Phase transitions in the early Universe

3. Dynamics of first order phase transitions

Mark Hindmarsh^{1,2}

¹ Department of Physics & Astronomy University of Sussex

² Department of Physics and Helsinki Institute of Physics Helsinki University

> Heraeus School 21. syyskuuta 2018

Outline

Dynamics of first-order phase transitions: outline

Bubble nucleation in detail

Hydrodynamics of bubble growth

Summary

Dynamics of first order phase transitions

$$\Delta V_T \simeq \frac{D}{2} (T^2 - T_2^2) |\bar{\phi}|^2 - \frac{1}{3} A T |\bar{\phi}|^3 + \frac{1}{4} \lambda |\bar{\phi}|^4$$

- ▶ Below T_c , state $\phi = 0$ metastable
- Separated from equilibrium state by $B = V_T(\phi_m) - V_T(0)$
- Lowest energy path to equilibrium state via critical bubble
- Energy of critical bubble E_c
- Nucleation rate per unit volume (high T): $\Gamma/V \simeq T^4 \exp(-E_c/T)$

Critical bubble field profile

Transition via growth and merger of bubbles

- ► Thermal fluctuations produce bubbles at rate/volume $\Gamma/V \simeq T^4 \exp(-E_c/T)$
- Bubbles growth speed v_w set by interaction with medium
- Bubble merger completes phase transition

Transition via growth and merger of bubbles

- ► Thermal fluctuations produce bubbles at rate/volume $\Gamma/V \simeq T^4 \exp(-E_c/T)$
- Bubbles growth speed v_w set by interaction with medium
- Bubble merger completes phase transition

Transition via growth and merger of bubbles

- ► Thermal fluctuations produce bubbles at rate/volume $\Gamma/V \simeq T^4 \exp(-E_c/T)$
- Bubbles growth speed v_w set by interaction with medium
- Bubble merger completes phase transition

Electroweak phase transition & baryogenesis

Sakharov conditions for baryogenesis:

- B violation:
- C and CP violation: Antimatter excess violates C and CP
- ▶ non-equilibrium: B processes reduce B asymmetry in equilibrium

Electroweak phase transition & baryogenesis

Sakharov conditions for baryogenesis:

- ▶ B violation: Electroweak theory has unstable topological defects sphalerons (S)⁽¹⁾ Formation and decay of S results in change in B + L of left-handed fermions⁽²⁾
- C and CP violation: C violation automatic in SM. CP violation needs more than CKM at high T
- non-equilibrium: Supercooling at 1st order phase transition?

⁽¹⁾Klinkhamer, Manton (1984)

⁽²⁾Kuzmin, Rubakov, Shaposhnikov (1985)

(Hot) electroweak baryogenesis

Mechanism:(3)

- CP-violation in bubble wall field profile
- CP-asymmetry in reflection of fermions
- ► Chiral asymmetry → (Sphalerons) → baryon asymmetry

Thermal activation: particles in a potential

Simplify: particles in a potential V_T .

- Position φ
- momentum π
- ► Hamiltonian $H = \frac{1}{2}\pi^2 + V_T(\phi)$

What is flux across barrier Γ ?

$$\Gamma = \frac{1}{Z} \int d\pi d\phi e^{-\beta H} \delta(\phi - \phi_{\rm m}) \pi \theta(\pi) = \frac{1}{Z} \frac{1}{\beta} e^{-\beta V_T(\phi_{\rm m})}$$

Evaluate Z by steepest descent; assume no particles near ϕ_b

$$Z = \int d\pi d\phi e^{-\beta H}$$

$$=\frac{2\pi}{\beta\sqrt{V_T''(0)}}e^{-\beta V_T(0)}$$

$$\Gamma = rac{\sqrt{V_T''(0)}}{2\pi}e^{-eta\Delta V_T}$$

$$\Delta \mathit{V}_{\mathit{T}} = \mathit{V}_{\mathit{T}}(\phi_{\mathsf{m}}) - \mathit{V}_{\mathit{T}}(\mathsf{0})$$
 – barrier height

Thermal activation: imaginary part of the free energy

- ▶ Position φ
- momentum π
- ► Hamiltonian $H = \frac{1}{2}\pi^2 + V_T(\phi)$

What is free energy $F = -\ln Z/\beta$?

