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Abstract
These lecture notes are based on a course given by Mark Hindmarsh
at the 24th Saalburg Summer School 2018 and written up by Marvin
Lüben, Johannes Lumma and Martin Pauly. The aim is to provide the
necessary basics to understand first-order phase transitions in the early
universe, to outline how they leave imprints in gravitational waves, and
advertise how those gravitational waves could be detected in the future.
A first-order phase transition at the electroweak scale is a prediction
of many theories beyond the Standard Model, and is also motivated as
an ingredient of some theories attempting to provide an explanation
for the matter-antimatter asymmetry in our Universe.

Starting from bosonic and fermionic statistics, we derive Boltz-
mann’s equation and generalise to a fluid of particles with field depen-
dent mass. We introduce the thermal e�ective potential for the field
in its lowest order approximation, discuss the transition to the Higgs
phase in the Standard Model and beyond, and compute the probability
for the field to cross a potential barrier. After these preliminaries, we
provide a hydrodynamical description of first-order phase transitions
as it is appropriate for describing the early Universe. We thereby dis-
cuss the key quantities characterising a phase transition, and how they
are imprinted in the gravitational wave power spectrum that might be
detectable by the space-based gravitational wave detector LISA in the
2030s.
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1 Introduction
These lecture notes are intended to provide an introduction to the topic
of phase transitions in the early universe, focusing on a possible first-order
phase transition at temperatures around the scale of electroweak symmetry-
breaking, which the universe reached at an age of around 10≠11 s.

Phase transitions are a generic, but not universal, feature of gauge field
theories, like the Standard Model, which are based on elementary particle
mass generation by spontaneous symmetry-breaking [1, 2]. When there is
a phase transition in a gauge theory it is (except for special parameter
choices) first order, which means that just below the critical temperature,
the universe transitions from a metastable quasi-equilibrium state into a
stable equilibrium state, through a process of bubble nucleation, growth,
and merger [3–6]. Such a first-order phase transition in the early universe
naturally leads to the production of gravitational waves [7,8]. If it took place
around the electroweak scale, by which we mean temperatures in the range
100 – 1000 GeV, the gravitational wave signal could lie in the frequency
range of the upcoming space-based gravitational wave detector LISA (Laser
Interferometer Space Antenna) [9]. The approval of the mission, and the
detection of gravitational waves [10], has generated enormous interest in
phase transitions in the early universe.

While the Standard Model has a crossover rather than a true phase tran-
sition [11], many extensions of the Standard Model, e.g. with extra scalar
fields, lead to first-order phase transitions at the electroweak scale. Gravita-
tional wave signatures are therefore a fascinating new window towards new
physics, complementary to that provided by the Large Hadron Collider (see
e.g. Ref. [12] for a recent review).

A further motivation for studying electroweak phase transitions is that
one of the requirements to explain the matter-antimatter asymmetry in the
universe [13] is a departure from thermal equilibrium, which is inevitable in
a first order phase transition. The asymmetry is quantified in terms of the
net baryon number of the universe, leading to the name baryogenesis. We
will unfortunately not have time to study electroweak baryogenesis in these
lectures, and refer the interested reader to e.g. Refs. [14–17].

A thorough study of early universe phase transitions, gravitational wave
production and detection, requires quite a lot of theoretical apparatus from
particle physics and cosmology, which could not be covered in a short lecture
course. It is assumed that the student has done advanced undergraduate
courses on statistical physics and general relativity, and has been introduced
to particle physics and cosmology. Wherever possible, the full machinery of
thermal quantum field theory is avoided. The aim is to provide a direct
route to some important results, and motivate further study and, we hope,
research.

The main points we would like the reader to take away are: that the
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gravitational wave power spectrum from a first order phase transition is
calculable from a few thermodynamic properties of matter at very high
temperatures; that these parameters are computable from an underlying
quantum field theory; and that these parameters are measurable by LISA.
The final point we would like to make is that we can see in outline how the
computations, calculations and measurements could be done, but they are
far from concrete methods. There is therefore a lot of exciting work to be
done in the years leading up to LISA’s launch in 2034 to realise the mission’s
potential scientific reward. These notes are organised as follows. In Sec. 2
we review basic thermodynamics of non-interacting fields and we discuss the
di�erent relevant thermodynamic quantities for both fermions and bosons.
In Sec. 3 we introduce weak interactions among the fields and derive the
thermal Higgs potential. Further, we summarize phase transitions in the
Standard Model as well as in models beyond the Standard Model. In Sec. 4
we consider the distribution function of a relativistic fluid and derive the
relativistic Boltzmann equation. We generalise the preceding results and
study the hydrodynamics of a fluid with a field-dependent mass in Sec. 5
This set-up is analogous to the hydrodynamics with electromagnetic forces,
which is governed by the Vlasov equation. In Sec. 6 we study the transition
of the Higgs from the false, symmetric phase to the new symmetry-breaking
phase and apply the process to the early universe. After these preliminaries,
in Sec. 7 we provide a hydrodynamical description of the phase transition
in the early unverse. We then discuss the di�erent sources of gravitational
waves during a first-order phase transition and the expected power spectra
in Sec. 8. Finally, we provide a summary of these lectures and comment on
open issues in Sec. 9.

Conventions. Throughout these notes we set ~ = k
B

= c = 1 and just
re-introduce these constants occasionally. We try to stick to a (≠, +, +, +)
metric signature. 4-vectors are denoted by roman letters, e.g, x, p, and F
with greek letters as space-time indices, e.g., µ, ‹ = 0, 1, 2, 3. Spatial indices
are latin letters, e.g., i, j = 1, 2, 3 and we denote 3-vectors with an arrow,
e.g., x̨ and p̨.

2 Thermodynamics of free fields
We start by studying thermodynamic properties of free bosonic and fermionic
fields. For both cases, we derive the partition function, from which all ther-
modynamic quantities can be derived. We will be particularly interested in
the free energy, as it can be used to find the equilibrium states of a theory.
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2.1 Basic thermodynamics - the bosonic harmonic oscillator
The basic object of thermodynamics is the partition function

Z(T ) = Tr
Ë
e≠— ˆH

È
(2.1)

where Ĥ is the Hamiltonian operator and — = 1/T the inverse temperature
with T the temperature. The free energy, entropy and energy of the system
are given by

F = ≠T ln Z , (2.2)

S = ≠ˆF

ˆT
, (2.3)

E = ≠ˆ ln Z

ˆ—
, (2.4)

respectively. First, we will study a single bosonic harmonic oscillator, the
simplest case. To compute its partition function we consider

Z
bho

=
Œÿ

n=0

Èn|e≠— ˆH |nÍ (2.5)

where the |nÍ are the eigenstates of the Hamiltonian Ĥ of the harmonic
oscillator with angular frequency Ê, together satisfying

Ĥ |nÍ = Ê

3
n + 1

2

4
|nÍ . (2.6)

For the partition function and the free energy this yields

Z
bho

(T, Ê) =
Œÿ

n=0

exp
C

≠ —Ê

3
n + 1

2

4 D

= e≠—Ê/2

1 ≠ e≠—Ê
, (2.7)

F
bho

(T, Ê) = 1
2Ê + T ln

1
1 ≠ e≠—Ê

2
, (2.8)

where the first term in the free energy describes the ground state energy,
and the second term is the thermal contribution.

Next we turn to the partition function for a field, or equivalently for a
collection of harmonic oscillators. We consider the field operator „̂(x̨, t) and
decompose it into its Fourier modes

„̂(x̨, t) =
⁄ d3k

(2fi)3

1
2Ê

k̨

1
â

k̨
e≠ik̨·x̨ + â†

k̨
eik̨·x̨

2
, (2.9)

where we postulate that the operators â, â† satisfy the commutation relation
Ë
â

k̨
, â†

k̨Õ

È
= 2Ê

k̨
(2fi)3”(3)(k̨ ≠ k̨Õ) (2.10)

Ë
â

k̨
, â

k̨Õ

È
=

Ë
â†

k̨
, â†

k̨Õ

È
= 0 . (2.11)
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The equation of motion for the free field is the Klein-Gordon equation,
1
⇤ + m2

2
„̂(x̨, t) = 0 (2.12)

which in terms of the Fourier modes reads

(k0)2 = Ê2

k̨
= k̨2 + m2 . (2.13)

This dispersion relation does not involve di�erent momenta and hence the
di�erent modes are not coupled. The free scalar field is a collection of
independent harmonic oscillators, one for each momentum mode |̨k|. The
partition function of a bosonic field (indicated by the subscript B) thus
factorizes into

ZB =
Ÿ

k̨

Z
bho

(T, Ê
k̨
) , (2.14)

where the multiplication here is a symbolic notation for a product over all
wavenumbers. It can be given meaning by working in finite volume, with
the infinite volume limit taken at the end of the calculation.

The free energy of a free bosonic field is given by

FB = ≠T ln ZB = ≠T
ÿ

k̨

ln Z
bho

(T, Ê
k̨
) (2.15)

=
ÿ

k̨

51
2Ê

k̨
+ T ln

1
1 ≠ e≠—Ê

k̨

26
, (2.16)

Again, the sum over all momenta k̨ is defined over a finite volume V. In the
infinite volume limit V æ Œ, the sum is replaced by an integration as

ÿ

k̨

æ V
⁄ d3k

(2fi)3

. (2.17)

The free energy density, i.e., the free energy normalized to the volume V,
then becomes

fB = F
B

V = V
0,B + T

⁄ d3k

(2fi)3

ln
1
1 ≠ e≠—Ê

k̨

2
. (2.18)

The first term V
0,B is the energy density of the zero-temperature ground

state, which is divergent, cf. Eq. (2.16). The same divergence is encoun-
tered in quantum field theories at zero temperature. In the following, we
assume that it is regularized with an appropriate counter-term. The stan-
dard renormalisation convention takes the zero-temperature ground state
free energy to be zero.

Due to the integration over all momenta, fB can only depend on T and
m, where m only appears as m/T . From dimensional analysis we infer that
the free energy density hence takes the form

fB(T, m) = T 4JB

3
m

T

4
, (2.19)
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Figure 1: This figure shows the dimensionless function JB that is propor-
tional to the free energy of bosons as defined in Eq. (2.19), as a function
of mass-to-temperature ratio (thick line). Also the expansions for large T
(dashed), Eq. (2.21) and small T (dotted), Eq. (2.20) are shown. The large-T
expansion is performed up to order four in m/T , being a good approximation
up to m/T ≥ 1.1.

where JB(m/T ) is a dimensionless function. While the integral in Eq. (2.18)
cannot be solved exactly for all values of m/T , analytic approximations exist
in the low and the high temperature regimes.

In the low temperature regime, m/T ∫ 1, one expands in T/m and gets

JB

3
m

T

4
= ≠

3
m

2fiT

4 3
2

e≠m/T
3

1 + O
3

T

m

44
, (2.20)

recovering the familiar distribution function of Maxwell-Boltzmann statis-
tics.

In the high temperature case m/T π 1 one expands in m/T to obtain

JB

3
m

T

4
= ≠fi2

90 + 1
24

3
m

T

4
2

≠ 1
12fi

A3
m

T

4
2

B 3
2

(2.21)

≠ 1
2(4fi)2

3
m

T

4
4

5
ln

3 1
4fi

m

T
e“E

4
≠ 3

4

6

+O
A3

m

T

4
6

B

.

Here “
E

¥ 0.57721 is the Euler–Mascheroni constant. While the first two
terms follow in a relatively simple way using the ’-function, the third and
fourth terms are more complicated in nature: they are non-analytic in the
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fundamental expansion parameter m2/T 2, and can only be derived using
more advanced methods. For details, we refer to Ref. [18].

A numerical evaluation of the function JB(m/T ) is depicted in Fig. 1,
along with its high and low temperature approximations. It can be seen
that the high temperature approximation is good even up to m/T ƒ 2.

2.2 The fermionic harmonic oscillator
For fermions the Pauli exclusion principle holds: a quantum state can only
be occupied by a single fermion at once. To compute the fermionic partition
function, we therefore sum over only the occupation numbers 0 and 1 in
order to respect the Pauli exclusion principle, arriving at

Z
fho

(T, Ê) =
1ÿ

n=0

Èn|e≠— ˆH |nÍ = e—Ê/2

1
1 + e≠—Ê/2

2
, (2.22)

after using Eq. (2.6). Consequently, the free energy for fermions is given by

F
fho

(T, Ê) = ≠1
2Ê ≠ T ln

1
1 + e≠—Ê

2
. (2.23)

In order to generalize the above expression to fermionic fields we in-
troduce a Dirac spinor field �̂–(x̨, t), which creates and destroys massive
fermions. Every such spinor has four components, denoted by the index –.
The components describe particles and antiparticles, each of which have two
spin degrees of freedom.

The spinor can be decomposed into Fourier modes, where the Fourier co-
e�cients are operators subject to a set of anticommutation relations, which
need to respect the fermionic nature of �–. Analogously to the bosonic case,
the free fermionic field is a collection of independent harmonic oscillators,
four for each momentum mode |̨k|. The partition function for a fermionic
field F hence factorizes into

ZF = 4
Ÿ

k̨

Z
fho

(T, Ê
k̨
) , (2.24)

where Z
fho

is the partition function of a single fermionic harmonic oscillator,
cf. Eq. (2.23). This leads to the fermionic free energy

FF = ≠4
ÿ

k̨

C
1
2Ê

k̨
+ T ln

1
1 + e≠—Ê

k̨

2 D

. (2.25)

The factor of 4 arises due to the four components of an individual spinor.
In the continuum limit (infinite volume) one needs to replace the sum by
an integration, as in Eq. (2.17). The free energy density for each fermionic
degree of freedom is thus

fF = ≠V
0,F ≠ T

⁄ d3k

(2fi)3

ln
1
1 + e≠—Ê

k̨

2
. (2.26)
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Figure 2: This figure shows the dimensionless function JF that is propor-
tional to the free energy of fermions as defined in Eq. (2.27) as a function of
mass-to-temperature ratio (thick line). Additionally, the expansion for large
T (dashed), Eq. (2.28) and small T (dotted) , in analogy to Eq. (2.20) are
shown. Note that in the small T limit, both the fermionic and the bosonic
expansions agree. The large T expansion is performed up to order four in
m/T , working well up to m/T ≥ 0.5, hence being sligthly worse than the
bosonic high-T expansion, depicted in Fig. 1 .

The vacuum energy density V
0,F is again divergent, but comes with the

opposite sign compared to the bosonic case. We assume that the vacuum
energy is regularised by an appropriate counter-term such that we can take
it to be zero in the following.

In analogy to the bosonic case the free energy density can be written as

fF = T 4JF

3
m

T

4
. (2.27)

In Fig. 2, a numerical evaluation of JF (m/T ) is shown together with its
small and large temperature expansions. The integral in Eq. (2.26) cannot
be solved analytically for all values of m/T , but in the limits of small and
large temperatures. In the low temperature limit the expansion agrees with
Eq. (2.20). As expected, at low energies the quantum nature of the field
becomes irrelevant and one recovers the Maxwell-Boltzmann statistics for
both, fermions and bosons. In the high temperature limit the free energy
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particle mass [GeV] ci

t 172.76 yt

H 125.18
Ô

2⁄

Z 91.19
Ò

g2 + gÕ2/
Ô

2
W ± 80.38 g/

Ô
2

Table 1: The zero-temperature masses and the mass proportionality con-
stants ci, defined in Eq. (3.1), for the most massive fields in the Standard
Model. Here, yt is the Higgs-Yukawa coupling of the top quark, ⁄ the Higgs
self-coupling, and g and gÕ the gauge couplings of the W a

µ and Bµ bosons.

can be approximated as

JF

3
m

T

4
= ≠7

8
fi2

90 + 1
48

3
m

T

4
2

(2.28)

≠ 1
2(4fi)2

3
m

T

4
4

5
ln

3 1
fi

m

T
e“E

4
≠ 3

4

6

+O
A3

m

T

4
6

B

.

Compared to Eq. (2.21), the term that appeared with a power of 3/2 dis-
appeared, and the first term has a prefactor of 7/8. Eqs. (2.27) and (2.28)
together give the free energy of a single Dirac fermion field.

