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Chapter 1

Locality and the horizontal
complex

This set of lectures loosely follows [1] by emphasizing Lagrangian field theo-
retic aspects that are not covered there in detail, and are not usually treated in
standard textbooks either. The choice of material is to a large extent idiosyn-
cratic. References to well-known original work underlying the subject, such
as [2–5], have generally been omitted. They can be found in the cited reviews.

The goal of the first lecture is to rephrase the basic objects of classical field
theory in the language of jet bundles. Although this requires a bit of work in
the beginning, it is worthwhile because objects such as actions and functional
derivatives can be phrased in a purely algebraic way in this framework.

Original work in this context goes back for instance to [6–8]. We follow
here the exposition of [9–11] (see also [12]), where detailed proofs and more
references to original work can be found. The first three chapters have been
treated in the current form in [13].

1.1 Jet-bundles
In classical mechanics the central object is an action functional S, which is
the integral of a Lagrangian density L:

Srqs “
ª t2

t1

dt L
`
qiptq, 9qiptq, t˘ . (1.1)

The equations of motion are obtained by requiring the variation of the action
to be an extremum at a classical solution. More precisely, when considering
virtual variations at fixed time that vanish at the end points, this amounts to
requiring that the Euler-Lagrange derivatives of the Lagrangian vanish. If
the Lagrangian L is a function of the generalized coordinates qi and their first
order time derivatives 9qi, the latter are defined by

�L

�qi
“ BL

Bqi ´ d

dt

BL
B 9qi

,
d

dt
“ B

Bt ` 9qi B
Bqi ` :qi B

B 9qi
. (1.2)

Remark 1. In order for the Euler-Lagrange operator to make sense, qi and 9qi
have to be considered as independent variables. The space on which they are
coordinates is the (first order) jet-space.

3



1 Locality and the horizontal complex 4

Remark 2. When acting on a function that depends on the first order time
derivatives, the total time derivative derivative d

dt
involves second order time

derivatives. In other words, it maps functions defined on the first order jet-
space to functions defined on the second order jet-space.

The underlying geometrical structure is described by introducing a new
mathematical object, the jet bundle. This is a fiber bundle1 which has as base
space M the real line R in the case of classical mechanics and Minkowski
space R3,1 in the case of relativistic field theory, and as fiber V a manifold
whose local coordinates are the fields and their derivatives. Coordinates on the
base are often called “independent variables”, while coordinates on the fiber
are dependent ones.

In the case of classical mechanics, restricting to the case of Lagrangians de-
pending only on the coordinates and velocities, the jet bundle will be parametrized
by t, q, 9q.

For a field theory, let V be locally parametrized by the fields �i (which we
take to be even for simplicity), and let

E ” M ˆ V. (1.3)

Let us then denote by V k the k-th jet space, i.e. the manifold obtained by
extending the set of dependent coordinates to

�i,�i
µ, . . . ,�

i
µ1...µk

, (1.4)

where the �i
µ1...µk

are completely symmetric in their lower indices.
Locally, the jet bundle JkpEq is the direct product

JkpEq “ M ˆ V k. (1.5)

When taking suitable sections s, the coordinates of V k are to be identified with
field “histories” and their derivatives up to order k,

s : M ›Ñ JkpEq
xµ fiÑ pxµ,�ipxq, B�ipxq

Bxµ
, . . . q. (1.6)

Remark 3. The components gµ⌫ of the metric in General Relativity are not
independent local coordinates for the fiber of the jet bundle, since they must
satisfy, besides symmetry, the additional condition

det gµ⌫ ‰ 0. (1.7)

1The reader unfamiliar with the concept of fiber bundles should not be worried: for what
concerns our discussion, it suffices to have in mind the conceptual idea that underlies them.
As a Riemannian manifold is a smooth deformation of Rn, which locally looks like flat space,
a fiber bundle can be thought as a smooth deformation of a direct product of two spaces, that
locally looks like the direct product itself.



1 Locality and the horizontal complex 5

Local functions

f rx,�s “ fpx,�i, . . . ,�i
µ1...µk

q (1.8)

are defined to be smooth functions on JkpEq, for some (unspecified) k. They
are functions that depend on the base space coordinates xµ, the fields and a
finite number of their derivatives. Typical examples of local functions are the
Lagrangian (density) L of classical mechanics or of field theory.

A vector field on JkpEq has the form

v “ aµ
B

Bxµ
` bi

B
B�i

`
kÿ

l“1

ÿ

0§µ1§¨¨¨§µk

biµ1...µk

B
B�i

µ1...µl

. (1.9)

This notation is not very practical, as it does not allow one to use Einstein’s
summation convention for repeated indices. One thus defines the symmetrized
derivative Bs

B�i
µ1...µl

“ m0! . . .mn´1!

l!

B
B�i

µ1...µl

, (1.10)

where mµ denotes the number of times the index µ appears in µ1 . . . µl, and in
terms of which equation (1.9) takes the more compact form

v “ aµ
B

Bxµ
` bi

B
B�i

`
kÿ

l“1

biµ1...µl

Bs

B�µ1...µl

. (1.11)

This expression can be simplified further by using a multi-index notation:

pµq ” tH, µ1, µ1µ2, . . . u, |µ| “ 0, 1, 2, . . . , (1.12)

with pµq the multi-index and |µ| its length, the definition of a vector field (1.9)
becomes

v “ aµ
B

Bxµ
` bipµq

B
B�i

pµq
, (1.13)

in which Einstein’s summation convention for multi-indices includes a sum-
mation over their lengths.

1.2 Total and Euler-Lagrange derivatives
Total derivatives are a generalization of d

dt
in equation (1.2), from classical

mechanics to field theory, and to higher order derivatives:

B⌫ ” B
Bx⌫ `

ÿ

l

�i
µ1...µl⌫

Bs

B�i
µ1...µl

“ B
Bx⌫ ` �i

ppµq⌫q
B

B�i
pµq

.
(1.14)

Again, they are not vector fields on some JkpEq for a fixed k: when acting
on smooth functions on JkpEq, they produce smooth functions on Jk`1pEq.
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Total derivatives satisfy two important properties: the first one is that, if a local
function is evaluated at a section,

f |s “ f

ˆ
x,�ipxq, . . . , B�ipxq

Bxµ1 . . . Bxµk

˙
, (1.15)

then
pBµfq |s “ d

dxµ
pf |sq . (1.16)

The second one is that total derivatives commute:

rBµ, B⌫s “ 0. (1.17)

The Euler-Lagrange derivative of a local function f is defined as

�f

��i
“

kÿ

l“0

p´qlBµ1 . . . Bµl

Bsf

B�i
µ1...µl

“ p´q|µ|Bpµq
Bf

B�i
pµq

.

(1.18)

A first important lemma is the following:

Lemma 1. The Euler-Lagrange derivative of a local function is zero if and
only if it is a total divergence, i.e.,

�f

��i
“ 0 ñ f “ Bµjµ, (1.19)

for some local functions jµ.

———-

1.2.1 Exercise 1
Prove Lemma 1.

Proof. Let us first prove that

f “ Bµjµ ùñ �f

��i
“ 0. (1.20)

In order to show this, we need to use the commutation relation
„ Bs

B�µ1...µk

, B⌫
⇢

“ �µ1

p⌫ �
µ2
�1

. . . �µk

�k´1q
Bs

B�i
p�1...�k´1q

” �pµq
p⌫p�qq

B
B�i

p�q
, (1.21)

which follows directly from the various definitions. In multi-index notation, it
becomes «

B
B�i

pµq
, B⌫

�
“ �pµq

pp�q⌫q
B

B�i
p�q

. (1.22)
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With this, we are ready to show (1.20):

�

��i
pBµjµq “ p´q|⌫|Bp⌫q

˜
B

B�i
p⌫q

pBµjµq
¸

“ p´q|⌫|Bp⌫q

˜«
B

B�i
p⌫q

, Bµ
�
jµ

¸
` p´q|⌫|Bp⌫qBµ

˜
Bjµ

B�i
p⌫q

¸

“ p´q|⌫|�p⌫q
pµp�qqBp⌫q

Bjµ
B�i

p�q
` p´q|⌫|Bp⌫qBµ Bjµ

B�i
p⌫q

“ p´q|�|`1Bpµp�qq
Bjµ

B�i
p�q

` p´q|�|Bp�qµ
Bjµ

B�i
p�q

“ 0.