Evaluate Z by steepest descent, taking into account particles near ϕ_{m}

$$Z = \int d\pi d\phi e^{-\beta H} = \frac{2\pi}{\beta} \left(\frac{1}{\sqrt{V_T''(0)}} e^{-\beta V_T(0)} + \frac{1}{2} \frac{1}{\sqrt{V_T''(\phi_{\mathsf{m}})}} e^{-\beta V_T(\phi_{\mathsf{m}})} \right)$$

Second term is imaginary: Im
$$F = \frac{1}{2\beta} \frac{\sqrt{V_T''(0)}}{|V_T''(\phi_{\rm m})|} e^{-\beta \Delta V_T}$$

Thermal activation rate $\Gamma = \frac{\beta \sqrt{V_T''(0)}}{\pi} \mathrm{Im}\, F$ (steepest descent)

The critical bubble

Evaluate Z by steepest descent:

$$H = \int d^3x \left(\frac{1}{2}\pi^2 + \frac{1}{2}(\nabla\phi)^2 + V_T(\phi) \right)$$

$$Z = \int \mathcal{D}\pi \mathcal{D}\phi e^{-\beta H[\pi,\phi]} = \mathcal{N}\mathcal{D}\phi e^{-\beta E[\phi]}$$
 $E[\phi] = \int d^3x \left(\frac{1}{2}(\nabla\phi)^2 + V_T(\phi)\right)$

- ► Critical bubble $\phi_c(\mathbf{x})$ solves $\frac{\delta E[\phi]}{\delta \phi(\mathbf{x})} = 0$
- Spherically symmetric, radius R_c
- ► Energy E_c
- Activation rate $\Gamma \sim e^{-\beta E_c}$

The critical bubble

Evaluate *Z* by steepest descent:

$$H = \int d^3x \left(\frac{1}{2}\pi^2 + \frac{1}{2}(\nabla\phi)^2 + V_T(\phi) \right)$$

$$\begin{split} Z &= \int \mathcal{D}\pi \mathcal{D}\phi e^{-\beta H[\pi,\phi]} = \mathcal{N}\mathcal{D}\phi e^{-\beta E[\phi]} \\ E[\phi] &= \int d^3x \left(\frac{1}{2} (\nabla \phi)^2 + V_T(\phi) \right) \\ V_T &= V_0 + \frac{D}{2} (T^2 - T_2^2) \phi^2 - \frac{1}{3} AT \phi^3 + \frac{1}{4} \lambda \phi^4 \end{split}$$

- ▶ Phase boundary surface energy $\sigma \simeq \sqrt{\lambda} \phi_{+}^{3}$
- Free energy difference $B = V_T(\phi_+) V_T(0)$

The critical bubble

Evaluate *Z* by steepest descent:

$$H = \int d^3x \left(\frac{1}{2}\pi^2 + \frac{1}{2}(\nabla\phi)^2 + V_T(\phi) \right)$$

$$Z = \int \mathcal{D}\pi \mathcal{D}\phi e^{-\beta H[\pi,\phi]} = \mathcal{N}\mathcal{D}\phi e^{-\beta E[\phi]}$$
 $E[\phi] = \int d^3x \left(\frac{1}{2}(\nabla\phi)^2 + V_T(\phi)\right)$

► Estimate (thin wall):

$$E_c \simeq -rac{4\pi R_c^3}{3}B + 4\pi R_c^2\sigma$$

- ▶ Critical bubble radius $R_c \simeq \sigma/B$
- ▶ Critical bubble energy $E_c \simeq \sigma^3/B^2$

Nucleation rate formula

Bubble nucleation rate per unit volume⁽⁴⁾

$$\Gamma \sim T \left(rac{E_c}{2\pi T}
ight)^{rac{3}{2}} \left(V_T''(0)
ight)^{rac{3}{2}} e^{-E_c/T}$$

Notes

- ▶ E_c is calculated relative to the energy density of the metastable state
- Bubbles with R > R_c are unstable to growth
- ▶ In thin wall approximation $S = E_c/T \gg 1$
- $V_T''(0) = M_h^2$, Higgs mass squared

Transition rate parameter

▶ Will show $S = E_c/T \gg 1$, can write

$$\Gamma(T) = \Gamma_0(T)e^{-S(T)}$$

- Transition rate is exponentially sensitive to the temperature
- ightharpoonup Reference time t_r :
 - e.g. *t_H* tunnelling rate/volume = (Hubble rate)/(Hubble volume)
 - or another, see later

$$\Gamma(t) = \Gamma_r e^{-S'(t_r)(t-t_r)}$$

- Write $\beta = -S'(t_r)$ (this β is not temperature!⁽⁵⁾)
- \triangleright β is the transition rate parameter (positive)
- $\beta \simeq -H \frac{dS}{d \ln(T)}$
- $ightharpoonup eta \gtrsim H$, otherwise universe stays in metastable state, and inflates forever

⁽⁵⁾ Sorry about this terrible notation - it's conventional

Size of transition rate parameter β

What critical bubble energy is needed to get activation rate/volume $\Gamma \sim H^4$ at $T \sim 100$ GeV?