3 Phase transition in field theory
After having discussed the free energy of free bosons and fermions, let us in-
troduce interactions among these fields. In a weakly interacting field theory
one can compute the free energy as a perturbation around the free energy of
a free field. In this section we will present a setup, which is tailored to dis-
cuss phase transitions in the Standard Model. Phase transitions in weakly
coupled gauge theories were first discussed in Refs. [1, 2].

3.1 The Standard Model at weak coupling
In the Standard Model the masses of fermions and gauge bosons Mi depend
linearly on the magnitude of the Higgs field „,

Mi(„) = ci„ , (3.1)

with the ci proportional to the dimensionless coupling constants. The index
i labels the Standard Model fields that couple to the Higgs. Today, the Higgs
is in its broken phase and the Higgs field assumes its vacuum expectation

9



energy scale event
100 GeV t non-relativistic

1 GeV b non-relativistic
500 MeV c, · non-relativistic
200 MeV QCD phase transition
30 MeV µ non-relativistic
2 MeV ‹ freeze-out

0.2 MeV e non-relativistic
1 eV matter-radiation equality

0.1 eV photon decoupling

Table 2: An overview over events happening at di�erent energy scales in the
early universe. These determine the e�ective number of degrees of freedom
in the Standard Model at a certain energy scale.

value, „ = v
EW

ƒ 246 GeV, which determines the particle masses we observe
in experiments. This value for the field is dynamically determined by the
minimisation of the zero-temperature potential for the Higgs field,

V
0

(„) = ⁄

4
1
„2 ≠ v2

EW

2
2

, (3.2)

The relation of the ci to the standard coupling constants of the Standard
Model are given for the most massive fields in Tab. 1. One can see that for
these fields, the values of ci are all O(1). For the other fields of the standard
model, ci π 1.

The Higgs particle is a quantised fluctuation around the ground state,
with mass

MH =
Ò

V ÕÕ
0

(v
EW

) =
Ô

2⁄v
EW

.

The Higgs field is unique in that its mass does not in general depend linearly
on „. At this level of treatment, we will not need to know that in the
Standard Model, the Higgs field is a two-component vector of complex scalar
fields �, but for completeness we mention that „2 = �†�/2.

The free energy density f of a gas of Standard Model particles is given by
the zero temperature result (3.2), plus terms that arise due to the interaction
with the Higgs according to Eq. (3.1). This gives

f = V
0

(„) +
ÿ

B

fB +
ÿ

F

fF (3.3)

= V
0

(„) + T 4

C
ÿ

B

JB

3
MB

T

4
+

ÿ

F

JF

3
MF

T

4 D

. (3.4)

Here, we sum over all fermions F and bosons B that are relativistic at
temperature T . For large temperatures, we can write the free energy density
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Figure 3: This figure shows the e�ective number of relativistic degrees of
freedom g

e�

of a Standard Model plasma as a function of temperature, tak-
ing into account interactions between particles, with both perturbative and
lattice methods [19].

as
f = ≠g

e�

fi2

90T 4 + VT („) . (3.5)

Here, g
e�

is the e�ective number of relativistic degrees of freedom, given by

g
e�

= 7
84N

F

+ 3N
V

+ 2N
V0

+ N
S

(3.6)

where N
F

is the number of Dirac fermions, N
V

is the number of massive
vectors, N

V0

is the number of massless vectors and N
S

is the number of
scalars. The prefactors account for the degrees of freedom of each of the
particles. In the case of only bosons or only fermions this expression reduces
to the first term in Eq. (2.21) or Eq. (2.28), resp. For the Standard Model
at high energies this value is g

e�

= 106.75.1 As the temperature decreases,
so does the e�ective number of relativistic degrees of freedom, as more and
more particles become non-relativistic, or are bound together into hadrons.
The function g

e�

(T ) for the Standard Model is shown in Fig. 3, using data
taken from Ref. [19], where interactions between particles (and not just the
mass generation e�ect of the Higgs) are also taken into account. Tab. 2
summarizes key temperatures that a�ect g

e�

.
The second, field-dependent term in Eq. (3.5), VT („), is called the ther-

mal e�ective Higgs potential. According to Eqs. (2.21) and (2.28) it is given
1
It is a good exercise to verify this. Note that the neutrinos of the Standard Model

count as NF = 1/2, as they are two-component spinors.
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by [18,20–22]

VT („) = V
0

(„) + T 2

24

A
ÿ

S

M2

S(„) + 3
ÿ

V

M2

V („) + 2
ÿ

F

M2

F („)
B

≠ T

12fi

A
ÿ

S

1
M2

S(„)
2 3

2 +
ÿ

V

1
M2

V („)
2 3

2

B

+higher order terms . (3.7)

Here MS , MV , MF are the masses of the scalar fields S, vector fields V and
fermionic fields F , which are related to the expectation value of the Higgs
as in Eq. (3.1).

For high temperatures, the thermal e�ective potential can be approxi-
mated by an expansion in „/T yielding

VT („) = D

2
1
T 2 ≠ T 2

0

2
„2 ≠ A

3 T„3 + ⁄T

4! „4 + . . . , (3.8)

where A, D are constants and ⁄T depends only logarithmically on the tem-
perature. In the Standard Model we have

A = 1
12fi„3

1
M3

H + 6M3

W + 3M3

Z

2
(3.9)

D = 1
12„2

1
M2

H + 6M2

W + 3M2

Z + 6M2

t

2
(3.10)

⁄T ƒ ⁄ (3.11)

T
0

=
Ú

1
2D

MH , (3.12)

where we have dropped the logarithmic dependence of ⁄T on T . Here, the
subscripts H, W , Z, and t denote the Higgs-boson, W - and Z-bosons, and
the top quark of the Standard Model. Notice that only bosons contribute
to the cubic term in the potential.

The form of this quartic potential is sketched for di�erent values of the
temperature in Fig. 4. For large temperatures, T ∫ Tc, the potential has a
minimum at „ = 0, which is the only ground state or equilibrium state of
the system. We will refer to the ground state where „ = 0 also as symmetric
phase. As the temperature drops, a second, but higher lying minimum
develops as represented by the dark green line. Both minima are degenerate
at the critical temperature

T
c

= T
0

A

1 ≠ 2
9

A2

⁄D

B≠ 1
2

. (3.13)

which is well-defined only if 2A2 < 9⁄D. This case will be of particular
interest to us, as in this case the two minima at „ = 0 and „(T

c

) = 2AT
c

/3⁄

12



T>Tc

T=T2

T=T1

T=0

+v

VT

T=Tc

Figure 4: The figure shows the thermal e�ective Higgs potential VT („) at
di�erent temperatures. For large temperatures T ∫ T

c

(red) the potential
has a minimum at „ = 0 and the ground state is symmetric. Below the
temperature T

1

> T
c

(dark green) a second, but higher lying minimum de-
velops. At the critical temperature Tc (green) both minima are degenerate.
Below the critical temperature, the new minimum at non-zero field value is
the global minimum representing the true (stable) ground state.

are separated by a free energy barrier, signaling a first-order phase transition.
Below the critical temperature, the system can supercool, staying in the
false ground state at „ = 0 for some time, before transitioning to the global
minimum. In the bosonic case, this is reflected by the cubic term. We will
refer to the ground state where the Higgs field is non-zero also as Higgs
phase. For T = 0 the thermal corrections are absent and the minimum is at
„ = v

EW

ƒ 246 GeV.

3.2 Breakdown of weak coupling
So far we have assumed that the free energy is only slightly altered by in-
teractions, an assumption of weak (i.e. small) couplings between particles.
Moreover, we only included interactions with the Higgs field, in their sim-
plest form of a mass generation e�ect. To properly include interactions,
one really has to study and apply thermal field theory [22]. In this sec-
tion we merely sketch where the assumption of weak coupling breaks down,
with a qualitative argument using the statistical mechanics of a field in 3
dimensions.

In an interacting theory, one splits the Hamiltonian Ĥ = Ĥ
0

+ ĤI into
a free and an interacting Hamiltonian. As an example inspired by the Stan-
dard Model consider a scalar field (not necessarily the Higgs) with an inter-
action Hamiltonian

ĤI = g2

⁄
d3x „̂4 , (3.14)
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with g2 an arbitrary dimensionless coupling constant. We leave the mass of
this scalar field free. Weak coupling means that g2 π 1.

We can then try to compute the partition function

Z = Tr
Ë
e≠—(

ˆH0+

ˆHI)

È
, (3.15)

by expanding in powers of the coupling constant. This is a non-trivial exer-
cise, but it turns out that we are in fact expanding in the parameter

Á = g2f(k̨) (3.16)

with f the phase space density. For a boson,

f(k̨) = 1
e—Ê

k̨ ≠ 1
(3.17)

which approaches T/Ê
k̨

for frequencies low compared with the temperature,
Ê

k̨
π T . In this limit, the expansion parameter reads

Á = g2T

Ê
k̨

(3.18)

which is greater than unity for k . g2T . The expansion parameter diverges
as |̨k| æ 0 (in the “infrared”) for massless bosons, cf. Eq. (2.13). We
therefore learn that in the case of massless bosons at zero chemical potential
a perturbative expansion in powers of g breaks down in a thermal state, at
any temperature [23], for momenta k . g2T .

However, thermal corrections contribute to the mass of a thermal state
which have to be taken into account. One can apply the above argument
to the W , Z and gluons of the Standard Model, which have an interaction
term of a similar form.2

For gauge fields, one distinguishes between the electric mass (a mass
parameter appearing in the wave equation for the timelike component of
the gauge field A

0

) and the corresponding magnetic mass for the spacelike
components Ai. The timelike component of the gauge field behaves like a
scalar field, both of which have a mass-temperature relation as

m2(T ) = m2

0

+ cg2T 2 , (3.19)

where c is a theory-dependent constant, and m
0

is the mass of the field
at zero temperature. Therefore, the expansion parameter ‘ for massless
gauge bosons (such as the photon) with m

0

= 0 is of the order of the
coupling constant, ‘ ≥ g π 1. This means that for fields with electric mass
perturbation theory is trustworthy at any temperature for small coupling
constants. Physically, the electric mass makes the electric field at a distance

2
Indeed, this infrared problem was first pointed out for gauge bosons [23].
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Figure 5: The phase diagram of the Standard model. For Higgs masses of
mH . 75 GeV the Standard Model undergoes a 1st order phase transition.
For larger Higgs masses, there is no phase transition between the symmetric
phase „ = 0 and the Higgs phase „ = v

EW

, but a cross-over. Including
higher order interactions changes the picture significantly.

r from a static charge behave as r≠1 exp[≠m(T )r], that is, the electric field
is screened. The electric mass is none other than the inverse Debye length:
the free charges in the plasma become polarised around a source.

The magnetic mass, on the other hand, vanishes in perturbation theory.
Therefore, the expansion parameter ‘ is divergent in the IR and one should
be suspicious of perturbation theory. The vanishing of the perturbative
magnetic mass turns out not to matter for the photon, as it has no self-
interaction terms in its Hamiltonian, but for the other gauge bosons of the
Standard Model our naive perturbation theory definitely breaks down. To
study phase transitions, more involved methods such as a combination of
advanced resummation techniques and lattice simulations are required.

3.3 Beyond weak coupling and the Standard Model
In more advanced calculations based on numerical computations of the par-
tition function, the following picture emerges [11, 24–28]. One can study
the Standard Model (in fact any gauge theory with spontaneous symmetry-
breaking) in the 2-dimensional space spanned by the temperature and the
ratio of the Higgs mass to the gauge boson mass. To simplify matters when
discussing the Standard Model, one can take the gauge boson mass to be
the one of the W -boson, mW ƒ 80 GeV, and take one of the parameters to
be the Higgs mass. This leads to the picture presented in Fig. 5.

If the ratio of the Higgs mass to the gauge boson mass is small, the
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simple picture outlined in the previous sections is correct: the perturbative
evaluation of the thermal potential is reasonably accurate, and there is in-
deed a first-order phase transition. This would correspond to the case of the
Standard Model if the Higgs mass were much less than 80 GeV. However, as
the ratio increases, the strength of the transition, as measured for example
by the latent heat, decreases. At a critical value for this ratio, the latent
heat goes to zero. Above this critical value the transition is a cross-over.

In case of a cross-over the system smoothly changes from the symmetric
phase to the Higgs phase. The situation is similar to water at high pressure,
whose density smoothly decreases with temperature, rather than making a
sharp transition from the vapour to the liquid phase.

Precisely at the critical ratio, the transition is second-order, meaning
that the e�ective thermal mass of the Higgs MH(T ) goes to zero, and its
correlation length diverges. The same phenomenon happens with water
at its critical point (374¶ C and 218 atm), where the divergence of the
correlation length can be observed as the phenomenon of critical opalescence.
In terms of the zero-temperature Higgs mass, the critical point is at around
80 GeV. Given the measured value for the Higgs mass of 125 GeV, the
Standard Model is well into the cross-over region.

However, in theories beyond the Standard Model, the electroweak phase
transition can be a first-order phase transition. Indeed already the inclusion
of a „6 operator in the Higgs potential could lead to a first-order phase
transition [29–31]. Such a term is not allowed by the Standard Model, but
it could be part of an e�ective field theory describing new physics.

The motivation to study models with new physics includes providing
an explanation for the matter-antimatter asymmetry in the Universe [32]
to explaining dark matter [33, 34]. There are further shortcomings of the
Standard Model that need to be addressed [34].

Many such extensions of the Standard Model include extra scalars, which
can give first-order phase transitions. Examples include coupling the Stan-
dard Model to an extra Higgs SU(2) singlet, doublet (“2HDM”) or triplet.
Further, extensions of the Standard Model with supersymmetry automati-
cally include extra scalars, although it seems that the simplest such exten-
sions do not have a first-order phase transition. Possibilities exist beyond
the framework of weakly-coupled field theory. A review of Standard Model
extensions with first-order phase transitions is given in a recent LISA Cos-
mology Working Group report [12].

In the following chapters we will study the details of the dynamics of
such a first-order phase transition.
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4 Relativistic hydrodynamics
In order to understand the dynamics of a first-order phase transition, we
need an appropriate hydrodynamic description of the early universe. In this
section we study interacting bosonic and fermionic particles in the thermo-
dynamic limit. For the resulting distribution function of a relativistic fluid,
we will derive the relativistic Boltzmann equation. For now we focus on
the case where the particle masses are constant throughout spacetime. We
mostly follow Ref. [35] in this section.

4.1 Distribution function
In the presence of several interacting harmonic oscillators, we need to also
include a number operator N̂ in the definition of the partition function

Z = Tr
Ë
e≠—(

ˆH≠µ ˆN)

È
, (4.1)

where µ is the chemical potential. The number operator is obtained as

N̂ = T
ˆ

ˆµ
ln Z . (4.2)

With the same procedure as described for the 1-particle partition function
in Sec. 2, we arrive at the partition functions and number operators for
free bosonic, indicated by B, and fermionic, indicated by F , fields with
3-momentum p̨:

bosons: ZB = e≠—Ep̨/2

1 ≠ e≠—(Ep̨≠µ)

=∆ NB = 1
e—(Ep̨≠µ) ≠ 1

, (4.3)

fermions: ZF = e—Ep̨/2

1 + e≠—(Ep̨≠µ)

=∆ NB = 1
e—(Ep̨≠µ) + 1

. (4.4)

From now on we switch to the notation Êp̨ æ Ep̨ such that the dispersion
relation reads E2

p̨ = p̨ 2 + m2. The particle number densities are

nB = NB

V =
⁄ d3p

(2fi)3

1
e—(Ep̨≠µ) ≠ 1

, nF =
⁄ d3p

(2fi)3

1
e—(Ep̨≠µ) + 1

. (4.5)

Hence, let us introduce the 1-particle distribution function as

f÷(p̨) = 1
e—(Ep̨≠µ) ≠ ÷

, (4.6)

where ÷ = +1 for bosonic fields and ÷ = ≠1 for fermionic fields. The µ = 0
case will be the relevant case for us; although the total particle density is
high in the early universe, the net particle number densities are very small.

