“1

Dpmj´1

nj´1

qDpnj´1

mjqcn1...nM´1nM ,

where we used the cyclicity of the coe�cients and set nM ” n
0

` N , where

N † nM † n
1

` N § m
1

` N ” mM`1

,

see equation (5.26). Taking into account that m
0

“ mM ´ N † 1 † n
0

, we notice that

Dpm
0

n
0

qDpn
0

m
1

q “ xn0yn0`1

. . . ym1´1

xm1 “ xn0`Nyn0`N`1

. . . ym1`N´1

xm1`N

“ xnM ynM . . . ymM`1´1

xmM`1 “ DpmMnM qDpnMmM`1

q .

Using this property, the sum can be finally written as

ÿ

1§n1†...†nM§N

xm|T`|nycn1...nM “

1

y

ÿ

tnu

M
π

j“1

DpmjnjqDpnjmj`1

qcn1...nM , (5.27)

where summation extends over all nj satisfying the conditions

mj § nj § mj`1

, j “ 1, . . . , M , (5.28)

as well as

1 † n
1

. . . † nM´1

§ N † nM † nM`1

, nM`1

“ n
1

` N . (5.29)

Next, for T´ the sum is given by the same formula (5.27), except in addition to (5.28) the summation
variables have to satisfy the condition

1 § n
1

† n
2

. . . † nM § N . (5.30)

Since domains (5.29) and (5.30) do not intersect, we can unite them in one domain

n
1

† n
2

. . . † nM † nM`1

“ n
1

` N (5.31)

and write the eigenvalue equation (5.22) in the form

ÿ

tnu

M
π

j“1

DpmjnjqDpnjmj`1

qcn1...,nM “ y⇤cm1...mM , (5.32)

where for a given set of mi the summation on the left hand side runs over all ni obeying (5.28) and
(5.31). Also, for nM ° N , n

1

is not allowed to take the value 1, see (5.29).

Example. Before we proceed with (5.32), we look at an explicit example of the permutation module
M rN´2,2s which corresponds to the have of 5 momentum-carrying particles and two overturned spins.
We have

ÿ

m1§n1§m2

ÿ

m2§n2§m1`N

cn1n2Dpm
1

n
1

qDpn
1

m
2

qDpm
2

n
2

qDpn
2

m
1

` Nq

´cm2m2Dpm
1

m
2

qDpm
2

m
2

qDpm
2

m
2

qDpm
2

m
1

` Nq

´cm1m1`NDpm
1

m
1

qDpm
1

m
2

qDpm
2

m
1

` NqDpm
1

` N m
1

` Nq

“y⇤ cm1m2 ,

(5.33)
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where m
1

† m
2

. Here we set up to sum over all values of m
1

§ n
1

§ m
2

and m
2

§ n
2

§ m
3

“ m
1

`N
but then explicitly subtract tho terms – the first one represents the overlapping case n

1

“ m
2

“ n
2

,
and the second one corresponds to n

1

“ m
1

, n
2

“ m
1

` N and it must be excluded because for
n

1

“ m
1

we should have n
2

† n
3

“ n
1

` N “ m
1

` N .

Lieb’s method. To solve (5.32), for the coe�cients cn1...,nM we adopt the same ansatz (4.39).
Then, substituting (4.39) into (5.32), we note that the expression under the sum would factorise if
we would not impose the condition that all ni must be distinct. To use this welcome factorisation
property, we can first disregard that ni are distinct and extend the coe�cients cn1...,nM to the
domain n

1

§ n
2

§ . . . § nM . However, once the summation is performed, we have to subtract the
(unwanted) terms which originate from coincident nj “ nj`1

on the walls separating the regions
nj † nj`1

for all j “ 1, . . . , M . This approach constitutes Lieb’s method of solving (5.32) and this
is precisely what is implemented in example (5.33).

Thus, according to Lieb’s method, we disregard the conditions

n
1

† n
2

† . . . † nM

factorise the sums over nj and subtract the unwanted terms

ÿ

⌧PSM

Ap⌧q

mj`1
ÿ

nj“mj

M
π

j“1

DpmjnjqDpnjmj`1

qF pv⌧p1q, njq ´

!

unwanted terms
)

“ y⇤ cm1...mM .

Summation over n in each of these sums can be performed in an explicit manner. We have

mj`1
ÿ

n“mj

DpmjnqDpnmj`1

qF pv, nq “

“

1

xmj

ymj`1

¨ ¨ ¨ ymj`1´1

xmj`1F pv, mjq ` ymj`1F pv, mj`1

q

`

mj`1´1

ÿ

n“mj`1

xnyn`1

. . . ymj`1´1

xmj`1F pv, nq .

Substituting in the last sum an explicit expression for F pv, nq, we then need to evaluate the sum

S “

mj`1´1

ÿ

n“mj`1

y
1

y
2

. . . yn´1

xnxnyn`1

. . . ymj`1´1

.

The key formula to perform this sum is

xnxn “ pxn ´ xnqx
0

“ pyn ´ ynqx
0

, x
0

“

i

p ´ v ´ 
. (5.34)

It immediately follows from definitions (5.13) and (4.56). Here x
0

is similar to xn in (4.56) except
pn is replaced with p

0

“ p. Then we have

S “ x
0

mj`1´1

ÿ

n“mj`1

y
1

. . . yn´1

yn . . . ymj`1´1

´ y
1

. . . ynyn`1

. . . ymj`1´1

“ x
0

y
1

. . . ymj
ymj`1

. . . ymj`1´1

´ x
0

y
1

. . . ymj`1´1

.

Therefore,

mj`1
ÿ

n“mj

DpmjnqDpnmj`1

qF pv, nq “
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“

1

xmj

ymj`1

¨ ¨ ¨ ymj`1´1

xmj`1F pv, mjq ` ymj`1F pv, mj`1

q

`x
0

y
1

. . . ymj
ymj`1

. . . ymj`1´1

xmj`1 ´ x
0

y
1

. . . ymj`1´1

xmj`1 .

We can further rewrite the last two terms in terms of the corresponding functions F , namely,

mj`1
ÿ

n“mj

DpmjnqDpnmj`1

qF pv, nq “

“

1

xmj

ymj`1

¨ ¨ ¨ ymj`1´1

xmj`1F pv, mjq ` ymj`1F pv, mj`1

q

`

x
0

ymj

xmj

ymj`1

. . . ymj`1´1

xmj`1F pv, mjq ´

x
0

xmj`1

xmj`1F pv, mj`1

q

“

´

1 `

x
0

ymj
xmj

xmj

¯ 1

xmj

ymj`1

¨ ¨ ¨ ymj`1´1

xmj`1F pv, mjq `

´

ymj`1 ´ x
0

xmj`1

xmj`1

¯

F pv, mj`1

q .

Further, we have

1 ` x
0

ymj
xmj

xmj

“ 1 ` x
0

p1 ` xmj
qxmj

xmj

“ 1 ` x
0

xmj ` x
0

xmj

xmj

“ 1 ` x
0

pymj ´ 1q ` x
0

xmj

xmj

“ x
0

ymj ` 1 ´ x
0

` x
0

xmj

xmj

“ x
0

ymj `

xmj
` x

0

pxmj ´ xmj
q

xmj

“ x
0

ymj `

xmj
` xmjxmj

xmj

“ p1 ` x
0

qymj . (5.35)

Analogously,

ymj`1 ´ x
0

xmj`1

xmj`1

“ 1 ` xmj`1 ´ x
0

xmj`1

xmj`1

“ 1 `

xmj`1xmj`1
´ x

0

xmj`1

xmj`1

“ 1 `

x
0

pxmj`1 ´ xmj`1
q ´ x

0

xmj`1

xmj`1

“ 1 ´ x
0

. (5.36)

Thus, we have evalueated the necessary sum with the following result

mj`1
ÿ

n“mj

DpmjnqDpnmj`1

qF pv, nq

“ p1 ` x
0

q

1

xmj

ymjymj`1

¨ ¨ ¨ ymj`1´1

xmj`1F pv, mjq ` p1 ´ x
0

qF pv, mj`1

q .

Note that this formula remains valid also for the limiting case when mj`1

“ mj ` 1. Introducing
the concise notation

Xj “ p1 ` x
0

q

1

xmj

ymjymj`1

¨ ¨ ¨ ymj`1´1

xmj`1F pv, mjq ,

Yj`1

“ p1 ´ x
0

qF pv, mj`1

q .

(5.37)

We can write the final sum together with unwanted terms subtracted in the schematic form

ÿ

⌧PSM

Ap⌧q pX
1

` Y
2

q

loooomoooon

v⌧p1q

pX
2

` Y
3

q

loooomoooon

v⌧p2q

pX
3

` Y
4

q

loooomoooon

v⌧p3q

. . . pXM ` YM`1

q

looooooomooooooon

v⌧pMq

. (5.38)

Here contractions connect the terms which product upon opening the brackets will contain two
functions, F pv⌧pjq, mj`1

qF pv⌧pj`1q, mj`1

q, with the same argument mj`1

. The idea now is to try
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to choose the coe�cient Ap⌧q in such away as to cancel all F -functions with coincident arguments
including those which come from unwanted terms, that is,

Ap⌧q

´

Yj`1

Xj`1

´ unwanted
¯

ˇ

ˇ

ˇ

⌧
` Ap↵j⌧q

´

Yj`1

Xj`1

´ unwanted
¯

ˇ

ˇ

ˇ

↵j⌧
“ 0 . (5.39)

Submitting here the expressions (5.37) and cancelling out the common multiplier

1

xmj`1

ymj`1ymj`1`1

¨ ¨ ¨ ymj`2´1

xmj`2 ,

we obtain the condition

Ap⌧q

”

`

1 ´ x
0

pv⌧pjqq

˘`

1 ` x
0

pv⌧pj`1qq

˘

´ 1
ı

` Ap↵j⌧q

”

`

1 ´ x
0

pv⌧pj`1qq

˘`

1 ` x
0

pv⌧pjqq

˘

´ 1
ı

“ 0 ,
(5.40)

where we blued the subtracted unwanted terms. This yields an equation

Ap↵j⌧q

Ap⌧q

“

v⌧pjq ´ v⌧pj`1q ` i

v⌧pjq ´ v⌧pj`1q ´ i
, (5.41)

which has the unique up to an overall constant solution

Ap⌧q “

π

1§i†j§M

v⌧piq ´ v⌧pjq ´ i

v⌧piq ´ v⌧pjq
. (5.42)

Formula (5.41) gives a simple example of the connection formulae that we will meet in full generality
in the next section when discussion the nested Bethe Ansatz construction.