- $ightharpoonup \Gamma \sim TM_h(T)^3 e^{-E_c/T} \sim H^4$
- ▶ Use Friedmann equation $H^2 \sim T^4/M_P^2$
- ▶ Result for $T \sim 10^2$ GeV: $S \equiv E_c/T \simeq \ln(M_P^4/T^4) \simeq 150$

What is the magnitude of the transition rate parameter β ?

- ▶ Transition rate parameter $\beta \simeq -H \frac{dS}{d \ln(T)} = HS dE_c/dT$
- First guess: β/H ~ S ~ 100
- Corresponds to frequency today:

$$f_0 \sim (\beta/H) 10^{-5} \text{ Hz}$$

► First indication of frequency scale of GWs

Fraction of universe in metastable phase h(t)

- Once nucleated, bubbles grow with constant speed v_w (see later)
- ▶ Volume of bubble nucleated at time t': $V(t,t') = \frac{4\pi}{3} v_w^3 (t-t')^3$
- ▶ Number density of bubbles nucleated in (t', t' + dt') is $dn(t') = \Gamma(t')dt'$
- Fractional volume occupied by bubbles (no overlaps): $dh(t, t') = \frac{4\pi}{3} v_w^3 (t t')^3 dn(t')$
- Fractional volume in metastable phase, including overlaps

$$h(t) = \exp\left(-\int^t dt' \frac{4\pi}{3} v_w^3 (t - t')^3 \Gamma(t') dt'\right)$$

▶ Reference time t_f such that $h(t_f) = 1/e$, evaluate by steepest descent:

$$h(t) = \exp\left(-e^{\beta(t-t_f)}\right)$$

▶ Reference time satisfies $\frac{4\pi}{3}v_w^3\left(\frac{3!}{\beta^4}\right)\Gamma_0e^{-S(t_f)}=$ 1. Note $t_f\gtrsim t_H$

Bubble density

- Bubbles can nucleate only in metastable phase
- ▶ In metastable phase rate/volume is $\Gamma_f = \Gamma_0 e^{-S(t_f)}$ at reference time.
- ▶ Nucleation rate averaged over both phases $\dot{n}_b(t') = \Gamma(t')h(t')$ so

$$n_{b}(t) = \int^{t} \Gamma(t')h(t')dt' = \Gamma_{f} \int^{t} e^{\beta(t'-t_{f})}h(t')dt'$$

- ightharpoonup Recall $rac{4\pi}{3} v_{\mathrm{w}}^3 \left(3!/eta^4
 ight) \Gamma_f = 1$, and $h(t) = \exp \left(-e^{eta(t-t_f)}
 ight)$
- Hence

$$n_{\rm b}(t) = -\frac{\Gamma_f}{\beta} \int^t dt' \frac{dh(t')}{dt'} = \frac{\Gamma_f}{\beta} (1 - h(t))$$

Final bubble density

$$n_{\rm b} = \frac{\Gamma_f}{\beta} = \frac{\beta^3}{8\pi v_{\rm w}^3}$$

► Mean bubble separation

$$R_* = n_{\rm b}^{-\frac{1}{3}} = (8\pi)^{\frac{1}{3}} v_{\rm w}/\beta$$

Bubble wall speed

Recall equation for scalar field

$$\Box \phi - V_T'(\phi) \simeq \eta_T(\phi)(U \cdot \partial \phi)$$

▶ Consider wall frame, where fluid moves with velocity $v^z \simeq -v_w$

$$\partial_z^2 \phi - V_T'(\phi) \simeq -\eta_T(\phi) \gamma_W V_W \partial_z \phi$$

- ▶ Look for stable time-independent solution $\phi(z)$: constant wall speed
- ▶ Multiply both sides by $\partial_z \phi$ and integrate $\int dz$:

$$\Delta V_T = \gamma_{\mathsf{W}} V_{\mathsf{W}} \int dz \eta_T(\phi) (\partial_z \phi)^2$$