Our aim is to allow small departures from equilibrium, which can be
described by local changes in the distribution function, such that it becomes

17



space and time dependent. We will then obtain the evolution equation for
the distribution function f(p, x) d3p d3x where f(p, x) describes the average
number of particles of momentum p̨ in a 3-phase space volume element
(x̨, x̨ + dx̨) ◊ (p̨, p̨ + dp̨) at time t = x0. From this function, we can define
various quantities like the number density n(x) and the particle flux ji(x)
as

n(x) =
⁄ d3p

(2fi)3

f(p, x) , (4.7)

ji(x) =
⁄ d3p

(2fi)3

pi

p0

f(p, x) . (4.8)

We can combine both quantities and define the particle current

jµ(x) =
⁄ d3p

(2fi)3

pµ

p0

f(p, x) . (4.9)

Furthermore, we define the energy density e(x), the 3-momentum density
�i(x) and the 3-momentum flux �ij(x) as

e(x) =
⁄ d3p

(2fi)3

p0f(p, x) , (4.10)

�i(x) =
⁄ d3p

(2fi)3

pif(p, x) , (4.11)

�ij(x) =
⁄ d3p

(2fi)3

pi pj

p0

f(p, x) . (4.12)

We can combine the last three quantities to form the energy-momentum
tensor,

T µ‹(x) =
⁄ d3p

(2fi)3

pµp‹

p0

f(p, x), (4.13)

where T 00 = e, T 0i = �i = T i0, and T ij = �ij . The integral measure
transforms as a scalar under Lorentz transformations because we can rewrite
it as ⁄ d3p

(2fi)3

1
p0

=
⁄ d4p

(2fi)4

”(p2 + m2)◊(p0) , (4.14)

where ◊(p0) ensures positivity of the energy. Hence, for the energy-momentum
tensor T µ‹ to transform as a 2-tensor under Lorentz-transformation (and the
particle current jµ as a 1-tensor), the distribution function f(p, x) has to be
a Lorentz-scalar.

4.2 Relativistic Boltzmann equation
Let us study how the particle distribution function changes in time. First, let
us assume that there are no collisions between the individual particles, and

18



follow the trajectory of each particle in phase space (xµ(·), pµ(·)), which is
parametrised by proper time · . The position and momentum after a small
proper time interval d· hence change as

xµ(·) ≠æ xµ(·) + dxµ

d·
d· = xµ(·) + pµ

m
d· , (4.15)

pµ(·) ≠æ pµ(·) + F µd· , (4.16)

where F µ describes an external 4-force. This is sketched in Fig. 6, which
shows the phase space at two time steps · and · + d· . The particle distri-
bution functions at time · and · +d· must be the same because the particle
number is conserved in an infinitesimal phase space volume. This leads to

f

3
p + Fd·, x + p

m
d·

4
= f(p, x). (4.17)

A Taylor expansion around d· = 0 yields
3

pµˆµ + mF µ ˆ

ˆpµ

4
f(p, x) = 0 (4.18)

A consistent di�erential equation for the distribution function needs to main-
tain the on-shell condition p2 + m2 = 0. This is the case when the force
satisfies either (a) F µpµ = 0 or (b) F µ = ≠ˆµm. We introduce the on-
shell condition by hand to arrive at the collisionless relativistic Boltzmann
equation 3

pµˆµ + mF µ ˆ

ˆpµ

4
”(p2 + m2)f(p, x) = 0. (4.19)

Next, we want to incorporate collisions between the particles. We focus
on 2-body collisions between classical particles only, as these dominate the
scattering in the energy regime that we are interested in. Furthermore, we
assume that there are no external forces, F µ = 0. Let us denote initial
values, i.e., before the collision, without a prime and final values with a
prime (see Figure 7). Momentum conservation requires

p
1

+ p
2

= pÕ
1

+ pÕ
2

, (4.20)

where the subscript refers to the particle. In the presence of collisions, the
particle distribution function is not necessarily the same after a time step d·
because scattering can remove and add particles to the phase space volume
element (dp, dx) around (p, x). Let R (R̄) describe a scattering in time dt
which removes (adds) an initial (final) particle with momentum p at position
x. The Boltzmann equation including collisions reads

pµˆµf(p, x) = R̄(p, x) ≠ R(p, x) . (4.21)

Let us quantify R and R̄ a bit further. An incoming particle with mo-
mentum p

1

can scatter with any particle that is at the same position, but
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x

p

dx dxÕ

dp

dpÕ

Figure 6: This figure depicts how the phase space volume occupied by parti-
cles within (x, x+dx) and (p, p+dp) changes in a time step d· to (xÕ, xÕ+dxÕ)
and (pÕ, pÕ + dpÕ). The particle number in both elements is the same.

with arbitrary momentum p
2

(and likewise for outgoing). That amounts to
writing

R(p
1

, x) =
⁄ d̄3p

2

2E
2

d̄3pÕ
1

2EÕ
1

d̄3pÕ
2

2EÕ
2

f(p
1

, x)f(p
2

, x)W (p
1

, p
2

|pÕ
1

, pÕ
2

) (4.22)

R̄(p
1

, x) =
⁄ d̄3p

2

2E
2

d̄3pÕ
1

2EÕ
1

d̄3pÕ
2

2EÕ
2

f(pÕ
1

, x)f(pÕ
2

, x)W (pÕ
1

, pÕ
2

|p
1

, p
2

) , (4.23)

where W is called the scattering function. Here, we introduced the short-
hand notation d̄3p = d3p/(2fi)3. We can write W in terms of the cross
section ‡ as

W (p
1

, p
2

|pÕ
1

, pÕ
2

) = s ‡(s, ◊)”(4)(pÕ
1

+ pÕ
2

≠ p
1

≠ p
2

) (4.24)

in terms of the Mandelstam variables s = (p
1

+ p
2

)2, t = (p
1

≠ pÕ
1

)2, and the
scattering angle ◊ is obtained from cos ◊ = 1 ≠ 2t/(s + 4m2).

Let us introduce the collision function C[f ] = R̄≠R, where the notation
reminds us that R and R̄ depend on the distribution function. We now have
derived the relativistic Boltzmann equation

pµˆµf = C[f ] . (4.25)

4.3 Conservation laws and collision invariants
It is natural to expect that conservation laws obeyed during the collisions
constrain the evolution of the distribution function. In our above system
with 2-body collisions, we expect that the particle number is conserved,
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Figure 7: Visual depiction of a 2-body scattering event. The unprimed
quantities describe the values before the scattering, the primed ones after
the scattering.

as well as the momentum. One can show that for any function Â(p, x) =
a(x) + bµ(x) pµ with a and bµ arbitrary functions of x, the following integral
vanishes identically, ⁄ d̄3p

2E
Â(p, x)C[f ] = 0 , (4.26)

as a consequence of particle number and momentum conservation. The
function Â is a collision invariant.

Now we replace the collision function using the Boltzmann equation
(4.25). For the case bµ = 0, the above integral then implies

0 =
⁄ d̄3p

2Ep̨
pµˆµf = ˆµjµ , (4.27)

where we took the partial derivative out of the integral and used Eq. (4.9).
Therefore, the particle current is conserved.

Instead of setting bµ = 0, we can set a = 0 to arrive at

0 =
⁄ d̄3p

2Ep̨
p‹pµˆµf = 1

2ˆµT µ‹ (4.28)

where we took the partial derivative out of the integral and used the defini-
tion in Eq. (4.13). This establishes conservation of the tensor,

T µ‹ =
⁄ d̄3p

2Ep̨
p‹pµf, (4.29)

which is the energy-momentum tensor of the system of particles with distri-
bution function f .

4.4 Local equilibrium and perfect fluid
The fluid is in local equilibrium in the presence of collisions when R(p

1

, x) =
R̄(p

1

, x), i.e. C[f ] = 0. From Eqs. (4.22) and (4.23) we find that the fluid
is in local equilibrium when, ’ p

1

, p
2

, pÕ
1

, pÕ
2

,

f
1

f
2

= f Õ
1

f Õ
2

(4.30)
∆ ln f

1

+ ln f
2

= ln f Õ
1

+ ln f Õ
2

(4.31)
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where we introduced the short-hand notation f
(Õ)
i = f(p(Õ)

i , x). This implies
that the quantity ln f

1

+ ln f
2

is conserved. Therefore it must be expressible
in terms of the conserved quantities of the system. According to Eq. (4.26),
it can therefore be written as

ln f eq(p, x) = a(x) + bµ(x)pµ , (4.32)

in local equilibrium. We rewrite a(x) and bµ(x) in a suggestive notation,
a(x) = —(x)µ(x) and bµ(x) = —(x)uµ(x), with u2 = ≠1, and we recover the
classical equilibrium distribution function

f eq(p, x) = exp
Ë
—(x)(p · u(x) + µ(x))

È
. (4.33)

We then see that —(x) = 1/T is the inverse temperature, µ(x) the chemical
potential, and uµ(x) is the local 4-velocity of the system of particles which
we can now start calling a fluid. In the fluid local rest frame, uµ = (≠1, 0̨)µ,
p · u = ≠p0, where p0 = Ep̨ is the particle energy.

To extend this analysis to quantum scattering, we need to account for
the fact that two fermions cannot occupy the same quantum state (Fermi
blocking), and that bosonic wave functions add coherently (Bose enhance-
ment). This can be done by writing the particle production and destruction
rates as

R(p
1

, x) =
⁄ d̄3p

2

2E
2

d̄3pÕ
1

2EÕ
1

d̄3pÕ
2

2EÕ
2

f
1

f
2

(1 ± f Õ
1

)(1 ± f Õ
2

)≠æW , (4.34)

R̄(p
1

, x) =
⁄ d̄3p

2

2E
2

d̄3pÕ
1

2EÕ
1

d̄3pÕ
2

2EÕ
2

f Õ
1

f Õ
2

(1 ± f
1

)(1 ± f
2

)Ω≠W . (4.35)

The additional factors of 1±f
(Õ)
i implement the Bose enhancement and Fermi

blocking in C[f ].
In local equilibrium, the particle production and destruction rates are

equal, i.e. C[f ] = 0. Hence, the distribution function has to satisfy

f
1

f
2

(1 ± f Õ
1

)(1 ± f Õ
2

) = f Õ
1

f Õ
2

(1 ± f
1

)(1 ± f
2

) . (4.36)

Separating primed and unprimed variables reveals that ln f
1

/(1 ± f
1

) +
ln f

2

/(1 ± f
2

) is conserved. As for the classical case, this implies that the
distribution function in equilibrium can be written as

ln f eq

1 ± f eq

= a + bµpµ , (4.37)

where it is understood that as before a and b depend on x. Rearranging and
rewriting a and b in terms of the more physical quantities µ, — and u yields
the following expression for the distribution function,

f eq = 1
e—(µ+u·p) ± 1

. (4.38)
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In the early universe the chemical potential is negligible, µ ƒ 0. Then, the
energy-momentum tensor in local equilibrium reads

T µ‹ = (e + p)uµu‹ + pgµ‹ , (4.39)

where all quantities depend on x. This is the energy-momentum tensor for
a perfect fluid with energy density e and pressure3 p. Despite an ambiguity
in the notation, the pressure is not to be confused with 4-momentum.

5 Hydrodynamics with field-dependent mass
In the early universe the value of the Higgs changes in time during the
electroweak phase transition. The Higgs transitions from the symmetric to
the broken phase. As discussed in Sec. 3, the particle masses depend on
the value of the Higgs. Since the transition does not happen at the same
time in the entire universe, the particle masses are space-time dependent due
to their field dependency. In this section, we generalize the results of the
previous section to the case of a fluid of particles with space-time dependent
mass.

The theory of hydrodynamics with a field dependent mass is structurally
similar to hydrodynamics with electromagnetic forces and hence to the wide
field of plasma physics. This is because the field dependency of the mass
leads to a non-zero external force F µ. In the case of plasma physics the
motion of particles under Lorentz forces is described by the Vlasov equation.
In close analogy, we will derive Boltzmann’s equation for a fluid with field
dependent (and hence space-time dependent) mass in the following.

We start from the action for a single particle (note this is not the action
for the field „)

S = ≠
⁄

d· m

Û

≠gµ‹
dxµ

d·

dx‹

d·
, (5.1)

where m = m(„(x(·))) is the field-dependent mass, xµ = xµ(·) is the space-
time coordinate of a particle, parameterised by the particle’s proper time · ,
and gµ‹ is the space-time metric. Varying this action we obtain the equation
of motion

d
d·

3
m

dxµ

d·

4
+ ˆµ„

dm

d„
= 0 . (5.2)

From this equation we identify the 4-momentum pµ = m dxµ / d· , and the
force

F µ = ≠ˆµ„
dm

d„
, (5.3)

3
The pressure is defined as

p =

⁄
d

3p

(2fi)

3
p̨ 2

2p0 f(p, x) . (4.40)
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where we used the equation of motion (5.2). Hence, the field-dependence
of the mass yields a force acting on the particle. This has to be taken into
account when deriving conservation laws.

In the previous section, we derived the conservation of the particle cur-
rent and energy-momentum assuming there are no external sources. Now,
consider instead the Boltzmann equation with collisions and external forces,

3
pµˆµ + mF µ ˆ

ˆpµ

4
�(p0)”(p2 + m2)f = C [f ] , (5.4)

where we have introduced the on-shell condition again. We multiply both
sides with p‹ , integrate over momenta, and use Eq. (4.26) to find

0 =
⁄ d4p

(2fi)4

p‹C[f ] (5.5)

=
⁄ d4p

(2fi)4

p‹
3

pµˆµ + mF µ ˆ

ˆpµ

4
�(p0)”(p2 + m2)f (5.6)

= ˆµ

⁄ d3p

(2fi)3

pµp‹

2Ep̨
f ≠ mF ‹

⁄ d4p

(2fi)4

�(p0)”(p2 + m2)f (5.7)

= 1
2ˆµT µ‹ ≠ mF ‹

⁄ d3p

(2fi)3

1
2Ep̨

f

-----
p0

=Ep̨

, (5.8)

where we assumed that collisions are local and preserve momenta. For
the last step, we used the definition of the energy-momentum tensor as in
Eq. (4.13), integrated the second term by parts and used that ˆp‹/ˆpµ = ”‹

µ.
Using Eq. (5.3), this yields

ˆµT µ‹ = ≠ˆ‹„
dm2

d„

⁄ d3p

(2fi)3

1
2Ep̨

f(p, x)
-----
p0

=Ep̨

(5.9)

where the 4-momentum is constrained such that p0 = Ep̨. The energy-
momentum tensor of the fluid is not conserved when the mass is field-
dependent, but sourced by a term proportional to the change of the mass
throughout spacetime. Total energy-momentum of the fluid-field system is
conserved, so there is a corresponding term in the energy-momentum con-
servation equation for the field.

Note that in the derivation of Eq. (5.9) we assumed momentum conser-
vation in collisions. However, in the presence of gradients in the scalar field
it is not clear if momentum is conserved; there could be exchange of momen-
tum with the field during the collision. However, as long as the gradients in
the scalar field are small, by which we mean

⁄
mfp

ˆ„

„
. O(1) , (5.10)
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where ⁄
mfp

is the mean free path in the fluid, conservation of momentum
in collisions should be a good approximation. In the opposite limit, the
particles are unlikely to interact in the wall, and conservation of momentum
in collisions is again recovered.

5.1 Complete model of scalar field fluid system
A more detailed description of a system consisting of a scalar field and a fluid
is given in Ref. [36]. As a starting point, split the full energy-momentum
tensor into two components, one for the fluid T µ‹

f

and one for the Higgs T µ‹
„ ,

as

T µ‹
f

= (e + p
1

)uµu‹ + p
1

gµ‹ , (5.11)

T µ‹
„ = ˆµ„ˆ‹„ ≠ gµ‹

31
2(ˆ„)2 + V

0

(„)
4

, (5.12)

where we label the fluid pressure as p
1

for now. As an example we use the
symmetry breaking potential

V
0

(„) = ⁄

4
1
„2 ≠ v2

2
2

, (5.13)

for the scalar field. Note that there are some field-dependent terms in the
fluid pressure, which we define as

p
1

(„, T ) = fi2

90g
e�

T 4 ≠ V
1

(„, T ) , (5.14)

where the fluid pressure is the total contribution from all particles, equal to
the negative of the free energy densities (2.19) and (2.26)

p
1

(„, T ) = ≠
ÿ

B

fB(m(„), T ) ≠
ÿ

F

fF (m(„), T ). (5.15)

The full thermally corrected potential then reads

VT („) = V
0

(„) + V
1

(„, T ) . (5.16)

In the high-temperature expansion, V
1

(„, T ) contains all T -dependent terms
of the potential in Eq. (3.7).