Meanwhile, implementing (5.42), all contacted terms in (5.38) cancel2 and the eigenvalue equation
takes the form

ÿ

⌧PSM

Ap⌧qpX
1

. . . XM ` Y
2

. . . YM`1

q “ y⇤cm1...mM . (5.43)

We find

X
1

. . . XM “

M
π

i“1

`

1 ` x
0

pv⌧piqq

˘

F pv⌧piq, miq

ˆ

1

xm1

ym1 . . . ym2´1

xm2 ˆ

1

xm2

ym2 . . . ym3´1

xm3 ˆ

. . . ˆ

1

xmM

ymM ymM`1

. . . yN yN`1

. . . ym1`N´1

xm1`N
looooooooooooooomooooooooooooooon

y1...ym1´1xm1

“ y
1

. . . yN
looomooon

y

M
π

i“1

`

1 ` x
0

pviq
˘

M
π

i“1

F pv⌧piq, miq ,

where the the product of factors 1 ` x
0

does not actually depend on permutation ⌧ . Hence, the
eigenvalue equation becomes

y
M
π

i“1

`

1 ` x
0

pviq
˘

«

ÿ

⌧PSM

Ap⌧q

M
π

i“1

F pv⌧piq, miq

�

2For cancellation of X1Y

M`1 ´ tunwantedu one needs to use the Bethe-Yang equations, as will be discussed in a
moment.
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`

M
π

i“1

`

1 ´ x
0

pviq
˘

«

ÿ

⌧PSM

Ap⌧q

M`1

π

i“2

F pv⌧piq, miq

�

looooooooooooooooooomooooooooooooooooooon

cm2,...,mM`1

“ y⇤cm1...mM .

Due to the cyclic property of the coe�cients c, we observe that the eigenstate equation is satisfied
and we read o↵ the eigenvalue

⇤ “

M
π

i“1

`

1 ` x
0

pviq
˘

`

1

y
1

. . . yN

M
π

i“1

`

1 ´ x
0

pviq
˘

. (5.44)

Substituting here the functions x
0

and yj , we finally get

⇤ppq “

M
π

i“1

p ´ vi ` 

p ´ vi ´ 
`

N
π

j“1

p ´ pj

p ´ pj ´ i

M
π

k“1

p ´ vi ´

3i
2

p ´ vi ´ 
. (5.45)

This is an eigenvalue of the transfer matrix T ppq for arbitrary p. From this expression we immediately
see that ⇤ppjq “ ⇤j .

Cyclicity condition and Bethe-Yang equations. To carry out the diagonalisation procedure,
we heavily used the condition of cyclic invariance (5.25) of the coe�cients (4.39). Let us now show
that this condition leads to the Bethe-Yang equations (4.41). According to (4.39) we should have

cn2...nM`1 “

ÿ

⌧PSM

Ap⌧qF pv⌧p1q, n2

q . . . F pv⌧pM´1q, nM qF pv⌧pMq, nM`1

q

“

ÿ

⌧PSM

Ap⇠⌧qF pv⌧p2q, n2

q . . . F pv⌧pMq, nM qF pv⌧p1q, nM`1

q .

Here we made a change of summation variable ⌧ Ñ ⇠⌧ , where

⇠ “ ↵M´1

. . .↵
1

is the cyclic permutation of the set p12 . . . Mq. The cyclic invariance requires the coe�cient above
to be equal to

cn1...nM “

ÿ

⌧PSM

Ap⌧qF pv⌧p1q, n1

qF pv⌧p2q, n2

q . . . F pv⌧pMq, nM q ,

which is only possible if

Ap⌧q

Ap⇠⌧q

“

F pv⌧p1q, nM`1

q

F pv⌧p1q, n1

q

. (5.46)

Using the definition (4.63) and nM`1

“ n
1

`N , and assuming momenta pj to be periodic, pj`N “ pj ,
we obtain that

F pv⌧p1q, nM`1

q

F pv⌧p1q, n1

q

“

N
π

j“1

y
j
pv⌧p1qq

and this expression is independent on n
1

. Finally, from the explicit solution (5.42), we find

Ap⌧q

Ap⇠⌧q

“

M
π

l‰1

v⌧p1q ´ v⌧plq ´ i

v⌧p1q ´ v⌧plq ` i
.

It remains to choose ⌧ “ ↵
1k, so that v⌧p1q “ vk and equations (5.46) reduce to

M
π

l‰k

vk ´ vl ´ i

vk ´ vl ` i
“

N
π

�“1

y
j
pvkq , (5.47)
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5.3 Fock condition

For any ⌧ the vector �p⌧q must be an element of the the permutation module M rN´M,Ms and it
expanded over the basis |n

1

, . . . , nM y of CM
N elements, which in terms of the Young tabloids are

. . . . . .

n
1

. . . . . . nM

Ñ

. . .

. . .
(5.48)

To show that |�y has an irreducible symmetry type rN ´ M, M s, we have to show that we cannot
symmetrise in more than N ´ M variables, which amounts to the following Fock condition

Sym |�y “ 0 , (5.49)

i.e. picking, for instance, a spin down visualised as red particle at position n
1

, we symmetrise its
position with positions of all black particles (spins up). This leaves us with the following coe�cient
in front of the corresponding symmetrised term

H “

n2´1

ÿ

n“1

cnn2...nM `

n3´1

ÿ

n“n2`1

cn2nn3...nM `

n4´1

ÿ

n“n3`1

cn2n3nn4...nM ` . . . `

N
ÿ

n“nM`1

cn2n3...nMn ,

where cn1...nM is given by (4.39).

To evaluate this sum, we first compute

b
ÿ

a

F pv, nq “ y
1

. . . y
a´1

pxa ` y
a
xa`1

` . . . ` y
a
. . . y

b´1

xbq

“ y
1

. . . y
a´1

py
a
. . . y

b´1

y
b

´ 1q “

1

xb`1

F pv, b ` 1q ´

y
a´1

xa´1

F pv, a ´ 1q .

With this formula at hand we then find3

H “
ÿ

⌧PSM

Ap⌧q
˜

F pv
⌧p1q, n2q

x

n2
pv

⌧p1qq
:::::::::

´ F pv
⌧p1q, 1q

x1pv
⌧p1qq

¸

F pv
⌧p2q, n2q . . . F pv

⌧pMq, nM

q

`
ÿ

⌧PSM

Ap⌧qF pv
⌧p1q, n2q

˜

F pv
⌧p2q, n3q

x

n3
pv

⌧p2qq ´
y

n2
pv

⌧p2qqF pv
⌧p2q, n2q

x

n2
pv

⌧p2qq
:::::::::::::::::

¸

F pv
⌧p3q, n3q . . . F pv

⌧pMq, nM

q

`
ÿ

⌧PSM

Ap⌧qF pv
⌧p1q, n2qF pv

⌧p2q, n3q
˜

F pv
⌧p3q, n4q

x

n4
pv

⌧p3qq ´
y

n3
pv

⌧p3qqF pv
⌧p3q, n3q

x

n3
pv

⌧p3qq

¸

. . . F pv
⌧pMq, nM

q

` . . .

`
ÿ

⌧PSM

Ap⌧q
˜

F pv
⌧pMq, N ` 1q

x

N`1pv
⌧pMqq ´

y

nM
pv

⌧pMqqF pv
⌧pMq, nM

q
x

nM
pv

⌧pMqq

¸

F pv
⌧p1q, n2q . . . F pv

⌧pM´1q, nM

q

To proceed, we recombine the terms according to the underlined patterns and get

H “
ÿ

⌧PSM

´

x

n2
pv

⌧p2qq ´ x

n2
pv

⌧p1qq ´ x

n2
pv

⌧p1qqx
n2

pv
⌧p2qq

¯

Ap⌧q

ˆF pv
⌧p1q, n2qF pv

⌧p2q, n2q
x

n2
pv

⌧p1qqx
n2

pv
⌧p2qq . . . F pv

⌧pMq, nM

q

`
ÿ

⌧PSM

´

x

n3
pv

⌧p3qq ´ x

n3
pv

⌧p2qq ´ x

n3
pv

⌧p2qqx
n3

pv
⌧p3qq

¯

Ap⌧q

3Here the term
F pv⌧p1q,1q
x1pv⌧p1qq “ x1pv⌧p1qq

x1pv⌧p1qq “ 1.
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ˆF pv
⌧p1q, n2qF pv

⌧p2q, n3qF pv
⌧p3q, n3q

x

n3
pv

⌧p2qqx
n3

pv
⌧p3qq . . . F pv

⌧pMq, nM

q
. . .

`
ÿ

⌧PSM

Ap⌧qF pv
⌧pMq, N ` 1q

x

N`1pv
⌧pMqq F pv

⌧p1q, n2q . . . F pv
⌧pM´1q, nM

q

´
ÿ

⌧PSM

Ap⌧qF pv
⌧p1q, 1q

x1pv
⌧p1qq F pv

⌧p2q, n2q . . . F pv
⌧pMq, nM

q .

First we consider the term

W “

ÿ

⌧PSM

Ap⌧q

F pv⌧pMq, N ` 1q

xN`1

pv⌧pMqq

F pv⌧p1q, n2

q . . . F pv⌧pM´1q, nM q

and perform a change of variables ⌧ Ñ ⇠⌧ obtaining thereby

W “

ÿ

⌧PSM

Ap⇠⌧q

F pv⌧p1q, N ` 1q

x
1

pv⌧p1qq

F pv⌧p2q, n2

q . . . F pv⌧pMq, nM q .

Then, the Bethe-Yang equations

Ap⌧q

Ap⇠⌧q

“

F pv⌧p1q, N ` 1q

F pv⌧p1q, 1q

allow one to replace F pv⌧p1q, N ` 1q in favour of F pv⌧p1q, 1q, so that

W “

ÿ

⌧PSM

Ap⌧q

F pv⌧p1q, 1q

x
1

pv⌧p1qq

F pv⌧p2q, n2

q . . . F pv⌧pMq, nM q .

As the result the last two terms in H cancel and we are left with

H “
ÿ

⌧PSM

´

x

n2
pv

⌧p2qq ´ x

n2
pv

⌧p1qq ´ x

n2
pv

⌧p1qqx
n2

pv
⌧p2qq

¯

Ap⌧q

ˆF pv
⌧p1q, n2qF pv

⌧p2q, n2q
x

n2
pv

⌧p1qqx
n2

pv
⌧p2qq . . . F pv

⌧pMq, nM

q

`
ÿ

⌧PSM

´

x

n3
pv

⌧p3qq ´ x

n3
pv

⌧p2qq ´ x

n3
pv

⌧p2qqx
n3

pv
⌧p3qq

¯

Ap⌧q

ˆF pv
⌧p1q, n2qF pv

⌧p2q, n3qF pv
⌧p3q, n3q

x

n3
pv

⌧p2qqx
n3

pv
⌧p3qq . . . F pv

⌧pMq, nM

q
. . .

`
ÿ

⌧PSM

´

x

nM
pv

⌧pMqq ´ x

nM
pv

⌧pM´1qq ´ x

nM
pv

⌧pM´1qqx
nM

pv
⌧pMqq

¯

Ap⌧q

ˆF pv
⌧p1q, n2q . . . F pv

⌧pM´2q, nM´1q F pv
⌧pM´1q, nM

qF pv
⌧pMq, nM

q
x

nM
pv

⌧pM´1qqx
nM

pv
⌧pMqq .