(1.23)

We now turn to the proof of the other implication, namely

f “ Bµjµ ù �f

��i
“ 0. (1.24)

We can write

f rx,�s ´ f rx, 0s “
ª 1

0

d�
d

d�
fpx,��q

“
ª 1

0

d�

�
p�i

p⌫q
B

B�i
p⌫q

fqrx,��qs.
(1.25)

By repeated “integrations by parts”2, we have on the one hand that

�i
p⌫q

B
B�i

p⌫q
f “ �i �f

��i
` Bµk̃µrx,�s, (1.26)

with k̃µrx, 0s “ 0. On the other hand, f rx, 0s “ B
Bxµ ⇠µpxq for some ⇠µpxq

on account of the ordinary Poincaré lemma for Rn (of which we will provide
a proof at the end of this lecture, as it is the most basic and prototypical in-
stance of a cohomological computation). When using these relations in (1.25),
together with the assumption �f

��i
“ 0, we find

f “ Bµjµ, jµ “ ⇠µ `
ª 1

0

d�

�
k̃µrx,��s. (1.27)

———-

Note also that, according to (1.25), local functions can be decomposed as
f rx,�s “ f rx, 0s ` f̃ rx,�s, with f̃ rx, 0s “ 0, and that Lemma 1 holds in the
space of local functions f̃ with no field-independent part.

2There is no actual integration involved, what we mean is the use of Leibniz’ rule as appro-
priate in the context of integrations by parts.
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1.3 Local functionals
A local functional is the integral, on the base manifold of the jet bundle, of a
local function evaluated at sections �ipxq (of compact support or vanishing at
the boundary),

F rf̃ ,�pxqs “
ª

M

dnx f̃ |s. (1.28)

Lemma 2. For two local functionals F,G, we have

F rf̃ ,�pxqs “ Grg̃,�pxqs (1.29)

@�ipxq if and only if
f̃ “ g̃ ` Bµj̃µ, (1.30)

which in turn is equivalent to

�

��i
pf̃ ´ g̃q “ 0, (1.31)

because of Lemma 1.

———-

1.3.1 Exercise 2
Prove Lemma 2.

Proof. The implication

f̃ “ g̃ ` Bµj̃µ ùñ F rf̃ ,�pxqs “ Grg̃,�pxqs (1.32)

is almost obvious. In fact, we have

F rf̃ ,�pxqs “
ª
dnx f̃ |s “

ª
dnx g̃|s `

ª
dnx pBµj̃µq|s

“ Grg̃,�pxqs `
ª
dnx

d

dxµ
pjµ|sq “ Grg̃,�pxqs,

(1.33)

where we have used property (1.16) of total derivatives evaluated at a section,
together with the fact that we are assuming suitable fall-off or boundary condi-
tions on the fields.

Proving the other implication is also straightforward: if F rf̃ ,�pxqs “
Grg̃,�pxqs, we must have

ª
dnx pf̃ ´ g̃q|s “ 0. (1.34)

Since this must be true for all �ipxq, the functional
≥
dnxpf̃ ´ g̃q|s is a constant

in �pxq. This means that its functional derivative must vanish:

�

��ipxq
ª
dnxpf̃ ´ g̃q “ 0. (1.35)
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But the vanishing of the functional derivative of a local functional means the
vanishing of the Euler-Lagrange derivative of its associated local function when
all boundary terms can be neglected, i.e.,

�f̃

��i
“ �g̃

��i
, (1.36)

which is what we wanted to prove.

———-

This motivates the following algebraic definition of local functionals [14]:
a local functional is an equivalence class of local functions

F rf̃ ,�pxqs –Ñ
"

rf̃ s : f̃ „ g̃ ô �

��i
pf̃ ´ g̃q “ 0

*
, (1.37)

so that we can stop thinking about functionals and functional analysis, and
concentrate on suitable equivalence classes of local functions instead.

1.4 The Horizontal Complex
Up to now we have mainly discussed vector fields on the jet bundle. As in the
case of ordinary differential geometry, we will now introduce suitable differ-
ential forms. A horizontal differential form on the jet bundle is an object

! “
nÿ

l“0

ÿ

0§µ1†¨¨¨†µl§n´1

!µ1...µl
dxµ1 . . . dxµl , (1.38)

where !µ1...µl
are local functions on the jet bundle. We will omit the wedge

products between forms and treat the dx’s as anticommuting Grassmann odd
variables instead. In this local context, forms in top form degree n correspond
to Lagrangian densities times the volume form. The horizontal differential
dH is then defined as

dH :⌦p ›Ñ ⌦p`1

dH!
p “ dxµBµ!p.

(1.39)

As a consequence of the fact that total derivatives commute, the horizontal
differential is nilpotent:

rBµ, B⌫s “ 0 ùñ d2H “ 0. (1.40)

This allows us to define the cohomology of dH : we define p-cocycles Zp and
p-coboundaries Bp as

!p P Zp ñ dH!
p “ 0, (1.41)

!p P Bp ñ !p “ dH⌘
p´1, (1.42)
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and as usual we define the cohomology groups Hp as

HppdH ,⌦q » Zp{Bp. (1.43)

The cohomology of differential forms on Rn is encoded in the Poincar lemma,
which implies that any closed form with form degree at least 1 is exact. This
theorem is generalized to the present case, that of a trivial jet bundle, but before
discussing this generalization, let us review the ordinary Poincar lemma for the
de Rham complex in Rn.

Theorem 1. (Poincar lemma) The only non-trivial de Rham cohomology group
of Rn is in form degree 0:

Hppd,⌦q “ �p0R. (1.44)

Proof. Let us define the operator

⇢ “ xµ B
Bdxµ

. (1.45)

Note that, if we define the vector field v “ xµ B
Bxµ , we have

⇢pdxµq “ x⌫
B

Bdx⌫ dx
µ “ xµ “ ◆vpdxµq, (1.46)

so that we are in fact representing the operation of contracting differential
forms along vector fields by a suitable operator involving the Grassmann odd
variables dxµ. In this context, we have

N ” td, ⇢u “
ˆ
xµ B

Bxµ
` dxµ B

Bdxµ

˙
. (1.47)

Using this, we can write for a generic p-form ! P ⌦ppRnq,

!px, dxq ´ !p0, 0q “
ª 1

0

d�
d

d�
!p�x,�dxq

“
ª

d�

�

„ˆ
xµ B

Bxµ
` dxµ B

Bdxµ

˙
!

⇢
p�x,�dxq

“
ª 1

0

d�

�
ptd, ⇢u!q p�x,�dxq

(1.48)

In particular, if d! “ 0, equation (1.48) becomes

!px, dxq “ !p0, 0q ` dIp!q, (1.49)

where

Ip!q “
ª 1

0

d�

�
p⇢!qp�x,�dxq, (1.50)

sends p-forms to p´1 forms. We now see that all closed forms in Rn are exact,
except for the constant 0-forms,

Hppd,⌦q “ �p0R, (1.51)

which is what we wanted to prove.



1 Locality and the horizontal complex 11

Remark 4. As a consequence of the Poincar lemma, every top form, which is
necessarily closed, must be exact. If Lagrangian densities would correspond
to top forms in the de Rham complex, they all would be given by a divergence.
Since there are Euler-Lagrange equations giving rise to non-trivial dynamics,
the Poincar lemma must be modified when we go from the de Rham to the
horizontal complex.