- ▶ Solve to get v_w (need to calculate $\eta_T(\phi)$ from Boltzmann equation).
- ▶ Warning: $\eta_T(\phi)$ may also depend on γ_w . Solutions may not exist ("runaway"). (6)

⁽⁶⁾ See Bodeker & Moore 2009, 2017

Fluid flow at bubble wall

ightharpoonup Approximate planar symmetry near wall. Wall motion in +z direction

- ▶ Fluid motion in −z direction
- Speeds *v*_± > 0

Universe frame

- ▶ Fluid motion in +z direction
- $V'_{\pm} = \frac{V_{\rm W} V_{\pm}}{1 V_{\rm W} V_{\pm}}$

Energy-momentum conservation at bubble wall

► Fluid motion in −z direction

Wall frame

- Speeds $v_{\pm} > 0$
- $T^{\mu\nu} = wU^{\mu}U^{\nu} + pg^{\mu\nu}$

Energy-Momentum conservation:

$$\partial_t T^{tt} + \partial_z T^{zt} = 0$$
$$\partial_t T^{tz} + \partial_z T^{zz} = 0$$

Assume steady state and integrate ∫ dz

$$T_{-}^{zt} = T_{+}^{zt}$$
$$T_{-}^{zz} = T_{+}^{zz}$$

Giving:

$$w_{-}\gamma_{-}^{2}v_{-} = w_{+}\gamma_{+}^{2}v_{+}$$

$$w_{-}\gamma_{-}^{2}v_{-}^{2} + p_{-} = w_{+}\gamma_{+}^{2}v_{+}^{2} + p_{+}$$

Bubble wall junction conditions

EM conservation:
$$w_- \gamma_-^2 v_- = w_+ \gamma_+^2 v_+$$
, $w_- \gamma_-^2 v_-^2 + p_- = w_+ \gamma_+^2 v_+^2 + p_+$

Wall frame

$$T^{\mu\nu} = wU^{\mu}U^{\nu} + pg^{\mu\nu}$$

▶ Enthalpy
$$w = e + p$$

Rearrange

$$v_+v_-=rac{
ho_+-
ho_-}{e_+-e_-}, \quad rac{v_+}{v_-}=rac{e_-+
ho_+}{e_++
ho_-}$$

- ▶ Define^a $\epsilon_{\pm} = \frac{1}{4} (e_{\pm} 3p_{\pm}),$ $\epsilon = \epsilon_{+} - \epsilon_{-}$
- ▶ Transition strength $\alpha_+ = \frac{4\epsilon}{3w_+}$
- ▶ Define $r = w_+/w_-$

$$v_{+}v_{-} = \frac{1 - (1 - 3\alpha_{+})r}{3 - 3(1 + \alpha_{+})r},$$
$$\frac{v_{+}}{v} = \frac{3 + (1 - 3\alpha_{+})r}{1 + 3(1 + \alpha_{+})r}.$$

^a ¹/₄ of trace anomaly, or "vacuum" energy

Solution: strong and weak, deflagrations and detonations

$$v_+v_-=rac{1-(1-3lpha_+)r}{3-3(1+lpha_+)r}, \qquad rac{v_+}{v_-}=rac{3+(1-3lpha_+)r}{1+3(1+lpha_+)r}$$

Solve for $v_+ = v_+(v_-, \alpha_+)$ [similar for $v_-(v_+, \alpha_+)$]

$$v_{+} = \frac{1}{1 + \alpha_{+}} \left[\frac{v_{-}}{2} + \frac{1}{6v_{-}} \pm \sqrt{\left(\frac{v_{-}}{2} - \frac{1}{6v_{-}}\right)^{2} + \frac{2}{3}\alpha_{+} + \alpha_{+}^{2}} \right]$$

- ▶ Strong: v_+ and v_- on opposite sides of $\frac{1}{\sqrt{3}}$
- ▶ Weak: v_+ and v_- on same side of $\frac{1}{\sqrt{3}}$
- ▶ Detonation: $v_+ > \frac{1}{\sqrt{3}}$
- ▶ Deflagration: $v_+ < \frac{1}{\sqrt{3}}$

Deflagrations and detonations: general remarks

Recall

$$\alpha_+ = \frac{4(\epsilon_+ - \epsilon_-)}{3w_+}, \qquad r = \frac{w_+}{w_-}$$