We demand that the full energy-momentum tensor is conserved,

ˆµ

1
T µ‹

f

+ T µ‹
„

2
= 0 , (5.17)

and hence non-conservation of T µ‹
f

has to appear in T µ‹
„ . Using Eq. (5.9)

this implies

ˆµT µ‹
„ = +ˆ‹„

dm2

d„

⁄ d3p

(2fi)3

1
2Ep̨

f(p, x) . (5.18)
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The energy-momentum tensor for the field is hence not conserved individu-
ally, fluid contributions can source changes in its energy and momentum.

Computing the equation of motion for the scalar field one obtains

⇤„ ≠ V Õ
0

(„) = ≠dm2

d„

⁄ d3p

(2fi)3

1
2Ep̨

f(p, x) (5.19)

where prime denotes the derivative with respect to the argument „. Here
again the right-hand side stems from the fluid contributions and in a more
complicated theory should contain a sum over all massive degrees of freedom.

Let us study the situation, when the system is close to equilibrium and
parametrize the distribution function as a small perturbation around equi-
librium as f(p, x) = f eq(p, x)+”f(p, x). If the fluid were in local equilibrium
everywhere, Eq. (5.19) becomes [36]

⇤„ ≠ V Õ
0

(„) = ≠dm2

d„

⁄ d3p

(2fi)3

1
2Ep̨

f eq(p, x) = V Õ
1

(„, T ) (5.20)

according to the definition of the free energies in Eqs. (2.18) and (2.26).
Therefore, the equation of motion of the Higgs in exact equilibrium reads,

⇤„ ≠ V Õ
T („) = 0 . (5.21)

Consequently the equation for small departures from fluid equilibrium (5.19)
becomes

⇤„ ≠ V Õ
T („) = ≠dm2

d„

⁄ d3p

(2fi)3

1
2Ep̨

”f(p, x) (5.22)

to first order in ”f .
Let us repackage the contribution from the e�ective potential into the

fluid by defining the fluid pressure as p(„, T ) = p
1

(„, T ) ≠ V
0

(„). The new
fluid energy-momentum tensor then reads

T µ‹
f

= (e + p)uµu‹ + pgµ‹ (5.23)

which yields

ˆµT µ‹
f

+ V Õ
T („)ˆ‹„ = ≠ˆ‹„

dm2

d„

⁄ d3p

(2fi)3

1
2Ep̨

”f(p, x) (5.24)

for its conservation equation. The right hand side is generated by departures
from the equilibrium phase-space distribution f eq, which in turn have to be
induced by gradients of the scalar field. We assume that these are small, in
the sense outlined at the end of the last section.

To express the dependence on the gradient in analogy to linear response
theory, we write the integral of the perturbed distribution function on the
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right hand side of Eq. (5.24) as a term proportional to the gradient of the
scalar field, ⁄ d3p

(2fi)3

1
2Ep̨

”f(p, x) = ÷̃uµˆµ„ , (5.25)

where we use the fluid 4-velocity uµ to contract the open index in order to
respect isotropy. The proportionality factor ÷̃ might in general depend on
the field value, the temperature, and the fluid “-factor, or ÷̃ = ÷̃(T, „, “).
The overall mass dimension of ÷̃ is zero, so it must depend on the ratio „/T .

This leaves us with the equation of motion

⇤„ ≠ V Õ
T („) = ≠÷̃

dm2

d„
uµˆµ„ (5.26)

Note that in using the ansatz (5.25) we assumed full Lorentz symmetry.
However, invariance under boosts is broken in a plasma. The following ar-
gument from entropic considerations supports the Lorentz-symmetric form.

Consider the scalar product of u with both sides of Eq. (5.24),

u‹ˆµ(wuµu‹ + pgµ‹) + V Õ
T („)u · ˆ„ = ÷̃(u · ˆ„)2, (5.27)

where w = e + p = Ts is the enthalpy density, and s = dp/dT is the entropy
density. From this we can derive a conservation equation for the entropy
current Sµ = suµ,

ˆ · S = ÷̃

T
(u · ˆ„)2. (5.28)

The fact that this is always positive supports the claim that the term on the
right hand side of Eq. (5.25) is indeed proportional to u · ˆ„. In this model
entropy is generated by the interaction of the field and the fluid.

6 The bubble nucleation rate
We now to study how, and how quickly, a phase transition happens. We
focus on first-order phase transitions, which are characterised by a critical
temperature, a latent heat, and mixed phases separated by phase bound-
aries with a characteristic surface energy. An order parameter distinguishes
between the phases.

A simple example is the phase transition between water in its liquid and
vapour form, at a critical temperature of 373 K at 1 atmosphere pressure.
The order parameter is the density, which changes by a factor of about 1000
at the phase transition.

In the laboratory, systems cooled below their critical temperature, pro-
ceed by the nucleation of small bubbles or droplets of the new phase around
impurities. Especially pure systems can be cooled well below their critical
temperature before the transition occurs.
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The early Universe is thought to be perfectly pure, so bubbles of the
new phase can appear only by thermal or quantum fluctuations.4 The order
parameter is a scalar field „, and we will take the values of the field in the
two phases to be „ = 0 in the high temperature phase and „ = „

b

in the
low temperature phase.

The transition proceeds via bubble nucleation: individual bubbles of
the new ground state „ = „

b

appear due to thermal fluctuations. If the
temperature of the universe is below the critical value T

c

, these bubbles
grow if they exceed a critical radius R

c

. Eventually they merge, and the
whole universe is in the new phase. In this section we will compute the rate
at which these bubbles appear and how the system changes from the old
to the new ground state. This process was first studied in the context of
statistical mechanics in Ref. [39], and in quantum field theory in Refs. [40]
and [41]. In turns out that at high temperatures higher than the masses
of the particles involved, the quantum field theory is well approximated by
statistical mechanical description.

We start with the partition function of a classical field „ at temperature
— = 1/T , which is the functional integral

Z— =
⁄

DfiD„e≠—H , (6.1)

with the Hamiltonian

H =
⁄

d3x

C
1
2fi2 + 1

2(Ǫ̀„)2 + VT („)
D

, (6.2)

where fi is the conjugate momentum to the field „. We will use the partition
function to calculate the rate per unit volume of fluctuations over a thermal
barrier in the potential VT .

6.1 Transition rate in 0 dimensions
To get started, we discuss a simple toy model without spatial dimensions [42].
Therefore, spatial gradients Ǫ̀„ do not exist, and the integrals over functions
fi and „ become ordinary integrals. The theory describes a particle with
coordinate „ in a potential VT as depicted in Fig. 8. The partition function
for this simple system is

Z— =
⁄

dfi d„ e≠—
#
fi2/2+VT („)

$
. (6.3)

We can immediately perform the integral over fi yielding

Z— =
Û

2fi

—

⁄
d„ e≠—VT („) . (6.4)

4
This picture may not be accurate if there are primordial black holes, which can act

as nucleation sites [37,38].
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To carry out the remaining integration over „ we use the saddle point ap-
proximation. In principle the potential VT („) has three stationary points,
two minima, a local one at „ = 0 and a global one at „ = „

b

as well as a
maximum at „ = „

m

separating the two minima (see Fig. 8). However, in
our set-up we assume that initially there is a thermal bath of particles only
in the metastable ground state at „ = 0. To infer the transition rate of parti-
cles fluctuating to the stable ground state at „ = „

b

, only two saddle-points
are of relevance: the false minimum and the maximum. Intuitively, this can
be understood from the fact that once a particle in the metastable ground
state makes it over the top of the potential barrier, due to thermal fluctua-
tions, it just rolls down into the true ground state. Hence, the transition rate
is dominated by the two aforementioned saddle-points. In particular, even
though with time particles settle in the global minimum, the flux of particles
from the stable to the metastable ground state will always be negligible.

Let us evaluate the partition function at the two saddle points. The first
point sits at „ = 0. We hence expand as „ = 0 + ”„ to obtain

Z0

— =
Û

2fi

—

⁄
d„ exp

C

≠ —

3
VT (0) + 1

2V ÕÕ
T (0)”„2

4 D

(6.5)

=
Û

2fi

—

Û
2fi

—V ÕÕ
T (0)e≠—VT (0) .

The second stationary point is at „ = „
m

with V ÕÕ
T („

m

) < 0. As the second
derivative at the stationary point is negative here we need to deform the
integration contour into the complex plane, which results in the integral
acquiring an imaginary part. At this second stationary point we obtain, for
the imaginary part,

Z1

— =
Û

2fi

—

Û
2fi

V ÕÕ
T („

m

)
1
2e≠—VT („m) . (6.6)

This expression is imaginary because of the negative sign for V ÕÕ
T . The factor

of 1/2 is due to the integration contour transversing only one half of the
complex plane. The leading term in the full partition function is the sum of
these two terms, Z— = Z0

— + Z1

—.
Computing the free energy we obtain

F = ≠ 1
—

ln Z ¥ F 0

— ± i

2—
e≠—�VT

Û
V ÕÕ

T (0)
|V ÕÕ

T („
m

)| , (6.7)

where �VT © VT („
m

) ≠ VT (0) is the barrier height in the potential, and
we expanded the logarithm for —�VT ∫ 1. The two signs arise due to the
choice of the integration contour.
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Figure 8: The e�ective thermal potential VT („) for a temperature below
the critical temperature, T < T

c

. The potential has two minima „ = 0 an
„ = „

b

, and a maximum at „ = „
m

, which we use for the saddle point
approximation. Due to thermal fluctuations, the field can transition from
the symmetric phase to the Higgs phase.

Next, we compute the the probability flux � across the potential barrier
given by

� = 1
Z—

⁄
dfi d„ e≠—H”(„ ≠ „

m

)fi�(fi) . (6.8)

The ”-distribution picks the saddle point at the maximum for us. The
Heaviside function only allows for positive velocities (increasing field values)
and hence we only consider particles that flow to the new minimum. The
whole expression describes a flux of phase space volume from the old to the
new ground state. Evaluating Eq. (6.8) in a similar manner as before yields

� = 1
2fi

Ò
V ÕÕ

T (0)e≠—�VT . (6.9)

Comparing this equation to the expression for the free energy (6.7) estab-
lishes the relation

� = —

fi

Ò
V ÕÕ

T („
m

) |Im{F}| . (6.10)

The probability flux density is thus proportional to the imaginary part of
the free energy. To be explicit, it is given by

Im{F} = T

2

Û
V

ÕÕ
T (0)

|V ÕÕ
T („

m

)|e
≠—�VT . (6.11)
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Note that in Eq. (6.8) we implicitly assumed that the particles were
moving freely. This is equivalent to assuming that the particles do not
interact with the heat bath which maintains thermal equilibrium as they
cross the barrier. The timescale for crossing the barrier can be estimated
as ·

m

= 1/
Ò

|V ÕÕ
T („

m

)|. If the mean free time between interactions is much
less than ·

m

, then it is more appropriate to study the di�usion of particles
across the barrier, which can be modelled by the Langevin equation

fi̇ = ≠“fi ≠ V Õ
T („) + ›(t). (6.12)

Here, “ is the di�usion constant, and ›(t) represents the forces exerted by
the heat bath. It is a Gaussian random variable, obeying È›(t)›(tÕ)Í =
2“T ”(t ≠ tÕ), meaning that it is uncorrelated from one instant to the next,
but has a mean amplitude

Ô
2“T . In the case “·

m

∫ 1, the rate of particles
crossing over the barrier is

� = 1
2fi

Ò
V ÕÕ

T (0)|V ÕÕ
T („

m

)|
“

e≠—�VT . (6.13)

This is a factor 1/“·
m

smaller than the rate of free particles crossing the
barrier.

The problem of how classical particles escape over an energy barrier was
originally solved by Kramers [43] in the context of chemical reactions. The
formulation of the Kramers escape problem in quantum field theory was
recently studied in Ref. [44].

6.2 Bubble nucleation in 3 dimensions
After having derived the probability flux without spatial dimensions, in this
section we will repeat this procedure for 3 dimensions.

6.2.1 The critical bubble

The starting point is the path integral which for a thermal field theory is
given by

Z— =
⁄

Dfi

⁄
D„ e≠—H[fi,„] , (6.14)

where the Hamiltonian H is given by Eq. (6.2) now including spatial gra-
dients of the scalar field. We can perform the integration over fi, as it is
Gaussian, leading to

Z— = N
⁄

D„ e≠—ET [„] , (6.15)

where N is the result of the integration. It will play no role in the following.
We will again perform a saddle point evaluation of this integral, which

means first identifying the stationary point of the function in the exponen-
tial.
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Figure 9: Left panel: the scaled quartic potential as a function of the pa-
rameter ⁄̄, defined in Eq. (6.18). Right panel: the critical bubble solution
to Eq. (6.17). Scripts by kind permission of D. Cutting, see also Ref. [45].

At the stationary or saddle point, we have ”ET [„]/”„ = 0, leading to
the following di�erential equation

≠ Ǫ̀2„ + ˆVT

ˆ„
= 0 . (6.16)

It turns out that the energy functional ET is minimized for a radially sym-
metric field configuration. In that case, the above equation of motion can
be rewritten as

≠ 1
r2

d
dr

3
r2

d„

dr

4
+ V

Õ
T („) = 0 . (6.17)

We will suppose a thermal e�ective potential of the form sketched in Fig.
8, and assume a high temperature approximation of quartic form as in Eq.
(3.8). We are looking for a solution which represents a finite-energy fluctu-
ation away from the metastable phase „ = 0 at a temperature just below
T

c

. The asymptotics of the solution are therefore: as r æ Œ, „ æ 0, and as
r æ 0, „

Õ(r) æ 0, where the prime denotes derivative with respect to r.
A trivial solution „(r) = 0 always exists. A non-trivial solutions can

be found by numerical integration, using a shooting method (see e.g. Ref.
[45]). Although there are three parameters, it turns out that the di�erential
equation can be rewritten so that it depends only on the combination

⁄̄ = 9⁄D

2A2

, (6.18)

provided one scales the potential with the vacuum energy di�erence, the
field with its stable phase value „

b

, and radial distance with the e�ective
mass M = D

Ò
T 2 ≠ T 2

0

. The results for selected values of ⁄̄ are shown in
Fig. 9. We refer to a non-trivial solution of Eq. (6.17) with these boundary
conditions as a critical bubble and denote it by „̄(r).

At the critical temperature, ⁄̄ æ 1, and the potential is approximately

V („) = ⁄

4 „2 („ ≠ „
b

)2 (6.19)
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This leads to the following approximate solution to the equation of motion,

„̄ = „
b

2

3
1 ≠ tanh

3
r ≠ R

c

¸
w

44
, (6.20)

where R
c

is the radius of the critical bubble, ¸
w

= 1/M(T
c

) the thickness of
the bubble wall, and R

c

∫ ¸
w

. This solution is plotted in the right panel of
Fig. 9 for di�erent values of ⁄̄. We refer to this approximate solution as a
thin-wall bubble.

The energy of a critical bubble can be computed from the energy func-
tional

ET [„] =
⁄

d3x

31
2

1
Ǫ̀„

2
2

+ VT („)
4

. (6.21)

This is potentially divergent in an infinite volume system. We are actually
interested in the di�erence between the energy of the field configuration of
the critical bubble „̄ and the energy of the metastable state „ = 0, or

E
c

= ET [„̄] ≠ ET [0] . (6.22)

This quantity is finite, and it is the energy a thermal fluctuation needs to
have in order to lift the field over the barrier in the spherical region of radius
R.

It is simplest to analyse this expression for a thin-wall. In that case, the
interior of the bubble represents the ’new’ minimum (for instance the Higgs
phase in the case of electroweak symmetry breaking), the exterior the ’old’
minimum (i.e. the metastable phase) and the wall of the bubble defines the
region where the field interpolates between the two minima.