———-

1.4.1 Exercise 3
Show that fpxq “ B

Bxµ ⇠µpxq, with ⇠µ “ ≥1
0 d��

n´1xµfp�xq by using the
Poincaré lemma in top form degree n. If gµpxq are n functions that satisfy
the integrability conditions B

Bxµ g⌫ ´ B
Bx⌫ gµ “ 0, show that gµ “ B

Bxµfpxq with
f “ xµ

≥1
0 d�gµp�xq by using the Poincaré lemma in form degree 1.

———-

We will now state a generalization of the Poincar lemma to the field the-
oretical case, giving an idea of how the proof goes in analogy to the ordinary
Poincar lemma.

Theorem 2. (Algebraic Poincar lemma) The cohomology groups of the hori-
zontal complex are

HppdH ,⌦pEqq “

$
’&

’%

R, p “ 0,

0, 0 † p † n,

r!ns, p “ n

(1.52)

where we have denoted by r!ns, suitable equivalence classes of top forms,

r!ns “
!
! P ⌦npEq : ! „ !1 ô ! “ !1 ` dHj

n´1

ô �

��i
p! ´ !1q “ 0

)
. (1.53)

Proof. The idea of the proof is the same as for the ordinary Poincar lemma.
The analog of the number operator in the previous proof is the operator

�Q ” BpµqQ
i B
B�i

pµq
, (1.54)

which commutes with the total derivative and implements an infinitesimal
field variation. Such a variation can be written in a unique way as

�Qf “
ÿ

|µ|§k

Bpµq

«
Qi �f

��i
pµq

�
, (1.55)

where
�f

��i
pµq

“
ÿ

|⌫|§k´|µ|

ˆ|µ| ` |⌫|
|µ|

˙
p´q|⌫|Bp⌫q

Bf
B�i

ppµqp⌫qq
(1.56)
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are higher order Euler-Lagrange derivatives. One then defines the operator

IpQp!pq “
ÿ

|�|§k´1

|�| ` 1

n ´ p ` |�| ` 1
Bp�q

«
Qi �

��i
pp�q⇢q

B!p

Bdx⇢
�

(1.57)

that sends p-forms to p ´ 1-forms. The difficult part of the proof, which we
omit here, is to show that

#
�Q!p “ Ip`1

Q pdH!pq ` dHpIpQ!pq, 0 § p † n,

�Q!n “ Qi �!n

��i
` dHpInQ!nq. (1.58)

The proof proceeds then in the same way as in the ordinary Poincar lemma by
using

⇢H !̃
p “

ª �

0

d�

�
pIH,�!̃

pqrx,��s, tdH , ⇢Hu!̃p “ !̃p, (1.59)

for p † n.



Chapter 2

Dynamics and the Koszul-Tate
complex

After having laid down the basic concepts, in this second lecture we start deal-
ing with dynamics. Noether identities and the associated Koszul-Tate differen-
tial [15, 16] are introduced in the framework, allowing us to deal with gauge
theories.

More details can be found in [1] and also in [17, 18].

2.1 Stationary surface
In field theory we usually deal with partial differential equations. In particular,
we select those that arise from an action principle because we know how to
quantize them. The action is a local functional on the jet bundle

SrL,�pxqs “
ª

M

dnxLrx,�s|�pxq, (2.1)

and the equations of motion derived from the action principle are

�L

��i
“ 0. (2.2)

In order to obtain solutions �̄ipxq, we have to evaluate the left hand side of (2.2)
at sections and find those that solve the associated partial differential equations.
For our purpose here, it is enough to exchange this task with that of studying
some algebraic/geometric properties of hypersurfaces in the jet bundle. In fact,
for most cases of physical interest, when the Euler-Lagrange equations do not
contain derivatives of order higher than one, equation (2.2) defines a surface in
the second jet space J2pEq. However, even in these cases, we need to take into
account higher derivatives of the equations of motion. More generally then,
we consider the stationary surface defined in the jet-bundles JkpEq by the
Euler-Lagrange equations and an appropriate number of their total derivatives,

Bpµq
�L

��i
“ 0. (2.3)

13
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A local function f is weakly zero if it vanishes when one pulls it back to
the stationary surface. In this case, one uses Dirac’s notation and writes

f « 0. (2.4)

In fact, because of standard regularity assumptions on the functions that define
this surface, if an object vanishes weakly, then it must be a linear combination
of the equations defining the surface. This means that

f « 0 ñ f “ kipµqBpµq
�L

��i
. (2.5)

Let us work out an example in order to clarify the content of this construc-
tion in a simple setting:

Example 1. (Massive scalar field) Let us consider a free real scalar field �
with mass m. In this case the Lagrangian is

LKG “ ´p1
2

Bµ�Bµ� ` m2

2
�2q. (2.6)

The equation of motion for this Lagrangian is the massive Klein-Gordon equa-
tion

´ �LKG

��
“ ´BµBµ� ` m2� “ �00 ´ �ii ` m2� “ 0 (2.7)

In our context, this field equation is an algebraic equation between the local
coordinates of the jet space �, �µ, �µ1µ2 .

———-

2.1.1 Exercise 4
Compute the Euler-Lagrange derivatives of

(i) Yang-Mills theory

LYM rA↵
µs “ ´ 1

4g2
F ↵
µ⌫F

�µ⌫g↵�, F ↵
µ⌫ “ BµA↵

⌫ ´ B⌫A↵
µ ` f↵��A

�
µA

�
⌫ , (2.8)

where g↵� is an invariant symmetric tensor on a Lie algebra g with structure
constants f↵�� ,

(ii) Chern-Simons theory in 3 spacetime dimensions,

LCSrA↵
µs “ k

8⇡
g↵�✏

µ⌫⇢A↵
µpB⌫A�

⇢ ` 1

3
f���A

�
⌫A

�
⇢q, (2.9)

(iii) Einstein gravity

LEHrgµ⌫s “ 1

16⇡G

a|g|pR ´ 2⇤q. (2.10)

Hint: Use that
�L “ ��i �L

��i
` Bµp¨qµ
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defines the Euler-Lagrange equations uniquely, that

��µ
⌫� “ 1

2
gµ⇢p�g⇢⌫;� ` �g⇢�;⌫ ´ �g⌫�;⇢q,

and that
a|g|jµ;µ “ pa|g|jµq,µ implies

a|g|l⌫1...⌫nµm⌫1...⌫n;µ “ pa|g|l⌫1...⌫nµm⌫1...⌫nq,µ
´ a|g|l⌫1...⌫nµ;µm⌫1...⌫n .

(iv) the Poisson-Sigma model [19, 20] in 2 spacetime dimensions,

LPSM r⌘iµ, X isd2x “ ⌘idX
i ` 1

2
↵ijpXq⌘i⌘j, (2.11)

where ⌘i “ ⌘iµdxµ and ↵ijpXq defines a Poisson tensor on target space,

↵ij “ ´↵ji, ↵il B↵jk

BX l
` cyclicpi, j, kq “ 0,

so that the Poisson bracket

tfpXq, gpXqu “ Bf
BX i

↵ij Bg
BXj

is skew symmetric, satisfies the Leibniz rule and the Jacobi identity.