At j’s linr we will have the contribution of the form
ÿ

⌧PSM

´

xnj`1
pv⌧pj`1qq ´ xnj`1

pv⌧pjqq ´ xnj`1
pv⌧pjqqxnj`1

pv⌧pj`1qq

¯

Ap⌧q

ˆF pv⌧p1q, n2

q . . .
F pv⌧pjq, nj`1

qF pv⌧pj`1q, nj`1

q

xnj`1
pv⌧pjqqxnj`1

pv⌧pj`1qq

. . . F pv⌧pMq, nM q .

Since every permutation in the sum is accompanied by a permutation ↵j⌧ , we will have the contri-
bution in the form

´

xnj`1
pv⌧pj`1qq ´ xnj`1

pv⌧pjqq ´ xnj`1
pv⌧pjqqxnj`1

pv⌧pj`1qq

¯

Ap⌧q
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`

´

xnj`1
pv⌧pjqq ´ xnj`1

pv⌧pj`1qq ´ xnj`1
pv⌧pjqqxnj`1

pv⌧pj`1qq

¯

Ap↵j⌧q ,

which vanishes because it is nothing else but (5.40) where p is replaced with pnj`1

. Thus, H “ 0.

5.4 Algebraic Bethe Ansatz

After having understood the combinatorial and group-theoretical properties of the spin chain repre-
sentation, we are facing the problem of diagonalising the transfer matrix (5.2) in this representation.
This will be done with a special technique known under the name Algebraic Bethe Ansatz4 which
represents a far-reaching embodiment of the general Bethe Ansatz idea. Introducing the so-called
R-matrix

Rabppa, pbq “ S´1

ab ppa, pbq “

ppa ´ pbq ´ i⇡ab

pa ´ pb ´ i
, (5.50)

we rewrite the commutation relations (5.4) between the entries of the monodromy matrix in the
form

Rabppa, pbqTappaqTbppbq “ TbppbqTappaqRabppa, pbq , (5.51)

where we recall that the indices a and b stand for two auxiliary spaces. The relation (5.51) is an
essential starting point in the algebraic Bethe Ansatz approach to diagonalisation of the transfer
matrix. The formulae (5.51) comprise the so-called fundamental commutation relations.

To proceed, we first point out that the monodromy (5.1) and the corresponding transfer matrix
(5.2) are inhomogeneous, with p

1

, . . . , pN playing the role of inhomogeneities. Second, using the
explicit form (4.29) of the S-matrix, we obtain the following expression for the monodromy

Tappq “ ⌦ppq

N
π

j“1

´

pp ´ pjq ´ i⇡ja

¯

, (5.52)

where

⌦ppq “

N
π

j“1

1

p ´ pj ´ i
(5.53)

is a scalar prefactor which was singled out for later convenience. Every term in the product (5.52)
acts as a 2 ˆ 2 matrix in the auxiliary space, which we can write down explicitly with the help of
the local spin operators S3

j and S˘
j as

Ljappq ” pp ´ pjq ´ i⇡ja “

ˆ

p ´ pj ´

i
2

´ iS3

j ´iS´
j

´iS`
j p ´ pj ´

i
2

` iS3

j

˙

. (5.54)

In the context of the Algebraic Bethe Ansatz, Ljappq is called Lax operator. The definition of the
Lax operator involves the local “quantum” space Vj » C2. The Lax operator Lja acts in Vj b Va:

Ljappq : Vj b Va Ñ Vj b Va . (5.55)

Taking the ordered product (5.52) over all sites of the chain, we obtain a realisation of the
monodromy as the 2 ˆ 2 matrix acting in the auxiliary space and we parametrise its entries as

T ppq “

ˆ

Appq Bppq

Cppq Dppq

˙

. (5.56)

4See the review [7] in the annotated literature.

86



Here Appq, . . . , Dppq are operators that act on the Hilbert space of the spin chain; they implicitly
depend on the inhomogeneities p

1

, . . . , pN . The relations between these operators follow from the
fundamental commutation relations (5.51) and those which we need here are

BppqBpqq “ BpqqBppq ,

AppqBpqq “

p ´ q ` i

p ´ q
BpqqAppq ´

i

p ´ q
BppqApqq ,

DppqBpqq “

p ´ q ´ i

p ´ q
BpqqDppq `

i

p ´ q
BppqDpqq .

(5.57)

The transfer matrix which we aim to diagonalise is given by the following operator

⌧ppq “ TrapTaq “ Appq ` Dppq . (5.58)

The main idea of the algebraic Bethe Ansatz relies on the existence of a reference state |0y, also
called pseudo-vacuum, such that Cppq|0y “ 0 for any p and the eigenvectors of ⌧ppq with M spins
down have the form

|�
1

,�
2

, ¨ ¨ ¨ ,�M y “ Bp�
1

qBp�
2

q ¨ ¨ ¨ Bp�M q|0y , (5.59)

where t�iu are unequal numbers called Bethe roots. In our present case the pseudo-vacuum can be
naturally identified with the state

|0y “

N
b

n“1

| Òny , (5.60)

that is the unique state with all spins up. Indeed, since (5.54) acts on this state as

Ljappq| Òny “

ˆ

pp ´ pj ´ iq| Òny i| Óny

0 pp ´ pjq| Òny

˙

,

we find that

T ppq|0y “ ⌦ppq

¨

˚

˚

˝

N
±

j“1

pp ´ pj ´ iq|0y ‹

0
N
±

j“1

pp ´ pjq|0y

˛

‹

‹

‚

,

where ‹ stands for terms whose explicit form is irrelevant for our further treatment. Taking into
account (5.53), we thus have

Cppq|0y “ 0 , Appq|0y “ |0y , Dppq|0y “

N
π

j“1

p ´ pj

p ´ pj ´ i
|0y , (5.61)

where the first relation confirms the status of |0y as the pseudo-vacuum. The second two relations
show that |0y is an eigenstate of the transfer matrix

⌧ppq|0y “

«

1 `

N
π

j“1

p ´ pj

p ´ pj ´ i

�

|0y .

Excited states are then obtained by multiple application of the “raising operator” B to the
vacuum, in accordance with the formula (5.59). These states will form the eigenstates of the transfer
matrix, provided the Bethe roots t�iu satisfy certain restrictions, which we are going to determine.
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An explicit computation done for small M indicates that the result of acting with Appq on the
state (5.59) should have the following structure

AppqBp�
1

qBp�
2

q ¨ ¨ ¨ Bp�M q|0y “

˜

M
π

n“1

p ´ �n ` i

p ´ �n

¸

Bp�
1

qBp�
2

q ¨ ¨ ¨ Bp�M q|0y

`

M
ÿ

n“1

WA
n pp, t�iuqBppq

M
π

j“1

j‰n

Bp�jq|0y .

Here the coe�cients WA
n pp, t�iuq depend on p and the set of Bethe roots t�iu

M
i“1

. To determine
these coe�cients we note that since the operators Bp�q commute with each other at di↵erent values
of �, we can write

|�
1

,�
2

, ¨ ¨ ¨ ,�M y “ Bp�nq

M
π

j“1

j‰n

Bp�jq|0y .

Thus,

Appq|�
1

,�
2

, ¨ ¨ ¨ ,�M y “

p ´ �n ` i

p ´ �n
Bp�nqAppq

M
π

j“1

j‰n

Bp�jq|0y

´

i

p ´ �n
BppqAp�nq

M
π

j“1

j‰n

Bp�jq|0y .

It is clear from this equation that only the second term on its right hand side will contribute to
WA

n since this term does not contain Bp�nq. On the other hand, moving in this term Ap�nq past
the string of Bp�jq, we see that the only way to avoid the appearance of Bp�nq is to restrict an
application of the commutation relation (5.57) to the first term on its right hand side. With this
restricted application, we pull the operator Ap�nq through all Bp�jq close to the pseudo-vacuum
and, taking into account the second equation in (5.61), find the following contribution

´

i

p ´ �n

M
π

i“1

i‰n

�n ´ �i ` i

�n ´ �i
Bppq

M
π

j“1

j‰n

Bp�jq|0y ,

from which we read o↵ the coe�cient WA
n

WA
n pp, t�iuq “ ´

i

p ´ �n

M
π

j“1

j‰n

�n ´ �j ` i

�n ´ �j
.

We should point out that this expression for WA
n is a non-trivial result that comes from cancelling

many individual terms arising upon the use of the full commutation relation (5.57). In the same
way we obtain

DppqBp�
1

qBp�
2

q ¨ ¨ ¨ Bp�M q|0y “

“

˜

N
π

j“1

p ´ pj

p ´ pj ´ i

¸˜

M
π

n“1

p ´ �n ´ i

p ´ �n

¸

Bp�
1

qBp�
2

q ¨ ¨ ¨ Bp�M q|0y

`

M
ÿ

n“1

WD
n pp, t�iuqBppq

M
π

j“1

j‰n

Bp�jq|0y ,

88



where

WD
n pp, t�iuq “

i

p ´ �n

N
π

j“1

�n ´ pj

�n ´ pj ´ i

M
π

j“1

j‰n

�n ´ �j ´ i

�n ´ �j
.

Thus, we will solve the eigenvalue problem

⌧ppq|�
1

, ¨ ¨ ¨ ,�M y “ ⇤pp, t�nuq|�
1

, ¨ ¨ ¨ ,�M y

with

⇤pp, t�nuq “

M
π

n“1

p ´ �n ` i

p ´ �n
`

N
π

j“1

p ´ pj

p ´ pj ´ i

M
π

n“1

p ´ �n ´ i

p ´ �n
,

provided WA
n ` WD

n “ 0 for all n, which means that

M
π

j“1

j‰n

�n ´ �j ` i

�n ´ �j
“

N
π

j“1

�n ´ pj

�n ´ pj ´ i

M
π

j“1

j‰n

�n ´ �j ´ i

�n ´ �j
. (5.62)

Making a uniform shift of all Bethe roots �n Ñ �n `

i
2

, we rewrite the above equations as

N
π

j“1

pj ´ �n `

i
2

pj ´ �n ´

i
2

“

M
π

j‰n

�n ´ �j ´ i

�n ´ �j ` i
. (5.63)

These are the Bethe equations. Their solutions for the set t�ju

M
j“1

enumerate the eigenstates of the
transfer matrix.