If ‘ = �VT /VT („
m

) π 1, where �VT = VT (0)≠VT („
b

) is the free-energy
di�erence between the two phases, there exists an approximate solution for
E

c

as a function of radius R, given by

E
c

(R) = 4fi‡R2 ≠ 4
3fi�VT R3, (6.23)

Here, ‡ denotes the surface tension given by

‡ = 23/2

34

A3

⁄5/2

T 3

c

(6.24)

with A and ⁄ the constants appearing in the thermal Higgs potential (3.8). It
is possible to introduce a critical radius R

c

at which the bubble does neither
shrink nor grow. This is the radius where the force, due to the release of
latent heat, pushing the bubble to grow, is balanced with the interaction of
the bubble with the plasma of particles creating friction. Above the critical
radius it is favorable for the bubble to grow. The critical radius is defined
as the stationary point of the energy E as a function of the radius R, i.e.

ˆE

ˆR
= 8fi‡R ≠ 4fi�VT R2

-----
R=Rc

!= 0 , (6.25)
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such that the critical radius is given by

R
c

= 2‡

�VT
= 2‡

VT („
m

)‘ . (6.26)

Plugging this expression into Eq. (6.23), we find the energy of the critical
bubble as

E
c

= E(R
c

) = 16fi

3
‡3

�V 2

T

. (6.27)

In the thin-wall approximation, the energy of the critical bubble can be
computed as a function of temperature T as [46]

E
c

(T ) = 16fi

3
‡T 2

c

[L(T
c

≠ T )]2 , (6.28)

where L is the latent heat. It is given by L = T
c

(p
s

≠ p
b

) with p
s

and p
b

the
fluid pressure in the symmetric and in the broken phase, resp. Hence, the
energy E

c

diverges at the critical temperature.
Note the di�erent uses of the word “critical” in critical bubble, with

radius R
c

and energy E
c

, and the critical temperature T
c

.

6.2.2 Saddle point evaluation

We now return to completing the saddle-point approximation of the integral
(6.15). We recall that the saddle point method consists in expanding around
stationary values of the energy functional ET [„]. In the case at hand the two
previously mentioned classical solutions to the equations of motion, the triv-
ial solution „(r) = 0 and the critical bubble solution „(r) = „̄(r), extremise
ET [„]. In contrast to the simplified case without spatial dimensions where
we evaluated the partition function at the extrema of the thermal potential,
i.e., at the points „ = 0 and „ = „

m

, we now evaluate the partition function
at two classical solutions out of the field configuration space of „. So the
partition function will be a sum of two terms Z0 and Z1 evaluated around
the extrema „ = 0 and the critical bubble „ = „̄, respectively.

Let us first expand around the classical solution „̄ as „ = „̄ + ”„. Per-
forming the actual saddle-point approximation we find

Z ƒ N D(”„)e≠—E[

¯„]≠—
s

”„(≠Ǫ̀2
+V ÕÕ

T (

¯„))”„/2. (6.29)

To evaluate the functional integral it is useful to diagonalise the operator
≠Ǫ̀2+V ÕÕ

T („̄). In order to do so we consider the following eigenvalue equation

(≠Ǫ̀2 + V ÕÕ
T („̄))Â– = ⁄–Â–, (6.30)

with ”„ =
q

– c–Â–, where the Â– are normalized so that —
s

d3x|Â–|2 = 1.
The measure then takes the following form

D(”„) =
⁄ Ÿ

–

dc–Ô
2fi

. (6.31)

34



For the non-zero eigenvalues, we have to perform Gaussian integrals, result-
ing in

Z1 ƒ N Õ
⁄ Ÿ

i

dciÔ
2fi

ÕŸ

–

1
⁄–

1
2

e≠—E[

¯„] , (6.32)

where the index i labels the zero eigenvalues, and the prime indicates that
the zero modes have been omitted from the product.

There are in fact three eigenfunctions with zero eigenvalues. Let us recall
the equation of motion for a solution „̄, given by

≠ Ǫ̀2„̄ + V Õ
T („̄) = 0 . (6.33)

Taking the spatial gradient yields
1
≠Ǫ̀2 + V ÕÕ

T („̄)
2

ˆi„̄ = 0 . (6.34)

These are the translational zero modes, as they correspond to the change in
the field when performing a small translation xi æ xi + ”xi, for which

”„̄ = ”xiˆi„̄ . (6.35)

For these modes, the normalised integration variables are

dci = dxi
5

—

3

⁄
d3x

1
Ǫ̀„̄

2
2

6 1
2

, (6.36)

where we have used the spherical symmetry of the solution. One can show
from the stationarity of the solution under a scale transformation ”„̄ = xiˆi„̄
that the integral in the square brackets in Eq. (6.36) is equal to the energy
of the critical bubble. Hence

dci = dxi(—E
c

)
1
2 , (6.37)

from which it follows that

Z1 ƒ N ÕV
3

—E
c

2fi

4
3/2

ÕŸ

–

1
⁄–

1
2

e≠—E[

¯„] . (6.38)

where V is the volume of the system.
Furthermore, also the trivial solution „ = 0 is an extremum. Therefore,

if we solve Eq. (6.15) at „ = 0 we obtain

Z0 ƒ N Õ Ÿ

–

1
(⁄0

–)1/2

e≠—E[0] . (6.39)

The solution „ = 0 has no zero modes, as it is translation invariant.
The partition function evaluated through a saddle-point approximation

is now given as a sum of only two terms, Z ƒ Z0 + Z1.
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In order to compute the transition rate from the trivial solution to the
critical bubble we have to consider the imaginary part of the free energy.
This comes from the expansion around the critical bubble, which has one
negative eigenvalue ⁄≠, linked to an unstable mode (i.e. expansion or con-
traction of the bubble).

We can already see that the ratio Z1/Z0 contains an exponentially small
factor exp(≠—E

c

). Therefore, we can expand the logarithm in the free energy
and approximate its imaginary part as

Im{F} ¥ ≠T
|Z1|
Z0

(6.40)

If the interaction rate of the field with the thermal bath is small, we use the
example of the particle in a potential well to infer that the probability flux
per volume V is then given by

�
V =

Ò
V ÕÕ

T (0)
fi

S

U
det

1
≠Ǫ̀2 + V ÕÕ

T (0)
2

| detÕ(≠Ǫ̀2 + V ÕÕ
T („̄))|

T

V
1/2 3

—E
c

2fi

4
3/2

e≠—Ec (6.41)

where we have introduced a standard notation for the eigenvalue products.
The symbol detÕ means that the three zero modes have been omitted, which
means that the overall mass dimension of the square root of the ratio of
determinants is that of the square root of the product of three eigenvalues,
or 3. Hence the mass dimension of the right hand side is 4, as is appropriate
for a rate per volume.

We can estimate the order of magnitude of the dimension-4 prefactor asËÒ
V ÕÕ

T (0)
È

4

in a Standard-Model-like plasma. Recalling the thermal poten-
tial in the high-temperature approximation (3.8), and using Eq. (3.13), we
find that

Ò
V ÕÕ

T (0) ≥ g2T at T
c

, where we have used the fact that the most
important couplings in the Standard Model are all of the same order of mag-
nitude, or g2 ƒ ⁄ ƒ yt. This seems to indicate that the prefactor should
go as g8T 4. It turns out that for the Higgs in a Standard Model plasma,
the interactions with the W and Z fields are rather rapid, and it evolves
di�usively [47, 48], as in the Kramers problem. The di�usion constant in
a plasma of W and Z particles is “≠1 ≥ g4 ln(1/g) [49], bringing an extra
factor of order g2 ln(1/g).

7 Dynamics of expanding bubbles
In this section we will consider what happens after the bubble has nucleated
and started to expand. As the bubble gets larger, it is appropriate to move
to the hydrodynamic description of the system.
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We would like to know how the fluid reacts to the expanding bubble,
and in particular the amplitude of the shear stresses which are generated,
as they are the source of the gravitational waves.

A particular quantity of interest is the speed at which the phase bound-
ary is expanding, the so-called wall speed v

w

. Having good knowledge of
the wall speed is important, as the flow set-up around the expanding bubble
depends strongly on it, and therefore the gravitational wave power. The
flow also depends on the strength of the transition parametrised by –

n

, in-
troduced in Section 7.3. In this section we will see how the flow around an
expanding bubble depends only on v

w

and –
n

.
The fluid flow is also of importance for baryogenesis scenarios, which

can be explained through a first-order electroweak phase transition [50].
A relativistic wall speed increases the chances of detecting gravitational
imprints, but decreases the e�ciency with which baryon number is generated
[51].

7.1 Wall speed
For a bubble to expand, the interior pressure must be larger than the exterior
one. The pressure is given by

p = fi2

90g
e�

T 4 ≠ VT („), (7.1)

where g
e�

are the e�ective relativistic degrees of freedom. The bubble ex-
pands if VT („

b

) < VT (0), as in this case the internal pressure exceeds the
external one. This can only happen below the critical temperature.

The bubble wall (which marks the boundary between the phases) must
therefore move outward through the plasma. The dynamics of the field „
driving the phase transition interacting with the plasma of particles is given
by

⇤„ ≠ V Õ
T („) = ≠÷T („) uµˆµ„ , (7.2)

where ÷T = ÷̃dm2/d„, cf. Eq. (5.26). This is just the standard Klein Gordon
equation equipped with a friction term due to the interaction of the bubble
with the plasma.

Let us now assume that the wall-speed is constant in the rest frame of the
universe. Furthermore, we assume that the bubbles are macroscopic objects
such that the bubble wall can be approximated to be planar. Let the wall
move into the z-direction, and let us assume that it sets up a flow which
settles down to a steady state. In the frame of the wall, the fluid moves with
speed uµ(z), and the field profile is „ = „(z). Let us also assume that the
fluid speed changes little as it moves across the wall, so that

uµ ƒ “
w

(1, 0, 0, ≠v
w

) . (7.3)
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Symmetric phase

Higgs phase Higgs phase Higgs phase

Figure 10: Due to thermal fluctuations, bubbles where the Higgs is in the
stable ground state occur that expand into regions where the Higgs is still
in the metastable ground state. At early times, the bubbles do not overlap,
but later they combine until the entire fluid is in the stable ground state.

We can then rewrite Eq. (7.2) as

≠ ˆ2

z „ ≠ V Õ
T („) = ≠÷T („)“

w

v
w

ˆz„ . (7.4)

Multiplying both sides of the above equation with ˆz„ and integrating over
z, we obtain

⁄
dz

51
2ˆz(ˆz„)2 ≠ dVT

dz

6
= ≠

⁄
dz ÷T („)“

w

v
w

(ˆz„)2 . (7.5)

After performing the integral on the left hand side of the equation we find

�VT ƒ “
w

v
w

⁄
dz ÷T („, “

w

) (ˆz„)2 , (7.6)

where �VT = VT (z = +Œ) ≠ VT (z = ≠Œ) is the pressure di�erence across
the wall. To obtain the wall speed, one needs to solve this equation for v

w

.
In practice, it is di�cult to obtain a solution. In some cases a constant-v

w

solution may not even exist, in which case the bubble wall must continue
to accelerate. The case where v

w

æ 1 is called runaway solution; the wall
speed becomes ultra-relativistic [52,53].

However, provided the product “
w

÷T does not decrease with “
w

, a constant-
v

w

solution always exists. This seems to be the generic expectation for a
phase transition in a gauge theory like the Standard Model [53,54].

In the following discussion, we assume that the transition completes in
much less than a Hubble time, so that we can neglect the expansion of the
universe.

In terms of v
w

the radius of a bubble at time t that nucleated at time tÕ

is given by R = v
w

(t ≠ tÕ). Consequently, the volume V of this bubble is

V(t, tÕ) = 4fi

3 v3

w

(t ≠ tÕ)3 . (7.7)
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In particular, this allows us to determine the fractional volume of the uni-
verse in the broken phase occupied by all bubbles. Ignoring overlaps and
collisions between bubbles, the fractional volume is given by the volume of
a bubble nucleated at time tÕ multiplied by the number density of nucleated
bubbles that nucleated during (tÕ, tÕ + dtÕ), see Fig. 10. The latter is given
by dn(tÕ) = �(tÕ)dtÕ/V, such that the fractional volume in the metastable
phase is

h(t) = 1 ≠
⁄ t

tc

4fi

3 v3

w

(t ≠ tÕ)3

�(tÕ)
V dtÕ (7.8)

when we do not take into account overlaps. When we include overlaps, the
fractional volume in the metastable phase is given by [46,55,56]

h(t) = exp
C

≠
⁄ t

tc
dtÕ 4fi

3 v3

w

(t ≠ tÕ)3

�(tÕ)
V

D

. (7.9)

At early times, when the exponent is small, we recover the linear law as in
Eq. (7.8). At late times, h(t) tends rapidly to zero as expected.

Next, we consider the behaviour of the bubble nucleation rate per unit
volume �(tÕ)/V, which governs the progress of the phase transition. It is
most sensitive to the dimensionless combination S = E

c

/T , which decreases
rapidly from infinity for T < T

c

. Hence �(tÕ)/V grows very rapidly from
zero.

As a first estimate, let tH be the time where one bubble is nucleated per
Hubble volume per Hubble time. This means that at tH the nucleation rate
per volume V is given by

�(tH)
V = H4, (7.10)

where H is the Hubble rate. The time tH can be thought of as the moment
when the phase transition starts.

As a rough estimate, suppose there is a phase transition with T
c

=
100 GeV. We estimated previously that �(tÕ)/V ≥ T 4

c

exp(≠Ec/T
c

), where
we have dropped all dimensionless constants. The Friedmann equation tells
us that the Hubble rate is H(T

c

)2 ≥ GT 4. Hence the first bubble nucleates
when S has dropped to

SH ≥ log
1
G2T 4

c

2
≥ 100 . (7.11)

The logarithm means that the value of S needed for the first bubble to
nucleate in a Hubble volume is insensitive to all the constants we have
dropped.

As the universe continues to cool, the first bubbles grow, and new bubbles
appear, which convert the old phase into the new one. Let us consider a later
reference time, which we denote by tf , such that h(tf ) = 1/e is satisfied.
That means that when t = tf roughly 64% of the universe is converted to
the Higgs phase.
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We now define the transition rate parameter — as

— © d
dt

log
3�(t)

V
4 -----

t=tf

. (7.12)

where the derivative is to be evaluated at tf . Around this time, we can now
write Eq. (6.41) after a Taylor expansion of log � as

�
V = �f

V e—(t≠tf ) (7.13)

with �f © �(tf ). We are now able to perform a saddle-point approximation
to the integral Eq. (7.9), as

≠ log h(t) ƒ
⁄ t

dtÕ 4fi

3 v3

w

(t ≠ tÕ)3

�f

V e—(tÕ≠tf ) (7.14)

= 4fi

3 v3

w

�f

V
3!
—4

e—(t≠tf ) . (7.15)

Using the definition of tf , we find that

8fi
v3

w

—4

�f

V = 1 , (7.16)

which can be used to compute tf , once the form of �(t) is known. Thus we
find that h(t) takes a very simple form, namely

h(t) = exp
Ë

≠ e—(t≠tf )

È
. (7.17)

In Fig. (11) we show the fractional volume that is in the metastable ground
state, i.e. h(t), as a function of time t. We also plot the derivative of
that quantity, which quantifies the rate at which the physical volume of the
metastable ground state is changing. It turns out that the reference time
tf admits an alternative interpretation. Namely, the rate ḣ at which the
universe is converted from the old to the new ground state has a maximum
at time tf . This can be seen from the second time derivative of the fractional
volume,

d
dt

3dh(t)
dt

4
= —2

1
1 ≠ e—(t≠tf )

2
exp

1
≠e—(t≠tf ) + —(t ≠ tf )

2
. (7.18)

Hence, for t = tf the above expression vanishes due to the first term in
the brackets. This is also demonstrated in Fig. 11. The time5 tH that we

5
In order to find a relation between tH and tf , we note that Eq. (7.13) reads �H =

�f exp[—(tH ≠ tf )]. Using Eqs. (7.10) and (7.16), and solving for tH yields

tH = tf + —≠1
ln

3
8fiv3

w
H4

—4

4
.