2.2 Noether identities
Noether identities are relations between the equations determining the station-
ary surface:

N ipµqBpµq
�L

��i
” N i

„
�L

��i

⇢
“ 0. (2.12)

Here N ipµq are local functions. Let us consider an illustrative example, which
may appear a little unusual:

Example 2. Consider several scalar fields satisfying the Klein-Gordon equa-
tion. In this case, we have a set of Noether identities given by

N i “ �L

��j
µrjis, (2.13)

where µrjis are a collection of local functions that are antisymmetric in their
indices:

µrijs �L
��i

�L

��j
“ 0. (2.14)

Note that the presence of Noether identities is not due to the fact that we are
considering multiple scalar fields: in the case of a single field, in fact, we have
for example a Noether identity determined by

N “ B⌫
ˆ
�L

��

˙
M r⌫µsBµ. (2.15)
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The ones we have just shown are examples of trivial Noether identities:
a trivial Noether identity is a Noether identity with coefficients vanishing on-
shell, i.e. characterized by

N ipµqBpµq « 0. (2.16)

A proper gauge theory is defined as a theory for which there are nontrivial
Noether identities. For example, in electromagnetism,

LMaxpAµq “ ´1

4
Fµ⌫F

µ⌫ ,
�LMax

�Aµ

“ B⌫F ⌫µ, (2.17)

we have
BµB⌫F µ⌫ “ 0. (2.18)

with corresponding nontrivial Noether identity

N pµq⌫Bpµq “ ⌘µ⌫Bµ ‰ 0. (2.19)

Other examples are Yang-Mills and Chern-Simons theories for which the Noether
identities take the form

Dµ
�LYM ;CS

�A↵
µ

“ 0, (2.20)

where Dµf↵ “ Bµf↵ ` A�
µf

↵
��f

� (adjoint representation), while Dµg↵ “
Bµg↵ ´ A�

µf
�
�↵g� (co-adjoint representation).

———-

2.2.1 Exercise 5
In the case of Einstein gravity, show that the Noether identities

B⌫ �L
EH

�gµ⌫
` �µ

⌫�

�LEH

�g⌫�
“ 0 (2.21)

are equivalent to the contracted Bianchi identities

Gµ⌫
;⌫ “ 0. (2.22)

2.3 Irreducible gauge theories
One typical problem in field theory is to find all the Noether identities of a
given theory, a problem which can be naturally tackled in this framework. In
particular, we say that we have an irreducible gauge theory if we have a set
of Noether identities tR:ipµq

↵ Bpµqu such that

R:i
↵

„
�L

��i

⇢
“ 0, (2.23)

which is
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• Non-trivial:
R:ipµq
↵ � 0; (2.24)

• Irreducible: this means that there is no combination of the Noether iden-
tities and their derivatives which is trivial:

Z:↵p⌫qBp⌫q ˝ R:ipµq
↵ Bpµq « 0 ùñ Z:↵p�q “ 0; (2.25)

• Constitutes a generating set: this means that any Noether operator,

N ipµqBpµq satisfying (2.12), may be written in the form

N ip�qBp�q “ Z:↵p⌫qBp⌫q ˝ R:ipµq
↵ Bpµq ` M rjp⌫qip�qsBp⌫q

�L

��i
Bp�q, (2.26)

i.e., as a sum of two terms, one given by the Noether identities of the
generating set and the other vanishing on-shell (or, more precisely, an
antisymmetric combination of the left hand sides of the equations of mo-
tion and their derivatives).

To find such a generating set is in general hard. In the examples above, a
slightly tedious analysis of the left hand sides of the equations of motion of
the theory and their derivatives in jet space shows that the standard ones given
above constitute such a generating set. As we will see below, such an analysis
is in fact equivalent to showing that one has found all the non-trivial gauge
symmetries of the theory.

2.4 The Koszul-Tate complex
We have already introduced a nilpotent operator, the horizontal differential dH ,
together with its cohomological complex in order to have algebraic control on
functionals. Another differential, the Koszul-Tate differential �, and its coho-
mology will take care of the dynamics of the theory. In the case of irreducible
gauge theories, it is constructed as follows.

For each equation of motion �L
��i

, one introduces a Grassmann odd field �˚
i ,

whereas for each non-trivial Noether operator of the generating set R`ipµq
↵ Bpµq

(if any), one introduces a Grassmann even field C˚
↵. The definition of the total

derivative operator Bµ, of local functions, the horizontal complex and local
functionals is then extended so as to include (a polynomial dependence of)
these additional fields and their derivatives. In terms of generators, the Koszul-
Tate differential may then by defined through ��i “ 0 “ �xµ “ �dxµ, while

#
��˚

i “ �L
��i

,

�C˚
↵ “ R:i

↵ r�˚
i s, (2.27)

with the understanding that
r�, Bµs “ 0. (2.28)
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Equivalently, it may be represented by the odd vector field

� “ Bpµq
�L

��i

B
B�˚

ipµq
` Bp⌫q

`
R:i
↵ r�˚

i s˘ B
BC˚

↵p⌫q
. (2.29)

Further, assuming that all odd variables anticommute between themselves (so
that, for example, dxµ’s anticommute with �˚

i ’s), (2.28) becomes

t�, dHu “ 0. (2.30)

This vector field is nilpotent,

�2 “ 1

2
t�, �u “ 0, (2.31)

on account of (2.23).
The introduction of the additional fields provides an additional Z-grading

of the extended horizontal complex, the antifield number, which can be de-
scribed by the vector field

A “ �˚
ipµq

B
B�˚

ipµq
` 2C˚

↵p�q
B

BC˚
↵p�q

. (2.32)

Applied to a field, this operator gives back the same field multiplied by its
antifield number: so, for example,

A�i “ 0, A�˚2
i “ 2�˚2

i . (2.33)

If ⌦k denote the horizontal forms with definite antifield number k, then

� : ⌦k ›Ñ ⌦k´1. (2.34)

Since � reduces rather than increases the degree, one refers to it as boundary
rather than a co-boundary operator. Since it is nilpotent, one may define its
homology. This is the object of the following:

Theorem 3.

Hkp�,⌦q “
#
0, k ° 0,

⌦p⌃q » ⌦0{I, k “ 0
(2.35)

where we have defined the set of forms that vanish after the pull-back to ⌃ as

I “ t! P ⌦ : ! « 0u. (2.36)

Remark 5. A convenient way of describing functions (or horizontal forms) on
a surface embedded in a larger space is to consider the functions defined on
the whole space modulo those that vanish on the surface. It is in this sense that
one says that the construction above provides a homological resolution of the
horizontal complex ⌦p⌃q associated to the stationary surface.

Remark 6. Crucial in the proof of the first line of the theorem (also referred
to as “acyclicity of � in higher antifield number”) are properties (2.25) and
(2.26) of the generating set. For reducible gauge theories (for instance theories
involving p´ forms with p ° 1), the construction has to be suitably modified in
order for the theorem to continue to hold.
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2.5 Characteristic cohomology
Characteristic cohomology HppdH ,⌦p⌃qq contains important physical infor-
mation related to the equations of motion.

In the extended complex, it is encoded through

HppdH ,⌦p⌃qq » Hp
0 pdH |�q. (2.37)

Indeed, consider first a weakly closed p-form with zero antifield number

dH!
p
0 « 0. (2.38)

Since any (weakly) vanishing function is a linear combination of the equations
of motion and their total derivatives, we can write

dH!
p
0 “ kipµqBpµq

�L

��i
. (2.39)

This in turn is equivalent to

dH!
p
0 ` �!p`1

1 “ 0, (2.40)

where
!1 “ ´kipµq�˚

ipµq. (2.41)

For the coboundary condition, every weakly exact form

!p
0 « dH⌘

p´1
0 , (2.42)

for the same reason as above, can be written as

!p
0 “ dH⌘

p´1
0 ` �⌘p1. (2.43)

Hn´1pdH ,⌦p⌃qq, the characteristic cohomology in degree n ´ 1, classifies
the non-trivial conserved currents of the theory. Indeed, an n ´ 1-form of zero
antifield number can be written as

!n´1
0 “ jµ

`
dn´1x

˘
µ
, (2.44)

with
`
dn´kx

˘
µ1...µk

“ 1

k!pn ´ kq!✏µ1...µk⌫k`1...⌫ndx
⌫k`2 . . . dx⌫n . (2.45)

This implies that

dH!
n´1
0 « 0, ô Bµjµ « 0. (2.46)