Solution of Yang’s spin- 1

2

problem. Thus, Yang’s fermion spin- 1

2

problem reduces to the fol-
lowing set of equations

eipjL
“

M
π

n“1

pj ´ �n `

i
2

pj ´ �n ´

i
2

, j “ 1, . . . , N , (5.64)

N
π

j“1

pj ´ �n `

i
2

pj ´ �n ´

i
2

“

M
π

j‰n

�n ´ �j ´ i

�n ´ �j ` i
. n “ 1, . . . , M . (5.65)

Here (5.64) are the equations (5.8) for the eigenvalues of the transfer matrix and they express the
periodicity condition for the coordinate Bethe wave function. In the present context the variables
pj are called momentum carrying roots, while the variables �n are usually referred to as auxiliary
roots. We see that equations (5.65) for auxiliary roots are algebraic and they involve momentum
carrying roots as parameters. Once the momenta pj are found the energy of the state described by
the corresponding Bethe wave function is determined as

E “

1

2

N
ÿ

j“1

p2

j . (5.66)

The system of equations (5.64), (5.8) is an example of the so-called nested Bethe Ansatz, with
one level of nesting given by equations for auxiliary roots. The term nesting originates from the
hierarchical way of applying the Bethe Ansatz technique for diagonalising an auxiliary spin chain
with spins transforming in an arbitrary irreducible representation of the symmetric group SN .

To make a connection of our findings with the representation theory of slp2q ˆSN , let us rewrite
the fundamental commutation relations (5.51) in the form

Rabp�´ µqTap�qTbpµq “ TbpµqTap�qRabp�´ µq , (5.67)
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where the momentum variables pa, pb were replaced by � and µ which play the role of spectral
parameters. We study the behaviour of (5.67) in the limit µ Ñ 8. From (5.54) we obtain that in
this limit the monodromy expands as

Tbpµq “ `

i

µ

˜

N

2
´

N
ÿ

j“1

S↵
j b �↵

b

¸

` . . . , (5.68)

where we recognised in the sum
∞N

j“1

S↵
j the generator (5.10) of the global slp2q algebra and �↵

b

denotes the corresponding Pauli matrix acting in the auxiliary space. Then the relation (5.67)
expands as

´

p�´ µq ´ i⇡ab

¯

Tap�q

ˆ

`

i

µ

´

N
2

´ S↵
b �↵

¯

` . . .

˙

“

“

ˆ

`

i

µ

´N

2
´ S↵

b �↵
¯

` . . .

˙

Tap�q

´

p�´ µq ´ i⇡ab

¯

.

Here the leading term in the large µ expansion cancels out and the subleading contribution yields
the relation

r⇡ab, Tap�qs ` rS↵, Tap�qs b �↵
“ 0 . (5.69)

Writing ⇡ab via Pauli matrices, we conclude that (5.69) implies the fulfilment of the following relation

rS↵, Tap�qs “ rTap�q, 1

2

�↵
a s . (5.70)

The spin operator S↵ acts on the Hilbert space H of the spin chain. On the left hand side of (5.70)
one has the commutator of this operator with each entry of the 2 ˆ 2 monodromy matrix (5.56),
the latter being also operators on H . On the right hand side, one finds a matrix commutator of
the monodromy matrix with the corresponding Pauli matrix in the auxiliary space. Thus, equation
(5.70) is equivalent to three distinct equations

rS3, Tap�qs “

1

2
rTap�q,�3

as “

ˆ

0 ´Bp�q

Cp�q 0

˙

,

rS`, Tap�qs “ rTap�q,�`
a s “

ˆ

´Cp�q Ap�q ´ Dp�q

0 Cp�q

˙

and

rS´, Tap�qs “ rTap�q,�´
a s “

ˆ

Bp�q 0
Dp�q ´ Ap�q ´Bp�q

˙

.

Essentially, we need the following commutation relations

rS3, Bs “ ´B , rS`, Bs “ A ´ D . (5.71)

The action of the symmetry generators on the pseudo-vacuum is

S`
|0y “ 0 , S3

|0y “

N

2
|0y .

Therefore, the pseudo-vacuum is the highest weight state of the slp2q algebra. With the help of
(5.71) we then compute

S3

|�
1

, ¨ ¨ ¨ ,�M y “

´N

2
´ M

¯

|�
1

, ¨ ¨ ¨ ,�M y
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and

S`
|�

1

, ¨ ¨ ¨ ,�M y “

ÿ

j

Bp�
1

q . . . Bp�j´1

qpAp�jq ´ Dp�jqqBp�j`1

q . . . Bp�M q|0y .

An attentive look at the last expression reveals that it can be re-expanded as

S`
|�

1

, ¨ ¨ ¨ ,�M y “

M
ÿ

n“1

OnBp�
1

q . . . Bp�n´1

q⇠⇠⇠Bp�nqBp�n`1

q . . . Bp�M q|0y ,

where the crossed out term does not appear in the sum. The coe�cients On are unknown but they
can be calculated by invoking the arguments similar to those used for computing WA

n and WD
n . The

only contributions to On will come from

Bp�
1

q . . . Bp�k´1

qpAp�kq ´ Dp�kqqBp�k`1

q . . . Bp�M q|0y with k § n.

If k “ n this contribution will be

M
π

j“n`1

�n ´ �j ` i

�n ´ �j
´

M
π

j“n`1

�n ´ �j ´ i

�n ´ �j

N
π

j“1

�n ´ pj

�n ´ pj ´ i

and if k † n the contribution will be

WA
n p�k, t�u

M
k`1

q ´ WD
n p�k, t�u

M
k`1

q ,

where it is convenient to represent WA
n and WD

n in the following split form

WA
n p�k, t�u

M
k`1

q “

i

�n ´ �k

M
π

j“n`1

�n ´ �j ` i

�n ´ �j

n´1

π

j“k`1

�n ´ �j ` i

�n ´ �j
,

WD
n p�k, t�u

M
k`1

q “ ´

i

�n ´ �k

M
π

j“n`1

�n ´ �j ´ i

�n ´ �j

n´1

π

j“k`1

�n ´ �j ´ i

�n ´ �j

N
π

j“1

�n ´ pj

�n ´ pj ´ i
.

Thus, adding up, we obtain

On “

M
π

j“n`1

�n ´ �j ` i

�n ´ �j
`

n´1

ÿ

k“1

WA
n p�k, t�u

M
k`1

q

´

M
π

j“n`1

�n ´ �j ´ i

�n ´ �j

N
π

j“1

�n ´ pj

�n ´ pj ´ i
´

n´1

ÿ

k“1

WD
n p�k, t�u

M
k`1

q “

“

M
π

j“n`1

�n ´ �j ` i

�n ´ �j

˜

1 `

n´1

ÿ

k“1

i

�n ´ �k

n´1

π

j“k`1

�n ´ �j ` i

�n ´ �j

¸

´

M
π

j“n`1

�n ´ �j ´ i

�n ´ �j

N
π

j“1

�n ´ pj

�n ´ pj ´ i

˜

1 ´

n´1

ÿ

k“1

i

�n ´ �j

n´1

π

j“k`1

�n ´ �j ´ i

�n ´ �j

¸

.

To proceed, we note the following useful identity

tm ” 1 `

n´1

ÿ

k“m

i

�n ´ �k

n´1

π

j“k`1

�n ´ �j ` i

�n ´ �j
“

n´1

π

j“m

�n ´ �j ` i

�n ´ �j
. (5.72)

We will prove this identity by induction over m. For m “ n ´ 1 and m “ n ´ 2 we have

tn´1

“ 1 `

i

�n ´ �n´1

“

�n ´ �n´1

` i

�n ´ �n´1

,
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tn´2

“ 1 `

i

�n ´ �n´1

`

i

�n ´ �n´2

�n ´ �n´1

` i

�n ´ �n´1

“

�n ´ �n´1

` i

�n ´ �n´1

�n ´ �n´2

` i

�n ´ �n´2

.

Now we suppose that the formula holds for m “ l, then we have

tl´1

“ tl `

i

�n ´ �l´1

n´1

π

j“l

�n ´ �j ` i

�n ´ �j
“

n´1

π

j“l´1

�n ´ �j ` i

�n ´ �j
,

which proves the identity. With formula (5.72) at hand we get

1 `

n´1

ÿ

k“1

i

�n ´ �k

n´1

π

j“k`1

�n ´ �j ` i

�n ´ �j
“

n´1

π

j“1

�n ´ �j ` i

�n ´ �j
.

In the same way one can show that

1 ´

n´1

ÿ

k“1

i

�n ´ �j

n´1

π

j“k`1

�n ´ �j ´ i

�n ´ �j
“

n´1

π

j“1

�n ´ �j ´ i

�n ´ �j
.

This, we found for On the following answer

On “

M
π

j“1

j‰n

�n ´ �j ` i

�n ´ �j
´

M
π

j“1

j‰n

�n ´ �j ´ i

�n ´ �j

N
π

j“1

�n ´ pj

�n ´ pj ´ i
.

It is quite remarkable that this expression is nothing else but the Bethe equation (5.62) for the root
�n, and, therefore, if the Bethe equations are satisfied all the coe�cients On vanish. This proves
that the eigenstates of the transfer matrix are annihilated by the raising operator S`, i.e. they
are the highest weight vectors of the spin algebra and, for this reason, belong to the representation
rN ´ M, M s of SN . For a given M , the number of distinct solutions5 t�iu of (5.62) with no two �
coincident is equal to dimrN ´M, M s. Showing this is, however, non-trivial and represents a variant
of the so-called completeness problem for the Bethe Ansatz.

5That is the solutions which are not related to each other by permutations of some Bethe roots.
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Appendix

5.5 Symmetric group SN

The symmetric group SN is defined as the set of all one-to-one mappings of the set of numbers
t1, . . . , Nu to itself. Every element � P SN , called permutation, can be written in two-line notation
as

� “

ˆ

1

�p1q

2

�p2q

¨ ¨ ¨

N

�pNq

˙

,

meaning that � maps 1 to �p1q, 2 to �p2q and so on. Since in two-line notation the top line is
fixed, one can drop it obtaining a one-line notation. The product �⌧ of two permutations � and
⌧ is constructed as follows. In the ⌧ -string one takes an integer standing in the position �pjq and
moves it in the position j of the product �⌧ . For instance, given two permutations � “ p132q and
⌧ “ p213q in S

3

, written in one-line notation, one has for their product6

p132qp213q “ p231q .

In the two-line notation the same product looks like
ˆ

1

1

2

3

3

2

˙ ˆ

1

2

2

1

3

3

˙

“

ˆ

1

2

2

3

3

1

˙

.

As the flow of indices shows, this result means that p�⌧qpjq “ ⌧p�pjqq, that is it corresponds to the
application to the index j of � followed by ⌧ .

Next, we need a transposition ↵ij that interchanges the positions of i and j and leaves all the
other elements unchanged

↵ij ” pi|jq “

ˆ

1

1
¨ ¨ ¨

i

j
¨ ¨ ¨

j

i
¨ ¨ ¨

N

N

˙

.

Multiplication of � by ↵ij from the right exchanges the positions of �piq and �pjq. Thus,

↵ij� “ p�p1q, . . . ,�pjq, . . . ,�piq, . . . ,�pNqq .