- No strong deflagrations or detonations
- ▶ No deflagrations for $\alpha_+ > 1/3$
- ▶ Turning points at $v_- > \frac{1}{\sqrt{3}}$
- In bulk fluid $\alpha_+ = 0$, shocks obey

$$v_+v_-=rac{1}{3}, \qquad rac{v_+}{v_-}=rac{3+r}{1+3r}$$

Similarity solution: equations for *v* and *T*

- ightharpoonup Recall: $T^{\mu\nu} = wU^{\mu}U^{\nu} + pa^{\mu\nu}$
- ▶ Recall: EM conservation (away from wall): $\partial_{\mu}T^{\mu\nu} = 0$
- Project onto $U^{\mu} = \gamma(1, \mathbf{v})$ and $\bar{U}^{\mu} = \gamma(\mathbf{v}, \hat{\mathbf{v}})$ ($\bar{U}^2 = +1$, $\bar{U} \cdot U = 0$)

$$\begin{split} U_{\nu}\partial_{\mu}T^{\mu\nu} &= -\partial_{\mu}(wU^{\mu}) + U \cdot \partial p = 0 \\ \bar{U}_{\nu}\partial_{\mu}T^{\mu\nu} &= w\bar{U}^{\nu}U \cdot \partial U_{\nu} + \bar{U} \cdot \partial p = 0 \end{split}$$

- ▶ Bubbles spherical, radius $R = v_w t$ (take nucleation time t' = 0)
- ▶ Fluid velocity $\mathbf{v} = \mathbf{v}(r,t)\hat{\mathbf{r}} \rightarrow \mathbf{v}(\xi)\hat{\mathbf{r}}$, with $\xi = r/t$
- Speed of sound $c_s^2 = \frac{\partial p}{\partial T} / \frac{\partial e}{\partial T}$

$$\frac{dv}{d\xi} = 2\frac{v}{\xi} \frac{1}{\gamma^2 (1 - \xi v)(\mu^2 / c_s^2 - 1)}$$

$$\frac{dw}{dt} = w \left(1 + \frac{1}{2}\right) \gamma^2 \mu \frac{dv}{dt}$$

$$\frac{dw}{d\xi} = w \left(1 + \frac{1}{c_{\rm s}^2} \right) \gamma^2 \mu \frac{dv}{d\xi}$$

 $\mu = \frac{\xi - V}{1 - \xi V}$, fluid speed in expanding frames

Similarity solution: invariant profiles (solutions for $v(\xi)$, $T(\xi)$)

- Boundary conditions:
 - $ightharpoonup
 u o 0 ext{ for } \xi o 0, \infty$
 - $ightharpoonup v
 ightharpoonup v
 ightharpoonup v
 ightharpoonup v'_{\pm} ext{ for } \xi
 ightharpoonup \xi_{w} \pm^{(7)}$
- \triangleright v'_{\pm} are fluid speeds just ahead/behind of bubble wall in universe frame

• e.g.
$$v'_+ = \mu(\xi_w, v_+) = \frac{\xi_w - v_+(\xi_w, \alpha_+)}{1 - \xi_w v_+(\xi_w, \alpha_+)}$$

- Intricate reasoning leads to three classes of solution:
 - Detonations
 - Deflagrations
 - Supersonic deflagrations ("hybrids")

 $^{^{(7)}}$ Write $\xi_{\rm w}$ for wall speed to avoid too many vs

Detonations

- Fluid at rest in front of wall $v'_+ = 0$
- Fluid dragged out behind (rarefaction wave):

$$v'_{-} = \frac{\xi_{w} - v_{-}(\xi_{w}, \alpha_{+})}{1 - \xi_{w}v_{-}(\xi_{w}, \alpha_{+})}$$

• $v \rightarrow 0$ at $\xi = c_s$

Deflagrations

- Fluid at rest in behind wall $v'_{-}=0$
- Fluid pushed out in front (compression wave):

$$v'_{+} = rac{\xi_{w} - v_{+}(\xi_{w}, \alpha_{+})}{1 - \xi_{w}v_{+}(\xi_{w}, \alpha_{+})}$$

- $v \rightarrow 0$ at $\xi = \xi_{sh}$
- For $\xi_{\rm sh}$ and $v(\xi_{\rm sh})$, use $v_-=\frac{1}{3}\xi_{\rm sh}$

Supersonic deflagrations (hybrids)