Similarly,
⌘n´2
0 “ krµ⌫s `

dn´2x
˘
µ⌫

, (2.47)

so that a trivial conserved current as in (2.43) is explicitly given by

jµ “ B⌫krµ⌫s ` tµ, (2.48)

with tµ « 0. In other words, trivial conserved currents are given by divergences
of “superpotentials” krµ⌫s and by on-shell vanishing ones.
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Example 3. (Energy-momentum tensor) For a scalar field with Lagrangian
given in (2.6), the energy-momentum tensor

T µ
⌫ “ Bµ�B⌫� ´ �µ⌫L

KG, (2.49)

provides 4 non-trivial conserved currents since one may easily check that
BµT µ

⌫ « 0. The same holds for electromagnetism with Lagrangian given in
(2.17) for which

T µ
⌫ “ F µ�B⌫A� ´ �µ⌫L

Max. (2.50)

Remark 7. A concrete expression for a non-trivial conserved current is merely
a representative of an equivalence class defined up to the addition of trivial
conserved currents. This is important for instance when one wants to couple
matter fields to gravity in the context of general relativity, where a symmetric
energy momentum-tensor is required so that it can be contracted with the met-
ric. This is the case for the energy-momentum tensor T µ⌫ of the scalar field
but not for the one of electromagnetism given in (2.50). In this context, the Be-

linfante procedure consists in constructing a symmetric representative of the
energy-momentum tensor by using trivial conserved currents.

———-

2.5.1 Exercise 6
Show that the energy-momentum tensor (2.50) differs from the symmetric ex-
pression

T µ
⌫ “ ´

ˆ
F µ�F�⌫ ` 1

4
F ⇢�F⇢��

µ
⌫

˙
, (2.51)

by trivial terms.

———-

For theories with no non-trivial Noether identities, like scalar field theory
for example, there is no additional characteristic cohomology besides the con-
served currents in form degree n ´ 1,

Hp pdH ,⌦p⌃qq “ 0, p † n ´ 1. (2.52)

For proper irreducible gauge theories, it can be shown that there is no char-
acteristic cohomology in form degree p † n ´ 2. The only additional charac-
teristic cohomology is thus in form degree p “ n ´ 2. The conditions that a
form be closed but not exact become in this case

B⌫krµ⌫s « 0, kµ⌫ � B�⌘rµ⌫�s. (2.53)

In electromagnetism, we will show that there is a single class with representa-
tive given by kµ⌫ “ F µ⌫ , which indeed satisfies

B⌫F µ⌫ « 0. (2.54)
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This cohomology class captures electric charge contained in a closed surface
S through

Q “
¿

t“cte,S

F µ⌫pd2xqµ⌫ “
ª

t“cte,S

F 0id�i. (2.55)

In linearized gravity, ADM charges fall into this class.
The proofs of these statements, as well as of the generalized Noether the-

orems to be discussed in the next section, rely on the following isomorphisms
between cohomology classes:

Theorem 4 (inversion & descent equations).

Hn´p
0 pdH |�q{�npR » Hn´p`1

1 p�|dHq » ¨ ¨ ¨ » Hn
p p�|dHq, (2.56)

which in turn can be proved by elementary homological techniques of “diagram
chasing”.



Chapter 3

Symmetries and longitudinal
differential

Up to now we have discussed Noether identities and conservation laws from
the perspective of the geometry and topology of the surface of the equations
of motion. For a stationary surface originating from a variational principle, we
will now relate the former to gauge and the latter to global symmetries in terms
of complete and generalized Noether theorems.

3.1 Prolongation of transformations
Given a section

pxµ,�ipxqq (3.1)

of the jet bundle, a generalized vector field on J0pEq

v “ aµ
B

Bxµ
` bi

B
B�i

, (3.2)

where aµ and bi are local functions, defines an infinitesimal transformation of
a section, as `

xµ ` "aµ|s,�ipxq ` "bi|s
˘
. (3.3)

The first term thus encodes the action of the transformation on the spacetime
coordinates, while the second term encodes the variation of the field. The
transformation then produces the new section

�1ipx ` "aq “ �ipxq ` "bi|s, (3.4)

so that the variation of the field will have not only the intrinsic term bi, but also
a drag term including its derivative

�Q�
i ” Qi, Qi “ `

bi ´ a⌫�i
⌫

˘
. (3.5)

Qi is called the characteristic representative of the transformation. Through
the characteristic representative we can define the prolongation of the trans-
formation from the fields to their derivatives, i.e. to the infinite jet space, in

22
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terms of a so-called evolutionary vector field,

�Q “ BpµqQ
i B
B�i

pµq
. (3.6)

The prolongation is defined in such a way that the transformation commutes
with total derivatives:

r�Q, Bµs “ 0. (3.7)

3.2 Symmetries of the equations of motion
When studying field theories, we can encounter two types of symmetries: sym-
metries of the equations of motion and symmetries of the action. A symmetry
of the equations of motion is defined by

�Q
�L

��i
« 0. (3.8)

In particular, this is equivalent to saying that given a section �̄i solving the
Euler-Lagrange equations, then the transformed section

�̄ipxq ` ✏Qi|�ipxq (3.9)

is a solution of the Euler-Lagrange equations to order ✏2.

3.3 Variational symmetries
Symmetries of the action, also called variational symmetries in this algebraic
context, are defined by

�QL “ Bµkµ
Q, (3.10)

for some local functions kµ
Q. Notice that since we have defined Lagrangians

as equivalence classes up to total derivatives this definition does not depend on
the representative. We can rearrange the above condition, using

�QL “ BpµqQ
i BL
B�i

pµq
(3.11)

together with the definition of Euler-Lagrange derivative (1.18) in order to
write

Qi �L

��i
“ Bµ

ˆ
kµ
Q ´ BL

B�i
µ

Qi ` . . .

˙
” BµjµQ, (3.12)

which is the usual statement of Noether’s first theorem (to wit, that a variational
symmetry Qi gives rise to a conserved current jµQ; we will return to that later).

A question one is led to ask is whether every variational symmetry is also
a symmetry of the equations of motion and vice versa. In fact, only the direct
implication is true. Indeed, for general local functions f, g,Qi, one can show
that

p´q|µ|Bpµq

«
BpB⌫fq
B�i

pµq
g

�
“ ´p´q|µ|Bpµq

«
Bf

B�i
pµq

B⌫g
�
, (3.13)
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�Q
�f

��i
“ �

��i
p�Qfq ´ p´q|µ|Bpµq

«
BQj

B�i
pµq

�f

��j

�
. (3.14)

Applying the latter equation to the case f “ L, with variational Qi, the first
term on the right-hand side vanishes since the Euler-Lagrange derivative of a
total derivative is zero,

�

��i
pBµkµ

Qq “ 0. (3.15)

The second term, on the other hand, is weakly zero since it is proportional to
the equations of motion and their derivatives. Thus we find

�Q
�L

��i
« 0 (3.16)

i.e., that Qi is a symmetry of the equations of motion.
In order to see that the other implication does not hold in general, it suffices

to see a simple counterexample. For the massless Klein-Gordon Lagrangian,

L “ ´1

2
pBµ�q2, (3.17)

the field equation is determined by

�L

��
“ l�. (3.18)

An equations of motion symmetry is given by

Q “ ��, (3.19)

with � constant. However,
�QL “ 2�L, (3.20)

which cannot be a total derivative since the Euler-Lagrange equations of mo-
tion are non-trivial, while the Euler-Lagrange derivative would annihilate any
total derivative.

Remark 8. Non-Noetherian symmetries, i.e., symmetries of variational equa-
tions which are not variational symmetries, do play an important role in the
context of integrable systems.