Transpositions satisfy ↵2

ij “ e, where e is the identity, and the relations

↵kj↵ik “ ↵ik↵ij , i ‰ j . (5.73)

6To display a permutation � in the one-line notation, we confine the corresponding sequence of numbers from the
set t1, 2, . . . , Nu within the brackets p...q. This notation should not be confused with the one used to represent � via
its cycles. In this book we never use cycle notation.
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Every permutation can be expressed as a product of transpositions, albeit not in a unique way. For
a given permutation � P SN the number of transpositions in its decomposition is always either even
or odd. This allows to define the signature function, also called parity, on SN : signp�q “ 1, if � is
given by an even number of transpositions, and signp�q “ ´1, if the corresponding number is odd.
The sign function has the properties

signp�⌧q “ signp�qsignp⌧q , signp�´1

q “ signp�q .

Importantly, the group SN is generated by simple transpositions ↵j ” ↵jj`1

, i “ 1, . . . , N ´ 1,
subject to the Coxeter relations

↵2

j “ e , 1 § j § N ´ 1 ,

↵j↵j`1

↵j “ ↵j`1

↵j↵j`1

, 1 § j § N ´ 2 ,

↵i↵j “ ↵j↵i , 1 § i, j § N ´ 1 and |i ´ j| • 2 .

(5.74)

It is useful to have in mind that the invariance of the euclidean scalar product under the action
of �, ⌧ P SN implies that

ÿ

j

q�pjqp⌧pjq “

ÿ

j

qjpp�´1⌧qpjq “

ÿ

j

qp⌧´1�qpjqpj .

Let FunpSN q be the algebra of functions on SN . The left ⇡ and the right ⇡1 regular representa-
tions of SN are defined as

⇡p�
0

qAp�q “ Ap�´1

0

�q , (5.75)

⇡1
p�

0

qAp�q “ Ap��
0

q , (5.76)

for A P FunpSN q. The left and right regular representations are equivalent: ⇡1I “ I⇡, where an
intertwining operator I acts as pIAqp�q “ Ap�´1

q.

The left (right) regular representation is decomposed into a sum of irreducible representations
according to

⇡ »

à

�

dim⇡� ¨ ⇡� , (5.77)

where ⇡� is the irreducible representation of SN corresponding to a partition � of N and dim⇡�

is the dimension of this representation. The sum runs over all partitions of N . According to
(5.77), the multiplicity with which a representation ⇡� appears in the decomposition of the regular
representation is equal to dim⇡�. This dimension is given by the determinant formula

dim⇡� “ N ! detlˆl
1

p�i ´ i ` jq!
, (5.78)

where i, j “ 1, . . . , l and � “ r�
1

, �
2

, . . . , �ls is the associated partition or Young diagram.

Example. As an illustrative example for later use, we consider the decomposition (5.77) for S
3

.
There are 6 permutations which we enumerate as

�
1

“ p123q “ e , �
2

“ p213q , �
3

“ p231q , �
4

“ p321q , �
5

“ p312q , �
6

“ p132q . (5.79)

The corresponding multiplication table �i�j , where i and j enumerate its rows and columns, respec-
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tively, looks as

�
1

�
2

�
3

�
4

�
5

�
6

�
1

�
1

�
2

�
3

�
4

�
5

�
6

�
2

�
2

�
1

�
4

�
3

�
6

�
5

�
3

�
3

�
6

�
5

�
2

�
1

�
4

�
4

�
4

�
5

�
6

�
1

�
2

�
3

�
5

�
5

�
4

�
1

�
6

�
3

�
2

�
6

�
6

�
3

�
2

�
5

�
4

�
1

In the basis gi ” Ap�iq the representation ⇡ is realised by the following 6ˆ6 real orthogonal matrices

⇡p�1q “ , ⇡p�2q “

¨

˚

˚

˚

˚

˚

˝

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

˛

‹

‹

‹

‹

‹

‚

, ⇡p�3q “

¨

˚

˚

˚

˚

˚

˝

0 0 0 0 1 0

0 0 0 1 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 1 0 0 0

0 1 0 0 0 0

˛

‹

‹

‹

‹

‹

‚

,

⇡p�4q “

¨

˚

˚

˚

˚

˚

˝

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

˛

‹

‹

‹

‹

‹

‚

, ⇡p�5q “

¨

˚

˚

˚

˚

˚

˝

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

˛

‹

‹

‹

‹

‹

‚

, ⇡p�6q “

¨

˚

˚

˚

˚

˚

˝

0 0 0 0 0 1

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

1 0 0 0 0 0

˛

‹

‹

‹

‹

‹

‚

,

and, hence, this representation is unitary. Transpositions are �
2

, �
4

and �
6

. They are realised by
symmetric matrices. In particular, the simple transpositions are ↵

1

“ �
2

and ↵
2

“ �
6

. The operator
I that intertwines ⇡1 and ⇡, I⇡1

“ ⇡ I, is

I “

¨

˚

˚

˝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

˛

‹

‹

‚

, I2

“ . (5.80)

The matrix realisation of ⇡1 on the same basis is

⇡1p�1q “ , ⇡1p�2q “

¨

˚

˚

˚

˚

˚

˝

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

˛

‹

‹

‹

‹

‹

‚

, ⇡1p�3q “

¨

˚

˚

˚

˚

˚

˝

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

˛

‹

‹

‹

‹

‹

‚

,

⇡1p�4q “

¨

˚

˚

˚

˚

˚

˝

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

˛

‹

‹

‹

‹

‹

‚

, ⇡1p�5q “

¨

˚

˚

˚

˚

˚

˝

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

˛

‹

‹

‹

‹

‹

‚

, ⇡1p�6q “

¨

˚

˚

˚

˚

˚

˝

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

˛

‹

‹

‹

‹

‹

‚

,

The representation ⇡ has three irreducible components: � “ r3s, � “ r2, 1s and � “ r1, 1, 1s.
The first is a trivial (symmetric) representation, the last is a one-dimensional anti-symmetric one.
The representation r2, 1s is the two-dimensional standard (defining) representation and it occurs
with multiplicity 2. The decomposition (5.77) is obtained by performing a similarity transformation
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⇡ Ñ T⇡T ´1, where T is the following unitary matrix

T “

1
?

6

¨

˚

˚

˚

˚

˚

˚

˚

˝

1 1 1 1 1 1

1 1 e

´ 2⇡i

3
e

2⇡i

3
e

2⇡i

3
e

´ 2⇡i

3

1 1 e

2⇡i

3
e

´ 2⇡i

3
e

´ 2⇡i

3
e

2⇡i

3

´1 1 ´e

´ 2⇡i

3
e

2⇡i

3 ´e

2⇡i

3
e

´ 2⇡i

3

1 ´1 e

2⇡i

3 ´e

´ 2⇡i

3
e

´ 2⇡i

3 ´e

2⇡i

3

1 ´1 1 ´1 1 ´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

Under the action of T the basis g “ tgiu of ⇡ transforms into

Tg “

1
?

6

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

g
1

` g
2

` g
3

` g
4

` g
5

` g
6

g
1

` g
2

` g´ 2⇡i
3

pg
3

` g
6

q ` e
2⇡i
3

pg
4

` g
5

q

g
1

` g
2

` e´ 2⇡i
3

pg
4

` g
5

q ` e
2⇡i
3

pg
3

` g
6

q

´g
1

` g
2

´ e´ 2⇡i
3

pg
3

´ g
6

q ` e
2⇡i
3

pg
4

´ g
5

q

g
1

´ g
2

´ e´ 2⇡i
3

pg
4

´ g
5

q ` e
2⇡i
3

pg
3

´ g
6

q

g
1

´ g
2

` g
3

´ g
4

` g
5

´ g
6

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

”

1
?

6

¨

˚

˚

˚

˚

˚

˚

˝

v
1

v
2

v
3

v
4

v
5

v
6

˛

‹

‹

‹

‹

‹

‹

‚

.

In this basis the matrices of T⇡T ´1 take a block-diagonal form which corresponds to the decompo-
sition

T⇡T ´1

“ ⇡r3s ‘ ⇡r2,1s ‘ ⇡r2,1s ‘ ⇡r1,1,1s . (5.81)

In particular, v
1

is a projection on the invariant subspace of the trivial representation of ⇡r3s and
v
6

plays a similar role for the anti-symmetric one-dimensional representation ⇡r1,1,1s. Analogously,
pv

2

, v
3

q and pv
4

, v
5

q are invariant subspaces for the two-dimensional representations ⇡r2,1s. This
example shows a clear pattern of how the tensor product decomposition of the regular representation
looks like. In particular, for the general case of SN , a decomposition of ⇡ will always contain trivial
and anti-symmetric representations.

5.6 Some facts on representations of SN

Let � “ r�
1

, . . . , �ls be a partition on N . A Young tableau of shape � is an array obtained by
replacing boxes of the Young diagram with the numbers 1, 2, . . . , N bijectively. A Young tabloid of
shape � is defined as an equivalence class of row-equivalent tableaux. A tabloid is denoted in the
following way

1 2 3

4 5

6

(5.82)

This notation means that we do not distinguish between tableaux which di↵er from each other by
permutations of 1, 2, 3 and 4, 5. The number of di↵erent tableaux is a given equivalence glass corre-
sponding to a single tabloid is �

1

! . . . �l! and, therefore, the number of �-tabloids is N !{p�
1

! . . . �l!q.

Permutation modules M�. The symmetric group acts on �-tabloids in well-defined way, which
for any � defines an associated representation of dimension

dim M�
“

N !

�
1

! . . . �l!
. (5.83)
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Elements of SN act on �-tabloids by permuting their elements. For instance, if ⇡ P S
6

, then its
action on the tabloid (5.82) gives another tabloid

⇡p1q ⇡p2q ⇡p3q

⇡p4q ⇡p5q

⇡p6q

The M� is called the permutation module corresponding to �. The importance of M� is that it
contains a unique irreducible module S� called the Specht module. There are three basic permutation
modules. The first one corresponds to the diagram � “ rN s

M rns
“ 1 2 . . . N

with the trivial action of SN . Next, consider r1N
s. Each equivalence class consists of a single tableau,

each tableau can be identified with a permutation itself, and therefore, the module is isomorphic to
SN itself: M r1N s

» CSN , Thus, this module realises the regular representation of SN . Finally, if
� “ rN ´1, 1s, each tabloid is identified by the element standing in the second row, so that the basis
of M rN´1,1s contains precisely N -elements. This is the so-called defining representation of SN that
is realised in a vector space of dim V “ N . In the following we will be interested in representations
corresponding to the Young diagrams rN ´M, M s. The dimension of the corresponding permutation
module M rN´M,Ms is

dim M rN´M,Ms
“

N !

pN ´ Mq!M !
“ CM

N . (5.84)

The states of this permutation module can be realised as spin configurations with M spins down of
a closed spin- 1

2

chain. Later on, when discussion the construction of the algebraic Bethe Ansatz, we

will use all advantages of this physical interpretation of the permutation module M rN´M,Ms.