The logarithm evaluates to negative values (much) larger than unity. Therefore, the time

between tH and tf is some orders of magnitude larger than —≠1
.
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Figure 11: The time-evolution of the fractional volume in the metastable
ground state, h, (solid blue) and its derivative ḣ normalized to the maximum
value (dashed red) is shown. At the time tf the change of the fractional
volume is at its maximum, i.e. the phase transition is very fast in this
moment. Shortly after, essentially the entire universe is in the new ground
state. The time tH is very close before tf . Their relation depends on the
values of v

w

, — and H. To draw the plot, we use the realistic values of
TH = 105.2 GeV, — = 8950H and v

w

= 0.9. Then the phase transition
has completed at a temperature Tf = 104.9 GeV. This choice implies that
tf ≠ tH ≥ 10≠13 s.

introduced first, is always smaller than tf , i.e. tH < tf . At the time tH

basically the entire universe is still in the metastable phase as can be seen
in the plot. Instead, the phase transition completes very rapidly around
tf within a duration set by —≠1. To draw the plot in Fig. 11 we use the
realistic values of TH = 105.2 GeV and Tf = 104.9 GeV for the temperatures
and — = 8950H, and v

w

= 0.9. This implies that tH = 2.66 · 10≠10 s and
tf = 2.72 · 10≠10 s such that tf ≠ tH ≥ 10≠13 s. Shortly after the nucleation
rate ḣ is at its maximum at tf , essentially the entire universe is in the stable
ground state.

The bubbles can nucleate only in the metastable phase. Hence, using
Eq. (7.13) we can deduce that the bubble number density n

bubble

(t) in the
universe is given by

n
bubble

(t) =
⁄ t

dtÕ �(tÕ)
V h(tÕ) = �f

V
⁄ t

dtÕ e—(tÕ≠tf )h(tÕ) (7.19)

= ≠�f

V
1
—

⁄ t

dtÕ dh(tÕ)
dtÕ = �f

V
1
—

(1 ≠ h(t)) , (7.20)

where we used Eq. (7.17) in the second line. At late times when t æ Œ and

41



−

+w−w

v+

vw

v

−

−v
~

+v
~

+w

v  = 0w

w

Figure 12: Fluid velocities right ahead of and behind the wall in the case of a
supersonic deflagration. The velocities just ahead the wall are denoted by +
while the velocities just behind the wall are denoted by a ≠ subscript. The
left panel shows the velocities in the universe rest frame in which the wall
moves with the speed v

w

. The right panel shows the velocities in the wall
rest frame where v

w

= 0 by definition and we indicate the fluid velocities
in this frame by a tilde, ṽ±. The enthalpy is denoted by w. Figures taken
from Ref. [56].

upon using Eq. (7.16), this expression simplifies to

n
bubble

(Œ) = �f

V
1
—

= —3

8fiv3

w

© 1
R3

ú
, (7.21)

which is the final bubble density, and defines the mean bubble centre sepa-
ration Rú = (n

bubble

(Œ))≠1/3. As we will see later, the mean bubble centre
separation is linked to the position of the peak of the gravitational wave
power spectrum produced by the first-order phase transition.

Note that for deflagrations, one should really take into account the heat-
ing of the fluid in front of the bubble wall, which will reduced the net
nucleation rate. In the extreme case of a slow wall and large latent heat,
nucleation can stop altogether, and the interior of the bubbles can reheat to
the critical temperature. In this case, the universe is in a mixed phase, and
the transition takes about a Hubble time to complete [57].

7.2 Relativistic combustion
Now we will assume that the wall velocity v

w

is known, and discuss solutions
to the hydrodynamic equations following Refs. [56,58]. Let uµ be again the
4-velocity of the fluid and we introduce the enthalpy w = e + p of the fluid.
First, we work in the wall rest frame where v

w

= 0, see Fig. 12, and introduce
a subscript ± to distinguish between quantities evaluated just ahead of the
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wall (+) and just behind the wall (≠). From the conservation of energy-
momentum at the wall it follows that

w≠“̃2

≠ṽ≠ = w
+

“̃2

+

ṽ
+

, w≠“̃2

≠ṽ2

≠ + p≠ = w
+

“̃2

+

ṽ2

+

+ p
+

, (7.22)

where ṽ± are the fluid velocities in the rest frame of the wall and “̃± =
(1 ≠ ṽ2

±)≠1/2. The enthalpy density w and pressure p are scalars, and so
they are the same in the wall frame and the universe rest frame. These are
the bubble wall junction conditions. They can be rearranged to give

ṽ
+

ṽ≠ = p
+

≠ p≠
e

+

≠ e≠
,

ṽ
+

ṽ≠
= e≠ + p

+

e
+

+ p≠
(7.23)

For convenience, let us introduce the trace anomaly

◊ = 1
4(e ≠ 3p) , (7.24)

which is proportional to the trace of the energy-momentum tensor. The
trace anomaly should vanish for an ultra-relativistic equation of state. We
denote the di�erence of the trace anomaly just ahead and behind the wall
by �◊ = ◊

+

≠ ◊≠. From here, one defines the transition strength –
+

and
the enthalpy ratio r as

–
+

= 4�◊

3w
+

, r = w
+

w≠
(7.25)

In terms of these quantities, Eq. (7.23) can be rearranged as

ṽ
+

ṽ≠ = 1 ≠ (1 ≠ 3–
+

)r
3 ≠ 3(1 + –

+

)r ,
ṽ

+

ṽ≠
= 3 + (1 ≠ 3–

+

)r
1 + 3(1 + –

+

)r (7.26)

These equations can be solved for ṽ
+

in terms of ṽ≠ (or vice versa). The
result is

ṽ
+

= 1
1 + –

+

Q

a ṽ≠
2 + 1

6ṽ≠
±

Û3
ṽ≠
2 ≠ 1

6ṽ≠

4
2

+ 2
3–

+

+ –2

+

R

b (7.27)

which depends only on ṽ≠ and –
+

but not on r. As we explain in more detail
later, the upper sign is to be taken for ṽ≠ > 1/

Ô
3, while the lower sign is to

be taken if ṽ≠ < 1/
Ô

3 in order to ensure the solution to be physical. This
implies that both velocities are either subsonic (deflagrations) or supersonic
(detonations). Further, ṽ

+

must be positive because the fluid must flow
through the wall from the outside to the inside of the bubble. This requires
–

+

< 1/3. In Fig. 13, ṽ
+

as a function of ṽ≠ is shown for di�erent values of
–

+

.
So far, from the conservation of energy-momentum, we obtained a rela-

tion between the fluid velocities ahead and behind the wall which also allows
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Figure 13: The fluid velocity just ahead the wall ṽ
+

as a function of the fluid
velocity just behind the wall ṽ≠ in the rest frame of the wall for di�erent
transitions strength parameters –

+

. For physical solutions to exist, both
velocities have to be subsonic (deflagrations) or supersonic (detonations) as
indicated by the black lines. Non-physical solutions are indicated by the
gray lines. The fluid velocity has an extremum at ṽ

+

= c
s

with the speed of
sound set to c

s

= 1/
Ô

3 in this plot. The velocity profiles at the blue dots
are presented in Fig. 15. Figure taken from Ref. [56]

one to compute the enthalpies w. We can obtain two more independent
equations by projecting the conservation equation onto the fluid 4-velocity
uµ = “(≠1, v̨)µ and the space-time orthonormal vector ūµ = “(≠v, v̨/v)µ.
These vectors satisfy ūµūµ = ≠1 and uµūµ = 0. Projecting the conservation
equation yields

0 = uµˆ‹T µ‹ = ≠ˆµ(wuµ) + uµˆµp , (7.28)
0 = ūµˆ‹T µ‹ = wū‹uµˆµu‹ + ūµˆµp , (7.29)

which are referred to as continuity equations.
In order to simplify these equations, we assume that the bubbles are

spherically symmetric. The radius of the bubble is given by R = v
w

t where
we set the nucleation time to tÕ = 0. Since there is no length scale involved
in the problem, the di�erential equations should exhibit similarity solutions
that depend on the dimensionless coordinate › = r/t only. We can write the
fluid velocity as v̨ = v(r, t)r̨ = v(›)r̨, where r̨ is a unit radial vector. The
continuity equations can be rearranged to

dv

d›
= 2v(1 ≠ v2)

›(1 ≠ ›v)

A
µ2

c2

s

≠ 1
B≠1

, (7.30)

dw

d›
= w

3
1 + 1

c2

s

4
“2µ

dv

d›
. (7.31)
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Here, c2

s

= dp/de is the speed of sound and

µ = › ≠ v

1 ≠ ›v
(7.32)

is the fluid velocity at › in a frame that is moving outward at speed ›.
Solving these equations requires numerical techniques.

In general, the speed of sound c
s

depends on the temperature which
changes across the wall. The situation simplifies if one assumes an ultra-
relativistic equation-of-state in both phases such that c2

s

= 1/3 everywhere.
An example of such an equation of state is the “bag” model, where

p
s

= a
s

T 4 ≠ V
s

, p
b

= a
b

T 4, (7.33)

where a
s

, a
b

and V
s

are positive constants with a
s

> a
b

. The subscripts
s and b refer to the symmetric (i.e., where „ = 0) and broken (i.e., where
„ = „

b

) phases respectively. In this case, the fluid speed equation can be
integrated separately. More realistic equations of state have also recently
been considered in Ref. [59].

Solutions are obtained by integrating the continuity equations starting
at the position of the wall, ›

w

= v
w

, while the wall is assumed to be infinites-
imally thin. The boundary conditions at the wall read v æ v± = µ(›

w

, ṽ±)
as › æ ›±

w

where ›±
w

= v
w

±” and ” infinitesimally small. On the other hand,
the fluid velocity must vanish, v = 0, at the center of the bubble › = 0 due
to spherical symmetry and at › = 1 due to causality because we assume the
fluid to be undisturbed until a signal from the wall arrives.

The solutions can be classified by how the boundary conditions are sat-
isfied. Specifically, there are only two possibilities to smoothly approach
v = 0. Either one starts with v = 0 or one starts in the region › > c

s

and
µ(›, v) > c

s

implying that dv/d› > 0 and then integrating backwards in
›. The only other way to meet the boundary conditions is by a discontinu-
ity, i.e., by a shock. Hence, we can identify the following three classes of
solutions:

• Subsonic deflagrations: In a subsonic deflagration the wall moves at a
subsonic speed, v

w

< 1/
Ô

3, and the fluid is at rest everywhere inside
the bubble, v≠ = 0. In the wall rest frame we thus find ṽ≠ = v

w

.
The fluid velocity just ahead the wall in the universe frame is v

+

=
µ(ṽ

+

(–
+

, v
w

), ›
w

). In order to ensure v
+

> 0 one has to choose the
negative sign in Eq. (7.27) as anticipated. Further one finds that ahead
of the wall the fluid velocity decreases until a shock occurs outside
which the fluid is at rest. This situation is depicted schematically in
the left panel of Fig. 14. The velocity profile is shown in the upper
left panel of Fig. 15.

• Detonations: A detonation is characterized by a fluid exit speed in the
wall frame ṽ≠ > 1/

Ô
3, with the fluid being at rest everywhere outside
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the bubble, v
+

= 0. In the wall rest frame we thus have ṽ
+

= v
w

. The
condition on ṽ≠ means there is a minimum for ṽ

+

called the Chapman-
Jouguet speed v

CJ

. It is given by

v
CJ

(–
+

) = 1Ô
3

Q

a
1 +

Ò
–

+

+ 3–2

+

1 + –
+

R

b . (7.34)

In order to ensure that ṽ≠(–
+

, v
w

) > c
s

and hence dv/d› > 0 the
positive sign has to be taken in Eq. (7.27) as mentioned before. As
result, the fluid velocity smoothly decreases as one moves further inside
the bubble until it is at rest at › = c

s

. The schematic visualization
can be found in the right panel of Fig. 14 while the velocity profile is
shown in the upper right panel of Fig. 15.

• Supersonic deflagrations (hybrids): There is a hybrid between the two
aforementioned classes of solutions with the wall moving at supersonic
speed, v

w

> 1/
Ô

3, which occurs for ṽ≠ = 1/
Ô

3. A physical solution
for ṽ

+

(–
+

, 1/
Ô

3) exists provided that it is larger than the wall speed
to ensure a positive v

+

. In front of the wall, the fluid behaves in
exactly the same manner as for a subsonic deflagration. The hybrid is
schematically shown in the middle panel of Fig. 14 while the velocity
profile is shown in the upper middle panel of Fig. 15.

In the lower panels of Fig. 15 we present the enthalpy profiles for all three
classes. Note that the solutions are found once –

+

is given, which requires
knowing the energy density and pressure just in front of the wall. However,
one normally specifies these quantities far in front of the wall, where the
undisturbed plasma is at the nucleation temperature. For detonations, this
presents no problem, but for deflagrations shooting method is needed to
find the correct value of –

+

which matches to the asymptotic energy and
pressure..

For more details on these solutions we refer to Refs. [56, 58–60].

7.3 Energy redistribution
Roughly speaking, the expanding bubble converts potential energy of the
scalar field into kinetic energy and heat. The kinetic energy fraction of a
single bubble is a reasonable estimate of the kinetic energy fraction of the
entire fluid flow [56, 61]. The kinetic energy fraction of a single bubble can
then be used to estimate the power of the gravitational wave signal. Hence,
making the above statement quantitatively precise is crucial.

To remind ourselves, the spatial components of fluid energy-momentum
tensor are given by

T i
j = w“2vivj + p”i

j (7.35)
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subsonic deflagration
vw � cs

supersonic deflagration
cs < vw < cJ

detonation
cJ � vw
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Figure 14: Sketch of the three di�erent cases of relativistic combustion. A
subsonic deflagration (left) occurs detonation when the fluid is at rest inside
the bubble and the wall moves at subsonic speed. The opposite case is
a detonation (right) where the fluid outside the bubble is at rest and the
wall moves at supersonic speed. In the hybrid case (mid) the wall speed is
supersonic and the fluid is moving both ahead and behind the wall. Credit:
D. Cutting.
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Figure 15: The fluid velocity v and the enthalphy w as a functions of the
dimensionless coordinate › = r/t for the three classes of solutions is depicted.
The wall is located at ›

w

. The left panel shows the velocity profile for
a subsonic deflagration, where the fluid velocity smoothly decreases from
the wall until it reaches a shock ahead of which the fluid is at rest. The
middle panel shows supersonic deflagration (hybrid). The right panel shows
a detonation, where the velocity smoothly increases until the location of
the wall, while the fluid is at rest outside the bubble. The three cases are
represented by the blue dots in Fig. 13. Figures taken from Ref. [56].
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with v̨ the fluid velocity, w = e + p the enthalpy, e the total energy and p
the pressure of the fluid. The kinetic energy of the fluid can be obtained as
the trace of the energy-momentum tensor minus the trace in the rest frame
of the fluid, and integrating over space. The kinetic energy fraction is thus
given by

K = 1
V ē

⁄
d3x w“2v2 . (7.36)

where V is the averaging volume, and ē is the mean energy density.
The kinetic energy fraction of a single bubble describes how much of the

initially available energy contained in the bubble is converted into kinetic
energy, which can

K
1

= 3
›3

w

e
s

⁄
d› ›2w“2v2 , (7.37)

where e
s

is the mean energy density in the symmetric phase. Conservation
of energy, and the rapidity of the transition compared with the Hubble
rate, implies that the mean energy density in the broken phase e

b

= e
s

.
Our estimate of the kinetic energy fraction in the broken phase is therefore
K = K

1

.
It is also useful to define the enthalpy-weighted root-mean-square 4-

velocity of the fluid Ū
f

, through

Ū2

f

= 3
›3

w

w̄

⁄
d››2w“2v2 , (7.38)

which can be related to the kinetic energy fraction via

K = �Ū2

f

, (7.39)

where � = w̄/ē is the adiabatic index of the fluid in the broken phase.
In the previous section we introduced the transition strength parameter

–
+

, which is defined in terms the enthalpy and the trace anomalies just
ahead and behind the wall. These quantities are perturbative by definition
and thus –

+

is di�cult to compute in practice. Instead, it would be nice
to have a quantity that measures the transition strength in terms of back-
ground variables only. As before, we denote variables that correspond to
the symmetric phase (i.e., where „ = 0) with a subscript s while variables
that correspond the broken phase (i.e., where „ = „

b

) with a subscript b.
In terms of these background variables, one defines the transition strength
parameter as

–
n

= 4
3

�◊

w
s

-----
T =Tn

, (7.40)

where now �◊ = ◊
s

≠ ◊
b

. The two definitions of the transition strength
coincide only in the case of detonations within the bag model. The transition
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strength parameter is defined at the nucleation temperature T
n

. Note that
in the literature there exist various definitions of the transition strength
parameter – that are related in nontrivial and model-dependent ways.