Example 4. (Translations) For a translation in the direction of x⌫ , we have

aµ⌫ “ �µ⌫ , bi⌫ “ 0. (3.21)

Equation (3.3) then implies that

Qi
⌫ “ ´�i

⌫ , (3.22)

with prolongation given by

�Q⌫ “ ´�i
ppµq⌫q

B
B�i

pµq
“ ´B⌫ ` B

Bx⌫ . (3.23)
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We see in particular that a Lagrangian with no explicit dependence on space-
time coordinates is translation invariant,

BL
Bx⌫ “ 0 ùñ �Q⌫L “ ´B⌫L “ Bµp´L�µ⌫ q, (3.24)

with associated Noether current jµ⌫ “ BL
�iµ
�i
⌫ ´ �µ⌫L ” T µ

⌫ , the (canonical)
energy-momentum tensor.

———-

3.3.1 Exercise 7
Show that �⇠� “ ⇠⌫B⌫� (i) is a variational symmetry of the Klein-Gordon
Lagrangian if (i) ⇠⌫ is a Killing vector of flat space; (ii) ⇠⌫ is a conformal
Killing vector in 2 spacetime dimensions in the massless case. Show that
�⇠Aa

µ “ ⇠⌫B⌫Aa
µ ` Bµ⇠⌫Aa

⌫ is a variational symmetry of the Yang-Mills La-
grangian if (i) ⇠⌫ is a Killing vector of flat space; (ii) ⇠⌫ is a conformal Killing
vector of flat space in 4 spacetime dimensions.

Hint: Contract the equation defining the energy-momentum tensor by ⇠⌫
and conclude using the properties of the latter.

———-

An important property of evolutionary vector fields is that they form an
algebra under the commutator of vector vector fields,

r�Q1 , �Q2s “ Bpµq
`
�Q1Q

i
2 ´ �Q2Q

i
1

˘ B
B�i

pµq

” BpµqrQ1, Q2si B
B�i

pµq
,

(3.25)

where we have used (3.7) repeatedly.
Both equations of motion symmetries and variational symmetries form a

sub-algebra thereof. The latter follows because

r�Q1 , �Q2sL “ �Q1Bµkµ
Q2

´ �Q2Bµkµ
Q1

“ Bµ
`
�Q1k

µ
Q2

´ �Q2k
µ
Q1

˘
.

(3.26)

———-

3.3.2 Exercise 8
Let jµQ be the Noether current associated to a variational symmetry Qi with
jQ “ jµpdn´1xqµ the associated n ´ 1 form. Define the (covariant) Dickey
bracket through

tjQ1 , jQ2u “ �Q1jQ2 . (3.27)
Prove that

tjQ1 , jQ2u “ jrQ1,Q2s ` trivial, (3.28)
where trivial includes constants in spacetime dimension 1. Hint: apply �Q1 to
djQ2 “ Qi

2
�L
��i

dnx and use (3.14).

———-
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3.4 Gauge Symmetries
A gauge symmetry corresponds to an (infinite-dimensional) sub-set of varia-
tional symmetries that depend on an arbitrary local function f and its deriva-
tives. It is defined by

�f�
i “ Qipfq “ QipµqBpµqf, �fL “ Bµkµ

f . (3.29)

The most simple example that comes to mind is that of electromagnetism,
where

�fAµ “ Bµf. (3.30)

Gauge symmetries can also be characterized through the important

Theorem 5. (Noether’s second theorem) There is a one-to-one correspondence
between Noether identities and gauge symmetries.

Proof. Let us first prove that we can associate a Noether identity to a gauge
symmetry. Indeed, we have

Qipfq �L
��i

“ Bµjµf . (3.31)

By doing multiple integration by parts, we can rewrite this equation as

p´q|µ|fBpµq

„
Qipµq �L

��i

⇢
” fQ:i

„
�L

��i

⇢
“ Bµ

`
jµf ´ tµf

˘
, (3.32)

where tµf vanishes on-shell, and we have defined the Noether operator Q:i,
which is the formal adjoint of QipµqBpµq. In particular, since f is arbitrary, we
can replace it by a new independent field on the jet-space. This allows one to
take the Euler-Lagrange derivative with respect to f . Since the Euler-Lagrange
derivative annihilates total derivatives, we thus arrive at the Noether identity

Q:i
ˆ
�L

��i

˙
“ 0. (3.33)

To prove the converse, let us start by multiplying a Noether identity by an
arbitrary local function f ,

fN i

ˆ
�L

��i

˙
“ 0. (3.34)

It is then again only a matter of multiple integrations by parts to arrive at an
equation of the form (3.31), with Qipfq “ N :ipfq, and jµf “ t1µ

f « 0.

Remark 9. Let us note also that, when combining (3.32) with the Noether
identity (3.33),

Bµ
`
jµf ´ tµf

˘ “ 0, ùñ dHpjf ´ tf q “ 0, (3.35)

so that jf ´ tf is a closed n ´ 1-form. However, we know from Theorem 2 that

Hn´1pdHq “ �n´1
0 R. (3.36)
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This means that
jf “ tf ` dH⌘

pn´2q ` �n´1
0 C, (3.37)

which is the sum of a term which vanishes on-shell and an exact term, up to
a constant C in 1 spacetime dimension, i.e., in classical mechanics. We thus
obtain as a corollary the result that the Noether current associated to a gauge

symmetry is always trivial.

Remark 10. Because all theories, including for instance scalar field theories,
admit trivial Noether identities, they also admit gauge symmetries. Note how-
ever that to a trivial Noether identity corresponds a trivial gauge symmetry in
the sense that the characteristic Qirf s « 0. More generally, again as a cor-
rollary, any gauge symmetry in an irreducible gauge theory can be written in
terms of a generating set as

Qipfq “ Ri
↵ pZ↵pfqq ` p´q|µ|Bpµq

ˆ
M rjp⌫qipµqsBp⌫q

�L

��j
f

˙
. (3.38)

———-

3.4.1 Exercise 9
Study the global symmetries and the conserved currents of the first order Hamil-
tonian action

SH “
ª
dtrpi 9qi ´ Hpq, p, tqs. (3.39)

Hint: Use the fact that one can show that every symmetry that vanishes on-shell
is trivial, i.e., is an antisymmetric combination of the equations of motion and
thus a trivial gauge symmetry. The Hamiltonian equations of motion can then
be used to remove all time derivatives in the characteristic of global symme-
tries, so that one may assume

�qi “ Qipq, p, tq, �pi “ Pipq, p, tq. (3.40)

With this starting point, write the out the condition that such symmetry is a
variational symmetry in Noether form

ZA �LH

�zA
“ d

dt
j, zA “ pqi, piq, (3.41)

by identifying time-derivatives to conclude that, up to constants, conserved
currents are determined by jpzA, tq, such that

B
Btj ` tj,Hu “ 0, (3.42)

and the associated global symmetries are given by the Hamitlonian vector field
generated by j,

ZA “ !BA Bj
BzB , !AB “

ˆ
0 �il

´�kj 0

˙
(3.43)

Show that the associated Dickey bracket is the Poisson bracket.

———-
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3.5 Generalized Noether theorems
The tools developed so far also allow us to give a more complete version of
Noether’s first theorem than can be found in Noether’s original paper or in
field theory textbooks.

Theorem 6. (Noether’s first theorem) There is a one-to-one correspondence
between non-trivial Noether symmetries and non-trivial Noether currents, which
we can write as

rQis –Ñ rjn´1s, (3.44)

where the equivalence classes rQis are defined by

Qi „ Qi ` Ri
↵pf↵q ` p´q|µ|Bpµq

„
M rjp⌫qipµqsBp⌫q

�L

��i

⇢
, (3.45)

while jn´1 „ jn´1 ` tn´1 ` dH⌘n´2 ` �n´1C with tn´2 « 0.