Specht modules S�. Specht modules provide an explicit realisation of all irreducible represen-
tations of the symmetric group, the latter are in one-to-one correspondence with Young diagrams.
Suppose that the tableau t has rows R

1

, . . . , Rt and columns C
1

, . . . , Ck. Define

Rt “ SR1 ˆ SR2 ˆ . . . ˆ SRt (5.85)

and

Ct “ SC1 ˆ SC2 ˆ . . . ˆ SCk , (5.86)

which are the row-stabiliser and column-stabiliser of t, respectively. Note that the equivalence classes
which at the same time are tabloids can be written as

ttu “ Rtt “

ÿ

�PRt

�t

Define

t “

ÿ

⇡PCt

signp⇡q⇡ . (5.87)

Note that t factorises as
t “ C1C2 ¨ ¨ ¨Ck .
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If t is a tableau, then we construct an associated polytabloid as

et “ tttu “

ÿ

�PRt
⇡PCt

signp⇡q⇡�t. (5.88)

Here the element

Y “

ÿ

�PRt
⇡PCt

signp⇡q⇡� (5.89)

of the group algebra of SN is called Young symmetriser.

For any partition �, the corresponding Specht module S� is a submodule of M� spanned by the
polytabloids et, where t is of shape �. The dimension of the Specht modules is found, for instance,
from the hook formula and its is also equal to the number of the standard Young tableaux7.

For the Specht module S� with � “ rN ´ M, M s the hook formula yields

dim S�
“

N !pN ´ 2M ` 1q

pN ´ M ` 1q!M !
. (5.90)

Another direct and useful construction of the Specht modules is as follows. The Specht module
S� can be identified the subspace of the polynomial ring Crx

1

, . . . , xN s spanned by all polynomials
pt, where pt “

±

pxi ´ xjq, the product over all pairs i † j which occur in the same column of a
tableau t of shape �.

Examples. To provide a large set of explicit examples of Yang’s approach, below we work out
the representation matrices for permutation modules M rN´1,1s and M rN´2,2s corresponding to the
symmetric groups for N “ 3, 4, 5.

The group S
3

. Consider a Young diagram r2, 1s corresponding to the defining representation of S
3

and specify the following basis of tabloids

e
1

“

2 3

1
, e

2

“

1 3

2
, e

3

“

1 2

3
. (5.91)

We have the following table of actions of transpositions8 on the tabloids

�
12

e
1

“ e
2

�
13

e
1

“ e
3

�
23

e
1

“ e
1

�
12

e
2

“ e
1

�
13

e
2

“ e
2

�
23

e
2

“ e
3

�
12

e
3

“ e
3

�
13

e
3

“ e
1

�
23

e
3

“ e
2

In this basis transpositions are realised by 3 ˆ 3 permutation matrices

�12 “
¨

˝

0 1 0
1 0 0
0 0 1

˛

‚

, �13 “
¨

˝

0 0 1
0 1 0
1 0 0

˛

‚

, �23 “
¨

˝

1 0 0
0 0 1
0 1 0

˛

‚

. (5.92)

Let us now construct the corresponding Specht module Sr2,1s which has dimension 2. Let is take
as the cyclic vector of the basis

v
1

“

2 3

1
´

1 3

2
“ e

1

´ e
2

.

7A tableau t is standard if the rows and and columns of t are increasing sequences.
8Since the symmetric group is generated by transpositions, it is enough to build up a representation on transposi-

tions and extend it to the whole group by multiplication.
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As the vector v
2

we take v
2

“ �
13

v
1

“ e
3

´ e
2

. We then have the following table of actions

�
12

v
1

“ ´v
1

�
13

v
1

“ v
2

�
23

v
1

“ v
1

´ v
2

�
12

v
2

“ v
2

´ v
1

�
13

v
2

“ v
1

�
23

v
2

“ ´v
2

As the result, in this basis pv
1

, v
2

q transpositions are realised by 2 ˆ 2 matrices

�12 “
ˆ ´1 ´1

0 1

˙

, �13 “
ˆ

0 1
1 0

˙

, �23 “
ˆ

1 0
´1 ´1

˙

. (5.93)

Finally, we note that since the Young diagram r2, 1s is self-conjugate, the conjugate representation
must be equivalent to the original one. Indeed, taking

h “

ˆ

1

2

1
´1 ´

1

2

˙

,

we observe that

h�
12

h´1

“ ´�
12

, h�
13

h´1

“ ´�
13

, h�
23

h´1

“ ´�
23

.

The group S
4

. For this group we have the following non-trivial Young diagrams

(5.94)

The first two diagrams are the most relevant for our purposes and we construct the corresponding
permutation and Specht modules explicitly.

We start with the defining representation M r3,1s for which we have

dim M r3,1s
“

4!

3! ¨ 1!
“ 4

and choose a basis in the representation space as

e
1

“

2 3 4

1
, e

2

“

1 3 4

2
, e

3

“

1 2 4

3
, e

4

“

1 2 3

4
.

In this bases the transposition act as

�
12

e
1

“ e
2

�
13

e
1

“ e
3

�
14

e
1

“ e
4

�
12

e
2

“ e
1

�
13

e
2

“ e
2

�
14

e
2

“ e
2

�
12

e
2

“ e
3

�
13

e
3

“ e
1

�
14

e
3

“ e
4

�
12

e
4

“ e
4

�
13

e
4

“ e
4

�
14

e
4

“ e
3

�
23

e
1

“ e
1

�
24

e
1

“ e
1

�
34

e
1

“ e
1

�
23

e
2

“ e
3

�
24

e
2

“ e
4

�
34

e
2

“ e
2

�
23

e
2

“ e
2

�
24

e
3

“ e
3

�
34

e
3

“ e
4

�
23

e
4

“ e
4

�
24

e
4

“ e
2

�
34

e
4

“ e
3
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and are realised by the following permutation matrices

�12 “

¨

˚

˚

˝

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

˛

‹

‹

‚

, �13 “

¨

˚

˚

˝

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

˛

‹

‹

‚

, �14 “

¨

˚

˚

˝

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

˛

‹

‹

‚

,

�23 “

¨

˚

˚

˝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

˛

‹

‹

‚

, �24 “

¨

˚

˚

˝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

˛

‹

‹

‚

, �43 “

¨

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

˛

‹

‹

‚

,

(5.95)

The Specht module Sr3,1s has dim Sr3,1s
“ 3. We can pick up a basis spanned by

v
1

“ e
1

´ e
2

v
2

“ e
3

´ e
2

v
3

“ e
3

´ e
4

Computing the action of transpositions in this basis we find

�12 “
¨

˝

´1 ´1 0
0 1 0
0 0 1

˛

‚

, �13 “
¨

˝

0 1 1
1 0 ´1
0 0 1

˛

‚

, �14 “
¨

˝

0 0 ´1
1 1 1

´1 0 0

˛

‚

,

�23 “
¨

˝

1 0 0
´1 ´1 ´1

0 0 1

˛

‚

, �24 “
¨

˝

1 0 0
´1 0 1

1 1 0

˛

‚

, �34 “
¨

˝

1 0 0
0 1 0
0 ´1 ´1

˛

‚

.

(5.96)

Note that the determinant of any of these matrices is equal to -1. This shows, in particular, that
the conjugate representation r2, 1, 1s corresponding to the utmost right diagram in (5.94) for which
any transposition is realised as ´� with � in irrep r3, 1s cannot be equivalent to irrep r3, 1s, because
´� would then have the unit determinant. It is still a useful exercise to construct the representation
r2, 1, 1s and show that it is equivalent to the one where the matrices (5.96) are taken with minus
sign in front. To proceed with solving this exercise, we use the method of polynomials and pick up
a subring of Crx

1

, x
2

, x
3

, x
4

s with the following basis

p
1

“ px
1

´ x
3

qpx
3

´ x
4

qpx
1

´ x
4

q ,

p
2

“ px
2

´ x
3

qpx
3

´ x
4

qpx
2

´ x
4

q ,

p
3

“ px
1

´ x
2

qpx
2

´ x
3

qpx
1

´ x
3

q .

The symmetric group acts on xi by xi Ñ x�piq. If we identify

p1 “
¨

˝

1
0
0

˛

‚

, p2 “
¨

˝

0
1
0

˛

‚

, p3 “
¨

˝

0
0
1

˛

‚

, (5.97)

then the action of S
3

on these polynomials becomes equivalent to the following matrix action

t12 “
¨

˝

0 1 0
1 0 0
0 0 ´1

˛

‚

, t13 “
¨

˝

´1 ´1 0
0 1 0
0 ´1 ´1

˛

‚

, t14 “
¨

˝

´1 0 0
0 0 1
0 1 0

˛

‚

,

t23 “
¨

˝

1 0 0
´1 ´1 0

1 0 ´1

˛

‚

, t24 “
¨

˝

0 0 ´1
0 ´1 0

´1 0 0

˛

‚

, t34 “
¨

˝

´1 0 1
0 ´1 ´1
0 0 1

˛

‚

.

(5.98)

Introduce a matrix

w “
¨

˝

1 3 1
2 ´2 ´2

´1 1 3

˛

‚

One can now check that wtijw´1

“ ´�ij for all i † j, where �ij are given by (5.96).
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Let us now consider the permutation module M r2,2s for the middle diagram in (5.94). The
dimension of this module is

dim M r2,2s
“

4!

2! ¨ 2!
“ 6

and we choose the following basis

e
1

“

3 4

1 2
, e

2

“

2 4

1 3
, e

3

“

2 3

1 4
,

e
4

“

1 4

2 3
, e

5

“

1 3

2 4
, e

6

“

1 2

3 4
.

In this bases the transposition act as

�
12

e
1

“ e
1

�
13

e
1

“ e
4

�
14

e
1

“ e
5

�
12

e
2

“ e
4

�
13

e
2

“ e
2

�
14

e
2

“ e
6

�
12

e
3

“ e
5

�
13

e
3

“ e
6

�
14

e
3

“ e
3

�
12

e
4

“ e
2

�
13

e
4

“ e
1

�
14

e
4

“ e
4

�
12

e
5

“ e
3

�
13

e
5

“ e
5

�
14

e
5

“ e
1

�
12

e
6

“ e
6

�
13

e
6

“ e
3

�
14

e
6

“ e
2

�
23

e
1

“ e
2

�
24

e
1

“ e
3

�
34

e
1

“ e
1

�
23

e
2

“ e
1

�
24

e
2

“ e
2

�
34

e
2

“ e
3

�
23

e
3

“ e
3

�
24

e
3

“ e
1

�
34

e
3

“ e
2

�
23

e
4

“ e
4

�
24

e
4

“ e
6

�
34

e
4

“ e
5

�
23

e
5

“ e
6

�
24

e
5

“ e
5

�
34

e
5

“ e
4

�
23

e
6

“ e
5

�
24

e
6

“ e
4

�
34

e
6

“ e
6

and the corresponding matrix realisation reads

�12 “

¨

˚

˚

˚

˚

˚

˝

1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‚

, �13 “

¨

˚

˚

˚

˚

˚

˝

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 0 1

1 0 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0

˛

‹

‹

‹

‹

‹

‚

, �14 “

¨

˚

˚

˚

˚

˚

˝

0 0 0 0 1 0

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 0 0

˛

‹

‹

‹

‹

‹

‚

,

�23 “

¨

˚

˚

˚

˚

˚

˝

0 1 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 1 0

˛

‹

‹

‹

‹

‹

‚

, �24 “

¨

˚

˚

˚

˚

˚

˝

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

˛

‹

‹

‹

‹

‹

‚

, �34 “

¨

˚

˚

˚

˚

˚

˝

1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‚

.