It is convenient to define the e�ciency factor Ÿ that quantifies how much
of the available energy is converted into kinetic energy. The available energy
is determined by the trace anomaly ◊ introduced in Eq. (7.24). It is related
to the potential energy of the scalar field VT („) as

◊ = VT („) ≠ 1
4T

ˆVT

ˆT
. (7.41)

This implies that not all of the potential energy can be converted into kinetic
energy and heat. Therefore, one defines the e�ciency factor as6

Ÿ = 3
›3

w

�◊

⁄
d› ›2w“2v2 , (7.42)

where �◊ is again the di�erence of the trace anomaly between the symmetric
and broken phase. Consequently, e�ciency factor, transition strength and
kinetic energy fraction are related as

K = Ÿ–
n

1 + –
n

+ ”
n

, (7.43)

where ”
n

= 4◊
b

/(3w
s

). The e�ciency factor can be computed numerically
as a function of –

n

and ›
w

as in Ref. [58]. To give an explicit example, in
the case of detonations and using the bag model, where ◊

b

= 0, they find
the approximate relation

Ÿ ƒ –
n

0.73 + 0.083Ô
–

n

+ –
n

(7.44)

for ›
w

æ 1. For –
n

< 1, one can generally take Ÿ ≥ –
n

, except for low
wall speeds, and wall speeds near the Chapman-Jouguet speed, where the
parametric dependence is closer to Ÿ ≥ Ô

–
n

[58].

7.4 Sound waves
Radial perturbations of the radial velocity field are longitudinal in character,
and so we can think of the bubble expansion as an explosion, generating
a compression wave which, once the bubbles have disappeared, propagate
through the fluid as sound waves. We conclude this section by studying
sound waves in a relativistic fluid.

Let us work in the plane wall approximation and let the z-direction be
orthogonal to the wall. Then, the wall moves only in the z-direction and

6
In the bag model, it is assumed that ◊b = 0 such that �◊ coincides with the so-called

bag constant ‘.
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also the fluid is perturbed in the z-direction only. Let us write the perturbed
energy density as e = ē + ”e and the perturbed pressure as p = p̄ + ”p with
{”e, ”p, vz} π 1 with vz the fluid velocity perturbation. The components of
the fluid energy-momentum tensor simplify to

T tt = w“2 ≠ p , T tz = w“2vz , T zz = w“2(vz)2 + p , (7.45)

while the other components vanish identically. From the t-component of the
energy-momentum conservation equation we find

ˆt”e + w̄ˆzvz = 0 (7.46)

and from the z-component

w̄ˆtv
z + ˆz”p = 0 . (7.47)

Note that both ”e and ”p depend on temperature as ”p = ( ˆp
ˆT / ˆe

ˆT )”e = c2

s

”e.
Therefore, the t- and z-components of the conservation equation can be
combined to

(ˆ2

t ≠ c2

s

ˆ2

z )vz = 0 , (ˆ2

t ≠ c2

s

ˆ2

z )”p = 0 . (7.48)

These equations describe sound waves that travel at the speed c
s

through
the fluid. Sound waves are a collective mode of the fluid velocity v and
temperature T . They are longitudinal as the fluid velocity varies along the
direction of travel.

8 Gravitational Waves
Gravitational waves were predicted by Einstein in 1916 [62, 63], although
it took about forty years for them to be understood as physical, rather
than coordinate artefacts (see e.g. [64]). According to the general theory of
relativity, they are perturbations of space-time that travel at the speed of
light. They are generated by an accelerating asymmetric mass distribution;
more precisely, a distribution of energy-momentum with a time-dependent
quadrupole moment. The strongest astrophysical sources of gravitational
waves are compact binary systems: combinations of neutron stars, black
holes or white dwarfs. Besides these astrophysical sources there are also
cosmological sources, in particular the early Universe (see e.g. [65]). In this
section we give a rough overview about the production of gravitational waves
by first-order phase transitions. For a detailed discussion we refer to the
review paper by the LISA working group [12]. Good textbooks are [66, 67].
Fig. 16 gives an overview over the spectrum of gravitational waves and
possible sources.
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Figure 16: The spectrum of gravitational waves with possible sources and
detectors. The gravitational wave spectrum from first-order phase transi-
tions in the early universe are expected to peak in the sensitivity range of
LISA. Credit: NASA.

8.1 Introduction
Gravitational waves yield expansion of spacetime in one direction and con-
traction in the other, in the plane perpendicular to the propagation di-
rection. Modern detection methods are mostly based on measuring the
variation of the distance between two test masses by interferometry, as
sketched in Fig. 17. The first direct detection was performed in 2015 by
the LIGO/VIRGO science collaborations [10].

The results of the first measurement [10] showed that two black holes
with masses M

1

= 36 ± 6M§ and M
2

= 29 ± 4M§ produced the signal.
According to numerical simulations of such an event, an energy equivalent
of M

gw

ƒ 3M§ must have been radiated away as gravitational waves.
After this first direct detection, in 2017 gravitational waves of the merger

of a binary neutron star system were observed [68, 69]. This signal was
accompanied by the detection of a gamma ray burst (GRB) which allows to
put constraints on the travel speed of gravitational waves c

gw

. It was found
that gravitational waves travel at speed of light to a large precision,

|c2

gw

≠ 1| . 10≠5 . (8.1)

This puts tight constraints on modifications to general relativity [70, 71].
A total of 11 secure detections are reported from the first two observing
runs (O1 and O2), with 56 further candidates for further analysis from O3,
which ended in March 2019. Further exciting results are expected from
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Name Location Arm length
GEO Germany 0.6km
(a)LIGO USA (2) 4km
(a)VIRGO Italy 3km
KAGRA Japan 4km
LIGO-Indiaú India 4km

Figure 17: Sketch of the gravita-
tional wave detector LIGO.

Table 3: Current and planned (*)
ground-based gravitational wave de-
tectors using laser interferometry.

Event Time [s] Temperature [GeV] Frequency [Hz]
QCD phase transition 10≠3 0.1 10≠8

EW phase transition 10≠11 100 10≠5

? 10≠25 109 100
End of inflation Ø 10≠36 Æ 1016 Ø 108

Table 4: Overview about the minimal frequencies of gravitational waves
from di�erent potential sources in the early universe.

the expanding network of detectors. In Tab. 3 we summarize existing and
planned ground-based interferometric gravitational wave detectors.

We are interested in gravitational waves that are produced in the early
Universe. As a rough estimate of the frequency, take an event at time
t that produces gravitational waves. The minimal frequency is given by
f = t≠1 ≥ H with H = ȧ/a the Hubble rate of that time and a the scale
factor. Due to cosmic expansion, the minimal frequency that we can observe
today is redshifted as f

0

= a(t)/a(t
0

)f , where t
0

is the time now. In Tab. 4
we summarize the minimal frequencies from di�erent events in the early
Universe.

Before going on, let us be a bit more quantitative in our outline of
gravitational waves. We start by considering perturbations about Minkowski
background ÷µ‹ as

gµ‹ = ÷µ‹ + hµ‹ , (8.2)

where hµ‹ π 1 is the metric perturbation. A gravitational wave hij(t, x̨)
is a propagating mode of the transverse (ˆihij = 0) and traceless (hii = 0)
part of the metric perturbation, satisfying the equation

ḧij ≠ Ò2hij = 16fiGT TT

ij , (8.3)

where T TT

ij is the transverse and traceless part of the energy-momentum
tensor, and G is Newton’s constant. The constraints on hij reduce the
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number of physical propagating modes to two, called ‘plus’ (+) and ‘cross’
(◊) polarisations.

Provided their amplitude is small, gravitational waves can themselves be
a source of energy-momentum, described by the tensor [67]

T gw

µ‹ = 1
32fiG

Èˆµhijˆ‹hijÍ . (8.4)

We aim at computing the power spectrum of the energy density of gravita-
tional waves. From the tt-component of the energy-momentum tensor, we
find the energy density,

fl
gw

= 1
32fiG

Èḣ2

ijÍ . (8.5)

After a spatial Fourier transform of the metric, one can consider the con-
tribution of a frequency interval df to the total energy density, where the
frequency of the gravitational wave f is related to the wavenumber of the
Fourier transform k by f = k/2fi. More often, one studies the energy density
per logarithmic frequency interval d ln f , which can be written

dfl
gw

d ln f
= fi

4G
f3Sh(f), (8.6)

which can be treated as a definition of the one-sided strain power spectral
density Sh(f), defined for positive frequencies, f > 0. From here, one can
indicate the amplitude of a gravitational wave spectrum at frequency f
by the root power spectral density h(f) =


Sh(f), which has dimensionÔ

Hz≠1, or the (dimensionless) characteristic strain hc(f) =


fSh(f).
A convenient measure in cosmology is the fractional density in gravita-

tional waves
�

gw

= fl
gw

fl
tot

(8.7)

where fl
tot

is the total energy density of the universe, related to the Hubble
rate H by the Friedmann equation,

H2 = 8fiGfl
tot

3 . (8.8)

With these quantities, one can define the fractional gravitational wave en-
ergy density per logarithmic frequency,

d�
gw

d ln f
= 1

fl
tot

dfl
gw

d ln f
= 2fi2

3H2

f3Sh(f) . (8.9)

often referred to as the gravitational wave (power) spectrum. The charac-
teristic strain and the fractional density in gravitational waves are related
through

hc(f) = H
0

f

Û
3

2fi2

d�
gw

d ln f
. (8.10)
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Going from Minkowski space to the Friedmann-Lemaître-Robertson-Walker
metric describing an expanding universe, one finds that the gravitational
waves behave just like electromagnetic radiation: the frequency is redshifted,
and the energy density decreases as the fourth power of the scale factor [66].

The metric perturbations hij cause changes in lengths in directions per-
pendicular to the propagation direction of the wave, which can be measured
by interferometry. Let li and mi be components of unit vectors along the
arms of an interferometer located at x̨. The strain, or relative change in
length, in the detector, in the limit that the arm length is much less than
the wavelength of the gravitational wave, is

h(t) = 1
2hij(t, x̨)(lilj ≠ mimj) , (8.11)

whose Fourier transform is

h̃(f) = 1
2

⁄ Œ

≠Œ
dt e≠2fiifthij(lilj ≠ mimj) . (8.12)

We define the one-sided strain power spectral density of the signal in the
interferometer SI

h(f) as

Èh̃(f)h̃ú(f Õ)Í = 1
2SI

h(f)”(f ≠ f Õ) . (8.13)

This is not the same quantity as the strain power spectral density in a
gravitational wave. In general they are related by a response function RI(f),

SI
h(f) = RI(f)Sh(f) . (8.14)

For an interferometer with perpendicular arms, whose arm length is much
less than the wavelength so that fL æ 0, RI(f) æ 1/5 [72].

For gravitational waves sourced by phase transitions, the relevant mis-
sion is Laser Interferometer Space Antenna (LISA). LISA is a space-based
interferometric gravitational wave detector that works with three satellites
orbiting the Earth, see Fig. 18. These are equipped with lasers and photode-
tectors such as to detect small changes in the separation of the satellites by
measuring the time delays in signals sent between them, through the tech-
nique of time delay interferometry [73–75]. The interferometer arms have a
length of 2.5 Gm such that LISA is most sensitive at frequencies in the range
10≠3 – 10≠2 Hz. The target sources are binary white dwarfs, merging su-
permassive black holes at the centres of distant galaxies, and early-universe
physics at the TeV-scale such as first-order phase transitions. The planned
launch year is 2034. In Fig. 19 we show the projected sensitivity, the ampli-
tudes of expected astrophysical sources, and the signal from a phase transi-
tion, which we discuss further below. For details on LISA and its relevance
for probing fundamental physics we recommend Refs. [9, 12,76].
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Figure 18: Visualization of the orbit of LISA. LISA is a space-based laser
interferometer designed to measure gravitational waves with frequencies of
about 10≠2 Hz. The interferometer consists of three satellites that are or-
biting the Earth in a triangle. Figure taken from Ref. [9].

8.2 GWs from first-order phase transitions
In this section we discuss the expected gravitational waves signal produced
by a first-order phase transition. The details and derivation are quite in-
volved and require numerical techniques which is beyond the scope of this
course. Instead, we explain the key quantities that can be inferred from
the gravitational wave power spectrum and their relation to the results of
the previous sections. For a review we refer to Ref. [12] that discuss the
predicted power spectra for various BSMs.

The general picture is the following. Initially, when temperatures are
high, T ∫ T

c

, the thermal Higgs potential (free energy) has a minimum
only at „ = 0. We recall that minima of the free energy correspond to
equilibrium states. Therefore, the Higgs is everywhere in the symmetric
phase with thermal fluctuations around the minimum. As the temperature
drops, the thermal Higgs potential develops a second minimum and the
minima are separated by a potential barrier. At a critical temperature
T = T

c

, both minima are degenerate. Below the critical temperature, it
is thermodynamically preferred for the Higgs to occupy the new minimum.
However, it has to cross the potential barrier. This it can do either by
quantum tunneling [40, 77] or by thermal fluctuations [41]. Here, we will
study the thermal case.

Thermal fluctuations can drive the Higgs into the symmetry-breaking
phase in limited regions of space. The most probable shape of the regions is
a spherical bubble, inside which the Higgs is already in the new phase, while
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Figure 19: The expected sensitivity of LISA and possible sources of grav-
itational waves. The phase transition signal is predicted for a transition
with nucleation temperature T

n

= 500 GeV, strength parameter – = 0.3,
transition rate to Hubble rate ratio —/H

n

= 100, and wall speed v
w

= 0.4.
Background figure taken from [9].

outside the bubbles the Higgs is still in the metastable phase. Large enough
bubbles expand into the fluid such that the rest of the universe enters the
symmetry-broken phase.

We have already discussed the rate at which bubbles appear, and how
they expand, in sections 6 and 7. Once the bubbles start colliding, we must
rely on a mixture of numerical simulations (see e.g. Ref. [61]) and modelling
to describe the motion of the fluid and the production of gravitational waves.

We recall that near equilibrium, the system can be described as an ul-
trarelativistic fluid coupled to a Higgs field, according to equations (5.26)
and (5.24). For concreteness, we state the equations of motion as used in
Ref. [61] ready for numerical simulations. As before, the fluid four-velocity
is given by uµ = “(≠1, v̨)µ. The Higgs field satisfies the relativistic equation

≠ „̈ + Ò2„ ≠ V Õ = ÷“(„̇ + viˆi„) , (8.15)

with ÷ the Higgs-fluid coupling and V Õ = ˆ„V , c.f. Eq. (7.2). Further the
relativistic fluid equations read

Ė + ˆi(Evi) + p(“̇ + ˆi(“vi)) ≠ V Õ“(„̇ + viˆi„) = ÷2“2(„̇ + viˆi„)2

Żi + ˆj(Ziv
j) + ˆip + V Õˆi„ = ≠÷“(„̇ + vjˆj„)ˆi„ ,

which follow from Eq. (5.24) together with Eq. (5.25). Here, E = “e is the
fluid energy density and Zi = “(e + p)ui the fluid momentum density with
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ui = “vi. The uncertainty in the precise form of ÷ turns out not to matter
much: di�erent choices a�ect only the precise profile of the domain wall as
it moves through the fluid, and the hydrodynamics ensures that the fluid
flows around expanding bubbles are the same for a given wall speed v

w

and
phase transition strength –

n

.
Finally, the metric perturbation is described by Eq. (8.3). In practice,

one evolves an unconstrained symmetric tensor uij with the tensor source

�ij = (e + p)“2vivj + ˆi„ˆj„, (8.16)

and projects out the transverse traceless part hij(t, k̨) from the Fourier trans-
form ukl(t, k̨) with the appropriate projector. In the bubbles of a thermal
transition, the scalar field part of the source is confined to a microscopically
thin wall, while the fluid source is distributed over a significant volume. The
ratio of the energies can be estimated as ¸

w

/R, where ¸
w

is the wall thick-
ness, and R is the bubble radius. The wall thickness ¸

w

is very roughly the
inverse temperature, and given that the total energy density is e ≥ T 4, the
ratio can be estimated as

¸
w

R
≥

Ô
GT

HR
,

where we have used H ≥ Ô
GT 2 as a consequence of Friedmann’s equation.