Both compression and rarefaction

$$\begin{aligned} v'_{+} &= \frac{\xi_{W} - v_{+}(\xi_{W}, \alpha_{+})}{1 - \xi_{W}v_{+}(\xi_{W}, \alpha_{+})} \\ v'_{-} &= \frac{\xi_{W} - c_{s}}{1 - \xi_{W}c_{s}} \end{aligned}$$

▶ Behind wall $v_- = c_s$ (wall frame)

Conversion efficiency: vacuum energy to kinetic energy

- ► Kinetic energy of fluid $\int d^3x T_i^i$.
- ► Take ratio of kinetic energy of bubble to energy of bubble

$$K = \frac{\int d^3x \, w \gamma^2 v^2}{\frac{4\pi}{3} R^3 \bar{\mathbf{e}}}$$

Define a mean-square velocity for the fluid:

$$\overline{U}_{\rm f}^2 = \frac{3}{v_{\rm w}^3 \bar{w}} \int d\xi \xi^2 w \gamma^2 v^2$$

- ▶ Kinetic energy fraction $K = \Gamma \overline{U}_f^2$, where adiabatic index $\Gamma = barw/\bar{e}$
- Strength parameter $\alpha=4\epsilon/3\bar{w}$, where $\epsilon=|\epsilon_+-\epsilon_-|$, $\epsilon_\pm=(e_\pm-3p_\pm)/4$
- $ightharpoonup K = K(\alpha, v_{\rm w})$
- lacktriangleright Radial perturbation of radial velocity compression/rarefaction ightarrow sound

Sound waves

Consider EM tensor for perturbations with z dependence only

$$T^{tt} = w\gamma^2 - p,$$
 $T^{tz} = w\gamma^2 v^z,$ $T^{zz} = w\gamma^2 (v^z)^2 + p$

Perturbations: $\delta e = e - \bar{e}$, $\delta p = p - \bar{p}$, v^z all $\ll 1$

$$\partial_t T^{tt} + \partial_z T^{zt} = 0 \implies \partial_t (\delta e) + \bar{w} \partial_z v^z = 0$$
 (1)

$$\partial_t T^{tz} + \partial_z T^{zz} = 0 \implies \bar{w} \partial_t v^z + \partial_z (\delta \rho) = 0$$
 (2)

Note that δp and δe both depends temperature T: $\delta p = \left(\frac{\partial p}{\partial T}/\frac{\partial e}{\partial T}\right)\delta e = c_s^2\delta e$ Hence equations (1) and (2) can be combined

$$\left(\partial_t^2 - c_s^2 \partial_z^2\right) v^z = 0, \qquad \left(\partial_t^2 - c_s^2 \partial_z\right) \delta \rho = 0$$

Sound wave is a collective mode of fluid velocity v^i and temperature T. It is longitudinal: v^i is in direction of travel of wave.

Summary

Bubble nucleation rate/volume

$$\Gamma(T) = \Gamma_0(T)e^{-S(T)}$$

Transition rate parameter β

$$\Gamma(t) = \Gamma_f e^{\beta(t-t_f)}$$

with
$$\frac{4\pi}{3} v_w^3 (3!/\beta^4) \Gamma_f = 1$$

- ▶ Wall speed v_w
- ► Transition strength $\alpha_+ = \frac{4\epsilon}{3w}$
 - ▶ Junction conditions $(r = w_+/w_-)$

$$v_+v_-=rac{1-(1-3lpha_+)r}{3-3(1+lpha_+)r},$$

Kinetic energy fraction K

Reading

Relativistic hydrodynamics

- Relativistic Hydrodynamics, L. Rezzolla and O. Zanotti (OUP, 2013)
- Fluid Mechanics, L. Landau and Lifshitz ()

Bubble nucleation and growth

- ▶ Decay of the false vacuum at finite temperature, A. Linde (1983)
- From Boltzmann equations to steady wall velocities, T. Konstantin, G. Nardini, I. Rues [arXiv:1407.3132]
- Energy Budget of Cosmological First-order Phase Transitions, J.R. Espinosa, T. Konstantin, J.M. No, G. Servant [arXiv:1004.4187]
- Bubble growth and droplet decay in cosmological phase transitions, H. Kurki-Suonio, M. Laine [1996]
- Nucleation and bubble growth in cosmological electroweak phase transitions, K. Enqvist, J. Ignatius, K. Kajantie, K. Rummukainen [1992]
- Growth of bubbles in cosmological phase transitions, J. Ignatius, K. Kajantie, H. Kurki-Suonio, M. Laine [arXiv:astro-ph/9309059]