(5.99)

The Specht module Sr2,2s has dimension 2. We can start with the following tabloid

ttu “ e
1

“

3 4

1 2
,

which has
t “ p✏´ p13qqp✏´ p24qq “ ✏´ p13q ´ p24q ` p13qp24q .
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Applying t to ttu, we obtain the first basis vector of our Specht module

v
1

“

3 4

1 2
´

1 4

2 3
´

2 3

1 4
`

1 2

3 4
.

Obviously,
v
1

“ e
1

´ e
3

´ e
4

` e
6

.

We supplement this vector with another one

v
2

“ e
1

´ e
2

´ e
5

` e
6

.

Together v
1

and v
2

form a basis of the 2dim irrep Sr2,2s. Computing the action of transposition on
these two basis vectors, we find the following matrix representation

�12 “ �34 “
ˆ

0 1
1 0

˙

, �13 “ �24 “
ˆ ´1 ´1

0 1

˙

, �14 “ �23 “
ˆ

1 0
´1 ´1

˙

. (5.100)

Introducing a matrix

k “

ˆ

1

2

1
´1 ´

1

2

˙

,

we verify that k�ijk´1

“ ´�ij for i † j, i, j “ 1, . . . , 4, which shows that the conjugate irrep is
equivalent to the original one. This is, of course, is a consequence of the fact that the diagram r2, 2s

is self-conjugate.

The group S
5

. This is the last example we work out in an explicit manner. For S
5

we have the
following non-trivial Young diagrams

(5.101)

We are primarily interested in the first two diagrams in the first row. The defining representation
M r4,1s has the dimension 5 and to describe it, we pick up the following basis

e1 “
2 3 4 5

1

, e2 “
1 3 4 5

2

, e3 “
1 2 4 5

3

,

e4 “
1 2 3 5

4

, e5 “
1 2 3 4

5

,

The corresponding representation of S
4

will again be given by the standard 5 ˆ 5 permutation
matrices. The Specht module Sr4,1s has dimension 4. To single it out, we can use the following basis

v
1

“ e
1

´ e
2

,

v
2

“ e
3

´ e
2

,

v
3

“ e
4

´ e
2

,

v
4

“ e
5

´ e
2

,

(5.102)

In this basis the corresponding representation matrices are
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�12 “

¨

˚

˝

´1 ´1 ´1 ´1
0 1 0 0

0 0 1 0

0 0 0 1

˛

‹

‚

, �13 “

¨

˚

˝

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

˛

‹

‚

, �14 “

¨

˚

˝

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

˛

‹

‚

,

�15 “

¨

˚

˝

0 0 0 1
0 1 0 0

0 0 1 0

1 0 0 0

˛

‹

‚

, �23 “

¨

˚

˝

1 0 0 0

´1 ´1 ´1 ´1
0 0 1 0

0 0 0 1

˛

‹

‚

, �24 “

¨

˚

˝

1 0 0 0

0 1 0 0

´1 ´1 ´1 ´1
0 0 0 1

˛

‹

‚

,

�25 “

¨

˚

˝

1 0 0 0

0 1 0 0

0 0 1 0

´1 ´1 ´1 ´1

˛

‹

‚

, �34 “

¨

˚

˝

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

˛

‹

‚

, �35 “

¨

˚

˝

1 0 0 0

0 0 0 1
0 0 1 0

0 1 0 0

˛

‹

‚

,

�45 “

¨

˚

˝

1 0 0 0

0 1 0 0

0 0 0 1
0 0 1 0

˛

‹

‚

. (5.103)

All these matrices have the determinant equal to ´1.

The permutation module M r3,2s has dimension 10 and to construct an explicit matrix represen-
tation we pick up the following basis

e1 “
3 4 5

1 2

, e2 “
2 4 5

1 3

, e3 “
2 3 5

1 4

, e4 “
2 3 4

1 5

, e5 “
1 4 5

2 3

,

e6 “
1 3 5

2 4

, e7 “
1 3 4

2 5

, e8 “
1 2 5

3 4

, e9 “
1 2 4

3 5

, e10 “
1 2 3

4 5

.

In this bases the transposition act as

�12e1 “ e1 �13e1 “ e5 �14e1 “ e6 �15e1 “ e7 �23e1 “ e2

�12e2 “ e5 �13e2 “ e2 �14e2 “ e8 �15e2 “ e9 �23e2 “ e1

�12e3 “ e6 �13e3 “ e8 �14e3 “ e3 �15e3 “ e10 �23e3 “ e3

�12e4 “ e7 �13e4 “ e9 �14e4 “ e10 �15e4 “ e4 �23e4 “ e4

�12e5 “ e2 �13e5 “ e1 �14e5 “ e5 �15e5 “ e5 �23e5 “ e5

�12e6 “ e3 �13e6 “ e6 �14e6 “ e1 �15e6 “ e6 �23e6 “ e8

�12e7 “ e4 �13e7 “ e7 �14e7 “ e7 �15e7 “ e1 �23e7 “ e9

�12e8 “ e8 �13e8 “ e3 �14e8 “ e2 �15e8 “ e8 �23e8 “ e6

�12e9 “ e9 �13e9 “ e4 �14e9 “ e9 �15e9 “ e2 �23e9 “ e7

�12e10 “ e10 �13e10 “ e10 �14e10 “ e4 �15e10 “ e3 �23e10 “ e10

�24e1 “ e3 �25e1 “ e4 �34e1 “ e1 �35e1 “ e1 �45e1 “ e1

�24e2 “ e2 �25e2 “ e2 �34e2 “ e3 �35e2 “ e4 �45e2 “ e2

�24e3 “ e1 �25e3 “ e3 �34e3 “ e2 �35e3 “ e3 �45e3 “ e4

�24e4 “ e4 �25e4 “ e1 �34e4 “ e4 �35e4 “ e2 �45e4 “ e3

�24e5 “ e8 �25e5 “ e9 �34e5 “ e6 �35e5 “ e7 �45e5 “ e5

�24e6 “ e6 �25e6 “ e10 �34e6 “ e5 �35e6 “ e6 �45e6 “ e7

�24e7 “ e10 �25e7 “ e7 �34e7 “ e7 �35e7 “ e5 �45e7 “ e6

�24e8 “ e5 �25e8 “ e8 �34e8 “ e8 �35e8 “ e10 �45e8 “ e9

�24e9 “ e9 �25e9 “ e5 �34e9 “ e10 �35e9 “ e9 �45e9 “ e8

�24e10 “ e7 �25e10 “ e6 �34e10 “ e9 �35e10 “ e8 �45e10 “ e10
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This action gives rise to the following matrix representation

�12 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, �13 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

�14 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, �15 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

�23 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, �24 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

�25 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, �34 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

�35 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, �45 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

All these matrices has the determinant equal to ´1.

The Specht module Sr3,2s has dimension 5. It can be singled out from the permutation module
M r3,2s constructed above by picking up a basis

v
1

“ e
1

´ e
4

´ e
6

` e
10

,

v
2

“ e
1

´ e
3

´ e
7

` e
10

,

v
3

“ e
5

´ e
6

´ e
9

` e
10

,

v
4

“ e
2

´ e
3

´ e
9

` e
10

,

v
5

“ e
5

´ e
7

´ e
8

` e
10

.
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then in the basis where

v1 “

¨

˚

˚

˚

˝

1
0
0
0
0

˛

‹

‹

‹

‚

, v2 “

¨

˚

˚

˚

˝

0
1
0
0
0

˛

‹

‹

‹

‚

, v3 “

¨

˚

˚

˚

˝

0
0
1
0
0

˛

‹

‹

‹

‚

, v4 “

¨

˚

˚

˚

˝

0
0
0
1
0

˛

‹

‹

‹

‚

, v5 “

¨

˚

˚

˚

˝

0
0
0
0
1

˛

‹

‹

‹

‚

(5.104)

irreducible action of S
5

is realised by the following 5 ˆ 5 matrices

�12 “

¨

˚

˚

˚

˝

0 1 0 0 1
1 0 0 0 ´1
0 0 0 1 ´1
0 0 1 0 1
0 0 0 0 1

˛

‹

‹

‹

‚

, �13 “

¨

˚

˚

˚

˝

0 0 1 1 0

0 0 0 ´1 1
1 0 0 ´1 0

0 0 0 1 0

0 1 0 1 0

˛

‹

‹

‹

‚

,

�14 “

¨

˚

˚

˚

˝

´1 ´1 ´1 ´1 ´1
0 1 0 1 1
0 0 1 1 1
0 0 0 0 ´1
1 0 0 ´1 0

˛

‹

‹

‹

‚

, �15 “

¨

˚

˚

˚

˝

1 0 0 0 0

´1 ´1 0 0 ´1
0 0 1 0 0

0 0 ´1 ´1 0

0 0 0 0 1

˛

‹

‹

‹

‚

,

�23 “

¨

˚

˚

˚

˝

1 0 0 0 0

´1 0 0 1 0

´1 0 0 0 1
1 1 0 0 0

1 0 1 0 0

˛

‹

‹

‹

‚

, �24 “

¨

˚

˚

˚

˝

1 0 0 0 0

´1 ´1 0 ´1 0

0 0 1 0 0

0 0 0 1 0

0 0 ´1 0 ´1

˛

‹

‹

‹

‚

, (5.105)

�25 “

¨

˚

˚

˚

˝

´1 ´1 0 0 0

0 1 0 0 0

0 0 ´1 ´1 ´1
0 0 0 1 0

0 0 0 0 1

˛

‹

‹

‹

‚

, �34 “

¨

˚

˚

˚

˝

1 0 0 0 0

0 1 0 0 0

´1 0 ´1 0 ´1
0 ´1 0 ´1 0

0 0 0 0 1

˛

‹

‹

‹

‚

,

�35 “

¨

˚

˚

˚

˝

0 0 0 ´1 0

1 1 0 1 0

1 0 1 1 0

´1 0 0 0 0

´1 ´1 ´1 ´1 ´1

˛

‹

‹

‹

‚

, �45 “

¨

˚

˚

˚

˝

0 1 0 1 0

1 0 0 ´1 0

0 0 0 ´1 1
0 0 0 1 0

0 0 1 1 0

˛

‹

‹

‹

‚

.