Proof. The proof follows by spelling out the details of Theorem 4 in form
degree p “ n ´ 1,

Hn
1 p�|dHq » Hn´1

0 pdH |�q{�n´1R. (3.46)

Indeed, the RHS has already been treated in the context of characteristic coho-
mology and its Koszul-Tate resolution. For the LHS, we note that in maximal
form degree n, by uniquely fixing the dH-exact term in the coboundary condi-
tion, canonical representatives in antifield number 1 and 2 are given by

!n
1 “ �˚

iQ
idnx,

!n
2 “

ˆ
f↵C˚

↵ ` 1

2
p´q|µ|BpµqrM jp⌫qripµqs�˚

jp⌫qs�˚
i

˙
dnx,

(3.47)

with Qi, f↵,M rjp⌫qipµqs local functions. For such a representative in antifield
number 1, the cocycle condition �!n

1 ` dH!
n´1
0 “ 0 reduces to the condition

that Qi defines a variational symmetry,

Qi �L

��i
“ Bµjµ. (3.48)

For the coboundary condition !n
1 “ �⌘n2 ` dHp¨q, one may assume that ⌘n2 is of

the form of !n
2 above by suitably adjusting the dH-exact term. Taking an Euler-

Lagrange derivative of the resulting equation with respect to �˚
i then leads to

Qi “ Ri
↵pf↵q ` p´q|µ|BpµqrM ripµqjp⌫qs �L

��j
s.

Remark 11. From the viewpoint of Noether’s first theorem, all gauge symme-
tries should be considered as trivial; physically distinct “global” symmetries
are thus described by equivalence classes of variational symetries, up to gauge
symmetries.
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Under suitable assumptions, one may then also show that

Hn
p p�|dHq “ 0, p ° 2, (3.49)

in irreducible gauge theories. Theorem 4 then allows one to conclude that there
is no characteristic cohomology, up to constants in spacetime dimensions p.

There remains the case of p “ 2,

Hn
2 p�|dHq » Hn´2

0 pdH |�q{�n´2
0 R, (3.50)

By a similar, but more involved, reasoning to that used for p “ 1, it can be
shown that the computation of characteristic cohomology in degree n´2 (up to
constants in spacetime dimensions 2) reduces to the problem of finding physi-
cally distinct global reducibility parameters, that is to say equivalence classes
of rf↵s’s such that

Ri
↵pf↵q « 0, f↵ „ f↵ ` t↵, t↵ « 0. (3.51)

In a large class of theories, such as Yang-Mills theories or general relativity
in spacetime dimensions greater or equal to three, one may show that the equiv-
alence classes of f↵’s are determined by field independent ordinary functions
f̄↵pxq satisfying the strong equality

Ri
↵pf̄↵q “ 0. (3.52)

In this case, like in the case of Noether’s first theorem, there is an explicit
formula for the associated “surface charges”, that is to say representatives for
the corresponding characteristic cohomology. Indeed, by repeated integrations
by part, one has

Ri
↵pf↵q �L

��i
“ f↵R:i

↵

ˆ
�L

��i

˙
` BµSµi

f

ˆ
�L

��i

˙
. (3.53)

The first term on the right-hand side is zero because of the Noether identities.
This means that Sµi

f p �L
��i

q represent the weakly vanishing Noether currents as-
sociated to the gauge symmetries Ri

↵pf↵q, that can readily be worked out by
keeping the boundary terms in (3.53). When using field independent reducibil-
ity parameters f̄↵ satisfying (3.52), the right hand side vanishes as well. It
follows that the n ´ 1 form Sf̄ “ Sµi

f r �L
��i

spdn´1xqµ satisfies

dHSf̄ “ 0. (3.54)

Because the horizontal cohomology of degree n ´ 1 is trivial (cf. Theorem 2),
this means that

p0 «qSf̄ “ dHkf̄ , kf̄ “ ⇢HpSf̄ q. (3.55)

In other words, all linearly independent surface charges can be explicitly con-
structed by applying the contracting homotopy of the horizontal complex to
the weakly vanishing Noether current associated with linearly independent so-
lutions of (3.52).
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In the general case, where one has a basis rf↵As of possibly field dependent
global reducibility parameters, one may show that ⇢HpSfAq still provide a basis
of characteristic cohomology in degree n ´ 2 (up to constants in spacetime
dimension 2).

Working out explicit expressions for the surface charges is direct but quite
lenghty in the case of second order field equations, that is why we will not do
so here.

Example 5. Let us give some examples of field-independent reducibility pa-
rameters. In the case of electromagnetism, where

�fAµ “ Bµf, (3.56)

we find

Bµf̄ “ 0, ùñ f̄ “ const, (3.57)

which characterizes the electric charge.
For the case of Yang-Mills and Chern-Simons theory based on a sem-simple

Lie group, and of General Relativity, condition (3.52) reads

Dµf̄ “ 0, L⇠̄gµ⌫ “ 0, (3.58)

both of which admit only the trivial solutions f̄↵ “ ⇠̄µ “ 0 because the equa-
tions need to hold for arbitrary gauge potentials or metrics.

In the case of Yang-Mills theory or gravity linearized around a background
solution ḡµ⌫ or Ā, a generating set of gauge transformations is given by

�faµ “ DĀ
µ f, �hµ⌫ “ L⇠ḡµ⌫ . (3.59)

In case the background solution is flat for instance, Ā “ g´1dg, ḡµ⌫ “ ⌘µ⌫ , the
solutions to equation (3.52) are given by

f̄ “ �↵g´1T↵g, ⇠̄µ “ aµ ` !rµ⌫sx
⌫ , (3.60)

and the associated surface charges are related to color charges, respectively
the ADM charges in general relativity [21, 22].

Remark 12. The above results on surface charges associated to global re-
ducibility parameters can be extended to the case of asymptotic symmetries
and the associated current algebras.

3.6 Gauge symmetry algebra
From their definitions, it follows with little work that gauge symmetries form
an ideal in the algebra of variational symmetries, while on-shell vanishing
gauge symmetries in turn form an ideal in the sub-algebra of gauge symme-
tries. The latter may thus be quotiented away and the resulting quotient is the
algebra of non-trivial gauge symmetries we are interested in.
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The information on non-trivial gauge symmetries is contained in the gen-
erating set. We may start by considering gauge symmetries of the form �✏�i “
Ri
↵p✏↵q with ✏↵pxq arbitrary functions. The commutator r�✏1 , �✏2s is a varia-

tional symmetry that depends on arbitrary functions. Up to on-shell vanishing
gauge symmetries, it may thus be written in terms of the generating set,

�"1R
i
↵p"↵2 q ´ �"2R

i
↵p"↵1 q « Ri

�

´
f�↵�p"↵1 , "�2 q

¯
, (3.61)

for some bi-differential, skew-symmetric operators “structure operators”

f�pµqpp⌫q
↵� Bpµq✏

↵
1Bp⌫q✏

�
2 . (3.62)

From the identity

r�"1 , r�"2 , �"3ss ` cyclicp1, 2, 3q “ 0, (3.63)

where “cyclic” stands for cyclic permutations, and the irreducibility assump-
tion for the generating set, it then follows that the structure operators satisfy
the generalized Jacobi identities,

�"1f
�
↵�p"↵2 , "�3 q ` f��⇢p"�1, f⇢↵�p"↵2 , "�3 qq ` cyclicp1, 2, 3q « 0. (3.64)

This algebraic structure of vector fields in involution may be captured through
a suitable differential. Instead of the arbitrary functions ✏↵pxq one introduces
so-called ghosts, that is to say Grassmann odd fields C↵pxq, that are promoted
to additional coordinates in the fiber of the jet-bundle. Defining the action on
generators as

��i “ Ri
↵pC↵q, �C� “ ´1

2
f�↵�pC↵, C�q, (3.65)

and extending to the jet-bundle as

� “ Bpµq
`
Ri
↵pC↵q˘ B

B�i
pµq

´ 1

2
Bpµq

`
f�↵�pC↵, C�q˘ B

BC↵
pµq

, (3.66)

it follows from (3.61) and (3.64) that

�2 « 0. (3.67)

Remark 13. When using general non-trivial gauge symmetries with arbitrary
local function f↵ instead of arbitrary functions ✏↵, equation (3.61) becomes

�f1R
i
↵pf↵2 q ´ �f2R

i
↵pf↵1 q « Ri

� prf1, f2s�Aq ,
rf1, f2s�A “ f�↵�pf↵1 , f�2 q ` �f1f

�
2 ´ �f2f

�
3 ,

(3.68)

while (3.64) turns into the statement that, on-shell, the bracket rf1, f2sA satis-
fies the Jacobi identity. On-shell, the algebraic structure that emerges in this
way for irreducible gauge theories is that of a Lie algebroid (compare for in-
stance to section 2.1 of [23]).