At electroweak temperatures T ≥ 100 GeV, we have
Ô

GT ≥ 10≠17, while
bubbles typically grow to a few orders of magnitude of the Hubble length.
Hence, we find that ¸

w

/R π 1 and the energy-momentum of the scalar field
is generally negligible.

An exception is if the bubble wall is very weakly coupled to the fluid and
continues to accelerate rather than reaching a terminal velocity, or there is a
lot of supercooling and the fluid energy density becomes negligible compared
with the potential energy in the scalar field (see [78] for a recent study). In
this case, one can study the scalar field only [45,79].

Based on simulations and modelling of thermal transitions, it is possible
to identify three stages of gravitational wave production.

1. Initially the bubbles of the stable phase collide and merge. This stage
is of short duration and subdominant compared to the subsequent
stages of gravitational wave production, unless the bubbles grow as
large as the Hubble length. We will denote the contribution following
from the collision of bubbles �

bc

.

2. After the bubbles have collided and merged, the shells of fluid kinetic
energy continue to expand into the plasma as sound waves. These
di�erent waves overlap and source gravitational waves. The power
spectrum sourced by this ‘acoustic’ stage is denoted �

sw

.
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3. The last stage is the so-called turbulent phase, where the intrinsic non-
linearity in the fluid equations becomes important. Through the non-
linearities, the previous phases might produce vorticity and turbulence,
and the sound waves eventually develop shocks. The spectrum of this
phase is labelled by �

tu

.

These di�erent sources are relevant on di�erent length scales and at di�erent
time scales, and the total power spectrum can be approximately written as
the sum

�
gw

= �
bc

+ �
sw

+ �
tu

. (8.17)

In general, �
sw

is thought to yield the dominant contribution, unless the
transition is very strong, or the bubbles are as large as the cosmological
horizon.

The key quantities which determine these power spectra are the follow-
ing:

• T
n

, the cosmological phase transition nucleation temperature;

• –
n

, the phase transition strength parameter at the nucleation temper-
ature, which is related to the scalar potential energy released during
the phase transition and given in Eq. (7.40);

• v
w

, the bubble wall speed.

• —, the transition rate parameter (7.12), which can be thought of as
the inverse phase transition duration, and in combination with v

w

determines the mean bubble centre separation Rú through Eq. (7.21).

The belief is that only these four parameters determine the power spec-
trum, and therefore that the gravitational wave power spectrum is poten-
tially a precise probe of these quantities, which are in principle computable
from the Lagrangian of a specific theory. Hence, there is great excitement
about the potential of LISA to probe physics beyond the Standard Model.

One can estimate that the gravitational wave density parameter after a
phase transition is [61,80]

�
gw

≥ (H
n

·
v

)(H
n

·
ac

)K2, (8.18)

where ·
v

is the lifetime of the bulk fluid flow, ·
ac

is the autocorrelation time
of the fluid flow, and K is the kinetic energy fraction, defined in Eq. (7.36).
The timescales depend on the properties of the fluid flow through its charac-
teristic length scale L

f

and a characteristic flow speed V
f

ƒ Ô
K, which both

ultimately depend on the parameters Rú, –
n

and v
w

. The Hubble time H≠1

n

is a maximum time scale, as the expansion of the universe reduces the factor
H2

n

in (8.18) and therefore the e�ective power of the source. Initially, one
can estimate the characteristic length scale as L

f

≥ Rú. The kinetic energy
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fraction K(v
w

, –
n

) of an individual bubble is a good estimate of the global
kinetic energy fraction [61, 80], unless the transition is strong and proceeds
by deflagrations [81].

For sound waves the characteristic speed is the sound speed c
s

ƒ 1/
Ô

3,
and the autocorrelation time is therefore ·

ac

≥ Rú/c
s

. The decay of a
fluid flow is a non-linear process. From the non-linear terms in the fluid
equations (8.16) one can form the non-linearity timescale ·

nl

≥ L
f

/V
f

≥
Rú/

Ô
K. The approximate lifetime of the gravitational wave source is then

·
v

= min(·
nl

, H≠1

n

).
A more careful calculation of gravitational wave production in an ex-

panding universe [82] shows that a better approximation is

·
v

= H≠1

n

3
·

nl

H
n

1 + ·
nl

H
n

4
, (8.19)

which assumes that the RMS fluid velocity stays constant until ·
nl

, when it
immediately vanishes. Hence we can estimate

�
gw

≥ (H
n

Rú)2

Ô
K + H

n

Rú
K2 (8.20)

where, from Eq. (7.43),
K ƒ Ÿ–

n

1 + –
n

. (8.21)

and we recall that Ÿ is the e�ciency with which Higgs potential energy is
turned into kinetic energy, discussed around Eq. (7.44).

A more detailed survey of the expected lifetimes and correlation times
of the various sources can be found in Ref. [12]. It is important to note that
numerical simulations and modelling show that the dimensionless constant
of proportionality in Eq. (8.20) is O(10≠2) and not of order unity [61].

The shape of the gravitational wave spectrum is best understood for
acoustic production, which has been explored by numerical simulations [61]
and are now described by a precise theoretical framework, the sound shell
model [56]. This is only the most recent development in a long history of
modelling of gravitational wave production at a thermal phase transition
[58,83–86].

As sketched in Fig. 20 (left) the power rises as k9 to a domed peak at
kRú ≥ 10, and then decreases as k≠3. If the wall speed is close to the speed
of sound, v

w

≥ c
s

, then the domed peak becomes a slow k1 increase towards
a peak wavenumber determined by the sound shell thickness �Rú. At very
low wavenumbers, where the signal is generically small, di�erent power laws
may emerge [87,88]. For wall speeds away from the sound speed, the shape
of the domed peak can be approximated by a simpler broken power law
rising as k3 and falling as k≠4 [61].
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Figure 20: Left panel: shape of the gravitational wave spectrum from sound
waves, showing the power laws and the characteristic wavenumber scales,
which are determined by the mean bubble centre separation Rú and the
sound shell thickness �Rú. Right panel: survey of predictions of the power
spectrum from modelling of turbulent gravitational wave production, from
[89] (green), [86] (“top-hat” autocorrelation, red), and [90] (blue).

The turbulent stage, however, is far less well understood, as simulations
of turbulent flows are very challenging [81, 91], and consequently the mod-
elling [86, 89, 90] relies on untested assumptions. The main assumptions
that go into the modelling are how the flow autocorrelation time depends
on wavenumber, and also how the global quantities such as kinetic energy
and correlation length evolve with time. The di�erences between these as-
sumptions explain the di�erent predictions for the power laws at low and
high wavenumber, sketched in Fig. 20 (right). Only dedicated numerical
simulations can resolve these issue. The simulations of turbulent vortical
flow [91] seem to disagree with all the predictions, having a slow rise of
around k1 to the peak, and a k≠8/3 decay at high wavenumber.

Other unresolved questions are how the vortical component of the flow,
which leads to turbulence, is generated in the first place, how important
they are relative to the the compressional part, and how e�cient they are
at generating gravitational waves. On the first question, recent simulations
[81] show that vorticity is generated by bubble collisions in strong phase
transitions (see Fig. 21).

There is clearly much work to be done before we are able to accurately
compute a gravitational wave power spectrum for a phase transition of any
strength. At the moment, this means regions where simulations have been
carried out [61] and models [56] have reasonable agreement in the range
0.4 . v

w

. 0.9 and –
n

. 0.1.
For ultra-strong transitions (–

n

∫ 1), the energy density of the universe
becomes dominated by the potential energy of the scalar field, and the ex-
pansion of the universe starts to accelerate. This is the original idea behind
cosmic inflation [4], and it was quickly realised that our Universe cannot
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Figure 21: Temperature and vorticity following a strong phase transition,
with –

n

= 0.5 and v
w

= 0.44 [81] (courtesy D. Cutting).

have spent much time in this metastable state [55]. Bubble dynamics in
the near-vacuum state is rather di�erent from the thermal energy domi-
nated case we consider in these lectures [78]. Recent numerical simulations
involving just the scalar field are helping to develop a picture of what hap-
pens when the fluid plays no role at all [45, 79, 92]. On the theoretical side,
there are predicted to be some characteristic power laws in the gravitational
wave power spectrum at long wavelengths connected with expanding shells
of shear stress [87, 88, 93, 94], which in the strong supercooling case would
not be dominated by the sound shell model signal.

8.3 Comparison with GW observations
Finally for this section, we see how calculations of the gravitational wave
signal match up to the potential for observations. First, we study how the
gravitational wave frequency and intensity change between their generation
and their observation.

The frequency scale of the spectrum when it is produced can be taken
to be fú = R≠1

ú , which is also an estimate of the peak frequency. The
frequency today fú,0 is determined by the redshifting of the gravitational
waves since the time of the phase transition. Using the Friedmann equation,
the conservation of entropy, and a photon temperature today of T“,0 = 2.725

61



K, one can show that

fú,0 ƒ 2.62
3 1

H
n

Rú

4 3
T

n

102 GeV

4 3
g

e�

100

4 1
6

µHz . (8.22)

Hence LISA will be most sensitive to electroweak-scale (100 – 1000 GeV)
transitions with bubble separations between 10≠2 and 10≠3 of the Hubble
length.

The intensity of the gravitational wave signal is also a�ected by the
expansion of the Universe. While the energy density of the Universe is
dominated by radiation, the density parameter of gravitational waves �

gw

remains constant, as the energy densities of both components redshift the
same way. However, once radiation gives way to non-relativistic matter as
the dominant component, the density parameter of gravitational waves �

gw

decreases, until today it is reduced by a factor

F
gw,0 = (3.57 ± 0.05) ◊ 10≠5

3100
g

e�

4 1
3

, (8.23)

where the uncertainty comes mainly from the measurement of the Hubble
rate today, taken here to be the Planck 2015 best-fit value H

0

= 67.8 ±
0.9 km s≠1 Mpc≠1 [95].

We can now present a simple model for the gravitational wave power
spectrum from first order phase transitions, which captures the parametric
understanding of the power outlined in this section, gives a simple func-
tional form based on numerical simulations [12,61], and includes an explicit
attenuation factor due to the decay of the flow [82]. The contribution to the
fractional density in gravitational waves in a logarithmic frequency interval
d ln f from a phase transition with mean bubble centre separation to Hubble
length ratio H

n

Rú generating a kinetic energy fraction K is

d�
gw,0

d ln f
= 2.061F

gw,0�̃
gw

(HúRú)2

Ô
K + HúRú

K2C(f/f
p,0) , (8.24)

where �̃
gw

= 0.012 is a numerically determined constant, representing the
approximate e�ciency with which kinetic energy is turned into gravitational
waves, C(s) is the function

C(s) = s3

3 7
4 + 3s2

4
7/2

, (8.25)

describing the gravitational wave power around the peak, and f
p,0 = 10fú,0

is an estimate of the peak frequency, again from the numerical simulations.
The number 2.061 is an approximation to 3/

s Œ
0

d ln(s)C(s). In this very
simple model the power at small s is over-estimated, and at large s under-
estimated, compared to the sound shell model, and has significant deviations
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around the peak for wall speeds near the speed of sound. Its domain of re-
liability is –

n

. 0.1, 0.4 . v
w

. 0.5 and v
CJ

(–
n

) . 0.9, where v
CJ

is the
minimum speed of a detonation, given in Eq. (7.34). This represents the pa-
rameter range where gravitational wave power spectra have been extracted
from numerical simulations. The model does not get the shape right for
deflagrations with v

w

near or above the speed of sound (see Fig. 20).
We are now in a position to estimate the expected density fraction in

gravitational waves from a phase transition, or equivalently the expected
characteristic strain. As the power spectrum has a definite peak, the esti-
mate represents both the total power and the peak power. Taking T

n

= 500
GeV, –

n

= 0.3, —/H
n

= 102, and v
w

= 0.4, we find from Eqs. (8.22), (8.20),
(8.21), and (7.44) that

�
gw,0 ≥ 10≠12 , (8.26)

and that the peak frequency estimate is fú,0 ƒ 10≠3 Hz. At this frequency,
the characteristic strain of a signal with a gravitational wave density param-
eter of order 10≠12 is

hc ≥ 10≠21 , (8.27)

where we have used Eq. (8.10). Estimates of the power spectrum, in the
simplified broken power law approximation in Eq. (8.24), can be generated
by the PTPlot tool [12,96].

In Fig. 19 we have plotted the signal from a phase transition predicted
by the more refined sound shell model [56, 97], with the parameters given
above. While the strength of the transition is in the range where the am-
plitude and shape of the signal are merely indicative, the amplitude agrees
with our order-of-magnitude estimate above, and such a transition would be
detected very clearly by LISA, despite the competing astrophysical signals.
The most significant of these will probably be the foreground from white
dwarf binaries in our galaxy, of which there are thought to be tens of mil-
lions. This foreground will always be present, unlike the transient signals
from merging supermassive black holes in distant galaxies. However, the
anisotropy of the galactic white dwarf foreground should make it vary in
strength throughout the year as LISA orbits the sun and the relative ori-
entation of the plane of the satellite constellation and the galaxy changes.
This will make it distinguishable from the isotropic background expected
from phase transitions (see [72] for a review of gravitational wave signals
and detection methods).

9 Summary
Gravitational waves are an extraordinary new tool for astronomy and cos-
mology, and can be used to directly observe processes which happened in
the early universe. In particular, first-order phase transitions in the early
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universe give rise to gravitational waves with characteristic power spectra.
The source of the gravitational waves is the shear stresses in the fluid set up
by the expansion and collision of bubbles of the low-temperature symmetry-
broken phase during the phase transition. The shear stresses are initially
overlapping pressure waves, or sound, which may be strong enough to gen-
erate turbulence when they collide.

The dynamics of the phase transition can be described in terms of only
four properties of the phase transition: the bubble nucleation temperature
T

n

, the strength parameter –
n

, the transition rate parameter —, and the
bubble wall speed v

w

. These are all in principle computable from an un-
derlying particle physics model, and in these lectures we have gained some
insight into the methods. We have also seen how relativistic combustion the-
ory explains how kinetic energy is generated in the fluid, which eventually
shows up as the sound waves and turbulent motion.

The current excitement is that information about these phase transition
parameters is contained in the power spectrum of the gravitational waves,
and that the space mission LISA could detect these gravitational waves if
the phase transition took place at a time around t = 10≠11s [12], when the
temperature was in the range 100 GeV to 1 TeV. This is the scale of elec-
troweak symmetry-breaking. Hence LISA is a particle physics experiment,
as well as an astrophysical observatory. A first order electroweak phase
transition is possible only if there is physics beyond the Standard Model,
perhaps in the form of extra Higgs fields. LISA has the potential to discover
new fundamental physics.

This is a dynamic and developing field. In the last section we already
mentioned the current uncertainty about the hydrodynamics of strong phase
transitions (–

n

& 0.1). It is also not yet known how accurately LISA can
measure the phase transition parameters, but even a 20% measurement of
(say) the wall speed is not yet matched by the accuracy of the calculations
from underlying particle physics models. Furthermore, the framework of
homogeneous nucleation theory is taken from condensed matter, where nu-
cleation by thermal fluctuation has never been observed to take place. There
is a long-standing mystery about the lifetime of the metastable superfluid
3He-A phase towards decay into 3He-B. The theory described in these lec-
tures predicts lifetimes of experimental samples of superfluid 3He-A of order
101000000 seconds, while in the laboratory, even when taking great care over
impurities, 3He-A lasts only a few minutes (see e.g. [98]). There is much to
be done to realise the goal of making LISA into a particle physics experiment
to complement the Large Hadron Collider.
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