The determinant of any of these matrices is 1.

5.7 More on the Fock condition

According to the group theory, the symmetry of the coordinate wave function of the multi-electron
system should be defined by a Young diagram on the Fig. 5.2.

z
}|

{
N

�
M

|
{z

}

M

...

...
...

M

1M+1

2M

N

Figure 5.2: Young diagram
� “ r2M , 1N´2M

s for a coor-
dinate function of electrons.

A wave function of the required symmetry can be obtained by
from an arbitrary wave function by first symmetrising with respect
to the pair of variables that stand in each row, i.e. with respect
to p1, M ` 1q, p2, M ` 2q, . . . pM, 2Mq, and then by antisymmetrs-
ing with respect to the columns, e.g. with respect to the variables
p1, 2, . . . Mq and pM `1, M `2, . . . , Nq. This procedure is equivalent
to an application to the corresponding Young tableau the Young op-
erator (5.89). As is known, this gives an irreducible representation
representation of SN , which is the Specht module r2M , 1N´2M

s.
Obviously, the sequence of variables in the Young tableaux may be
di↵erent yielding di↵erent Young operators. The number of linearly
independent operators coincides with the dimension of an irreducible
representation of the symmetric group corresponding to this Young
diagram.

In Fock’s method the coordinate wave function must obey the following two conditions:
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1) The anti-symmetry requirement: it must be anti-symmetric in the variables p1, 2, . . . Mq and
pM ` 1, M ` 2, . . . , Nq

2) The Fock cyclic symmetry condition: the operator

F “ ´ PM M`1

´ PM,M`2

´ . . . ´ PM N , (5.106)

must annihilate the coordinate wave function.

A function which is obtained by application of the Young operator does satisfy 1). We now show
that such a function also obeys the Fock condition, i.e. F pY tq “ 0, the latter is equivalent to the
following product of operators Y F “ 0, see the footnote below.

The Young operator can be written in terms of the antisymmetrizer and symmetriser as9

Y “

M
ÿ

j“1

Spj, j ` MqAp1, 2, . . . , MqApM ` 1, M ` 2, . . . , Nq ” SA
1

A
2

.

We show that all the terms in SA
1

A
2

F cancel in pairs. Consider one of the M !pN ´ Mq! terms in
the product A

1

A
2

. It can be written as a permutation in the two-line notation

˘

˜

1

�p1q

¨ ¨ ¨

M

�pMq

ˇ

ˇ

ˇ

ˇ

ˇ

M ` 1

⌧pM ` 1q

¨ ¨ ¨

N

⌧pNq

¸

,

where the sign is determined by the parity of �. Let us now apply to this term one of the transpo-
sitions in F .

J “
˜

1
�p1q ¨ ¨ ¨ b

M

¨ ¨ ¨ M

�pMq

ˇ

ˇ

ˇ

ˇ

ˇ

M ` 1
⌧pM ` 1q ¨ ¨ ¨ b ` M

c

¨ ¨ ¨ d

a

¨ ¨ ¨ N

⌧pNq

¸

ˆ

M

a

a

M

˙

“
˜

1
�p1q ¨ ¨ ¨ b

a

¨ ¨ ¨ M

�pMq

ˇ

ˇ

ˇ

ˇ

ˇ

M ` 1
⌧pM ` 1q ¨ ¨ ¨ b ` M

c

¨ ¨ ¨ d

M

¨ ¨ ¨ N

⌧pNq

¸

,

where M ` 1 § a § N , M ` 1 § c § N , M ` 1 § d § N and 1 § b § M . This expression is the
same as

J “
ˆ

b

b ` M

b ` M

b

˙

˜

1
�p1q ¨ ¨ ¨ b

M

¨ ¨ ¨ M

�pMq

ˇ

ˇ

ˇ

ˇ

ˇ

M ` 1
⌧pM ` 1q ¨ ¨ ¨ b ` M

a

¨ ¨ ¨ d

c

¨ ¨ ¨ N

⌧pNq

¸

ˆ

M

c

c

M

˙

.

We now see that both permutations
˜

1
�p1q ¨ ¨ ¨ b

M

¨ ¨ ¨ M

�pMq

ˇ

ˇ

ˇ

ˇ

ˇ

M ` 1
⌧pM ` 1q ¨ ¨ ¨ b ` M

c

¨ ¨ ¨ d

a

¨ ¨ ¨ N

⌧pNq

¸

,

˜

1
�p1q ¨ ¨ ¨ b

M

¨ ¨ ¨ M

�pMq

ˇ

ˇ

ˇ

ˇ

ˇ

M ` 1
⌧pM ` 1q ¨ ¨ ¨ b ` M

a

¨ ¨ ¨ d

c

¨ ¨ ¨ N

⌧pNq

¸

are in A
1

A
2

and they di↵er by a transposition which introduces an additional “´” sign, so in A
1

A
2

these two permutations will appear with opposite signs. The operator

Pb,b`M “

ˆ

b

b ` M

b ` M

b

˙

does not change the operator S. Thus, the permutations above cancel under the action of the Fock
operator F .

9The opposite order is related to our convention of multiplying permutations in the two-line notation. When
applying to the Young diagram, symmetriser acts first and then anti-symmetriser.
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It remains to consider a particular case when a “ c and b ` M “ d. In this case the following
identity is valid

J “
˜

1
�p1q ¨ ¨ ¨ b

M

¨ ¨ ¨ M

�pMq

ˇ

ˇ

ˇ

ˇ

ˇ

M ` 1
⌧pM ` 1q ¨ ¨ ¨ b ` M

a

¨ ¨ ¨ N

⌧pNq

¸

ˆ

M

a

a

M

˙

“
ˆ

b

b ` M

b ` M

b

˙

˜

1
�p1q ¨ ¨ ¨ b

M

¨ ¨ ¨ M

�pMq

ˇ

ˇ

ˇ

ˇ

ˇ

M ` 1
⌧pM ` 1q ¨ ¨ ¨ b ` M

a

¨ ¨ ¨ N

⌧pNq

¸

.

This term in the product A
1

A
2

will cancel against the same term but under the identity in the
operator F . Tuis, it is proved that any function that is obtained by applying the Young operator
satisfies Fock’s condition.

The reverse relation is more involved, because any function which satisfies 1) and 2) corresponds
in general to a set of Young tableaux that di↵er from each other by permutations of indices M `

1, M ` 2, . . . , N . Any linear combination of the corresponding Young operators, when acting on an
arbitrary function, gives a function which satisfies 1) and 2).

It remains to note that application of the Young operator is convenient when we want to construct
a wave function from some given non-symmetric function. On the other hand, if the function is
already known, then it is easier to check if it obeys Fock’s condition than to see how it behaves
under the action of Young operators.

5.8 Miscellenia

Here we prove the formula

ÿ

�PSN

sign�
π

i†j

`

p⌧p�piqq ´ p⌧p�pjqq ` i
˘

N´1

π

i“1

⇥
`

q�pi`1q ´ q�piq
˘

“

π

i†j

`

p⌧piq ´ p⌧pjq ´ i ✏pqi ´ qjq

˘

.

First, it is clear that the product of successive ⇥-functions defining for a fixed � the corresponding
coordinate sector can be replaced as

N´1

π

i“1

⇥
`

q�pi`1q ´ q�piq
˘

“

π

i†j

⇥
`

q�pjq ´ q�piq
˘

, (5.107)

as the additional ⇥-functions yield trivial contribution. Making this replacement, we then obtain
the sum

ÿ

�PSN

sign�
π

i†j

`

p⌧p�piqq ´ p⌧p�pjqq ` i
˘

⇥
`

q�pjq ´ q�piq
˘

Let us concentrate on two particular terms in the product with some fixed indices i and j, in other
words, we consider

sign�
`

p⌧pkq ´ p⌧plq ` i
˘

⇥
`

ql ´ qk

˘

,

where we set �piq “ k and �pjq “ l. For every �, there will be an accompanying permutation of
the form ↵ij� which acts non-trivially only on the indices i and j, namely, p↵ij�qpiq “ �pjq “ l and
p↵ij�qpjq “ �piq “ k. Thus, summing in pairs � and ↵ij�, we will have

`

p⌧pkq ´ p⌧plq ` i
˘

⇥
`

ql ´ qk

˘

` sign↵ij

`

p⌧plq ´ p⌧pkq ` i
˘

⇥
`

qk ´ ql

˘

,
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Since sign↵ij “ ´1, we have

`

p⌧pkq ´ p⌧plq ` i
˘

⇥
`

ql ´ qk

˘

`

`

p⌧pkq ´ p⌧plq ´ i
˘

⇥
`

qk ´ ql

˘

“ p⌧pkq ´ p⌧plq ´ i ✏pqk ´ qlq ,

where we used the properties of the Heaviside ⇥-function

⇥pxq `⇥p´xq “ 1 , ⇥pxq ´⇥p´xq “ ✏pxq .

Summing up in this way, we obtain the desired result.

As an example, of more explicit evaluation of the Bethe wave function, we consider the two-body
function (3.19) in the symmetric representation.

 pq
1

, q
2

q “ ⇥pq
1

† q
2

q

"

Ap12qeipp1q1`p2q2q
`

p
1

´ p
2

´ i

p
1

´ p
2

` i
Ap12qeipp2q1`p1q2q

*

` ⇥pq
2

† q
1

q

"

Ap12qeipp1q2`p2q1q
`

p
1

´ p
2

´ i

p
1

´ p
2

` i
Ap12qeipp2q2`p1q1q

*

.

⇥pq
1

† q
2

q `⇥pq
2

† q
1

q

p
1

´ p
2

´ i

p
1

´ p
2

` i
“

pp
1

´ p
2

` iq⇥pq
2

´ q
1

q ` pp
1

´ p
2

´ iq⇥pq
1

´ q
2

q

p
1

´ p
2

` i
.

Next, we take into account that

⇥pxq `⇥p´xq “ 1 & ⇥pxq ´⇥p´xq “ signx

from where we find that

⇥pxq “

1 ` signx

2
.

Thus,

⇥pq
1

† q
2

q `⇥pq
2

† q
1

q

p
1

´ p
2

´ i

p
1

´ p
2

` i
“

p
1

´ p
2

´ i signpq
1

´ q
2

q

p
1

´ p
2

` i

Analogously,

⇥pq
2

† q
1

q `⇥pq
1

† q
2

q

p
1

´ p
2

´ i

p
1

´ p
2

` i
“

p
1

´ p
2

` i signpq
1

´ q
2

q

p
1

´ p
2

` i

Finally, choosing Ap12q “ p
1

´ p
2

` i, the wave function becomes

 pq
1

, q
2

q “ pp
1

´ p
2

q

«

eipp1q1`p2q2q
ˆ

1 ´

i signpq
1

´ q
2

q

p
1

´ p
2

˙

` eipp1q2`p2q1q
ˆ

1 ´

i signpq
1

´ q
2

q

p
2

´ p
1

˙

�

.
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