———-
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3.6.1 Exercise 10
Show that

�✏X
i “ ´↵ij✏j, �✏⌘iµ “ Bµ✏i ` Bi↵jk⌘jµ✏k, (3.69)

are gauge symmetries of the Poisson-Sigma model. Work out the structure
functions and show that the gauge algebra is open. Work out the coefficient of
the on-shell vanishing terms.

———-



Chapter 4

Batalin-Vilkovisky formalism

The (original) aim of the Batalin-Vilkovisky (BV) formalism is to control
gauge invariance during the perturbative quantization of gauge theories. It
builds on the methods of Faddeev and Popov, Slavnov, Taylor, Zinn-Justin,
Becchi-Rouet-Stora, and Tyutin designed for Yang-Mills type theories with
closed algebras involving structure constants (see [24] for a thorough review),
and extends them to generic gauge theories with field-dependent structure op-
erators and open algebras. Besides [1] and the references in the introduction
of [17], useful reviews include [25] and [26], section 15.9.

4.1 Motivation
Up to now we have dealt with classical gauge field theories. If one is interested
in the perturbative quantization of field theories, the main formula, encoding
the Feynman rules for Green’s functions, is

ZrJs
Z0r0s “

≥rd�se i
~pS0r�s`SI r�s`JA�

Aq
≥rd�se i

~S0r�s “ e
i
~SIr ~

i
�
�J se i

2~JApD´1qABJB (4.1)

Here

S0 “ ´1

2
�ADAB�

B, (4.2)

is the quadratic part of the Larangian, including i✏ terms so that a unique in-
verse pD´1qAB exists, while SI encodes cubic and higher order vertices. In the
case of gauge theories, the non-trivial aspects we have treated at the classical
level have direct counterparts at the quantum level: a consequence of non-
trivial gauge symmetries and Noether identities is that the quadratic kernel of
the action is no longer invertible.

Remark 14. Note that in this notation (due to DeWitt), the index A “ pi, xµq
includes the spacetime (or momentum) dependence, summation over A then
includes a spacetime (or momentum) integral and �AB includes Dirac deltas.

———-

33
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4.1.1 Exercise 11
In the case of the Lagrangian for free electromagnetism, show that the non-
invertibility of the quadratic kernel in momentum space is directly related to
gauge invariance. Hint: What is the eigenvector of eigenvalue zero of the
quadratic kernel ?

———-

This implies that we cannot directly define a propagator. In order to per-
form perturbative calculations, we then have to gauge-fix the system in such
a way that the quadratic kernel becomes invertible. However, if one gauge-
fixes the theory in a pedestrian way one looses all information about the orig-
inal gauge invariance of the system: how can we be sure then that a different
gauge-fixing would not give us different physical results?

The (original) aim of the Batalin-Vilkovisky (BV) formalism is to make
the quadratic kernel invertible while retaining the consequences of gauge in-
variance.

4.2 BV antibracket, master action and BRST dif-
ferential

The core of the formalism is the introduction of an anti-canonical structure.
This is possible because during our classical treatment we have introduced,
besides the original fields �i, ghosts C↵ for an irreducible generating set of
gauge symmetries. This extended set of fields is denoted by �a “ p�i, C↵q.
Associated antifields �˚

a “ p�˚
i , C

˚
↵q have been introduced for the Koszul-Tate

resolution of the equations of motion. It is then possible to consider fields and
antifields as conjugated variables through an odd graded Lie bracket called the
antibracket. The antibracket is defined, for two arbitrary functionals F,G, as

pF,Gq “
ª
dnx

ˆ
�RF

��apxq
�LG

��åpxq ´ �RF

��åpxq
�LG

��apxq
˙
, (4.3)

where the L/R superscripts on the functional derivatives denote that they are
taken respectively from the left or from the right. Remember that when deal-
ing with anticommuting variables right and left derivatives can differ by sign
factors. Remember also that in the case of a local functional

F “
ª
dnx f, (4.4)

the functional derivative is given by the Euler-Lagrange derivative of its inte-
grand

�RF

��apxq “ �Rf

��a

����
�pxq

, (4.5)

evaluated at a section, with similar relations for antifields. With respect to the
Z-grading, called ghost number,
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gh 0 1 -1 -2
�i C↵ �˚

i C˚
↵

,

the antibracket has ghost number 1, in the sense that if Fgi is a functional of
ghost number g1, then

p¨, ¨q : Fg1 ˆ Fg2 ›Ñ Fg1`g2`1. (4.6)

The antibracket has the following properties:
graded antisymmetry:

pF,Gq “ ´p´qp|F |`1qp|G|`1qpG,F q, (4.7)

graded Jacobi identity:

pF, pG,Hqq “ ppF,Gq, Hq ` p´qp|F |`1qp|G|`1qpG, pF,Hqq, (4.8)

where |G| denotes the Z2-grading of G, which is 1 for fermionic quantities and
0 for bosonic ones.

Note also that for a bosonic functional B, one can easily show that

1

2
pB,Bq “

ª
dnx

�RB

��apxq
�LB

��åpxq “ ´
ª
dnx

�RB

��åpxq
�LB

��apxq , (4.9)

when using that
�RF

��apxq “ p´q|a|p|a|`|F |q �LF

��apxq , (4.10)

and similar relations for antifields, with |�a| “ |a| and |�˚
a| “ |a| ` 1 and

gh�˚
a “ ´gh�a ´ 1.

For an irreducible gauge theory, the BV master action is a functional of
ghost number 0 that starts with the classical action to which one couples though
antifields an irreducible generating set of gauge transformations with gauge
parameters replaced by ghosts,

S “
ª
dnx

“
L ` �˚

iR
i
↵pC↵q ` . . .

‰
, (4.11)

where L is the classical Lagrangian density. The higher order terms hidden in
. . . are completely determined by requiring that S satisfies the master equa-
tion

1

2
pS, Sq “ 0. (4.12)

The (antifield-dependent) BRST differential is canonically generated through
the master action (in the same sense as in classical mechanics the Hamiltonian
is the canonical generator of time translations in the Poisson bracket),

s “ pS, ¨q. (4.13)

It raises the ghost number by 1 and is nilpotent, s2 “ 0. Indeed, the graded
Jacoby identity implies that

pS, pS, ¨qq “ ppS, Sq, ¨q ´ pS, pS, ¨qq “ ´pS, pS, ¨qq, (4.14)

when using the master equation.
With these ingredients, it can be proven that
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Theorem 7. The solution to the master equation exists, it is uniquely defined
up to anticanonical transformations1, and the solution is a local functional.

An important additional degree to prove this theorem on the existence of
the master action and to analyse the antifield dependent BRST differential is
the antifield number. As we have seen before, for irreducible gauge theories, it
assigns 1 to the �˚

i and their derivatives, 2 to the C˚
↵ and their derivatives, and

0 to all other variables. It then follows that the classical action is of antifield
number 0, the second term in (4.11) is of antifield number 1. More precisely,
the theorem states that the . . . in (4.11) are terms of antifield number higher
or equal to 2. Accordingly, the expansion of BRST differential in terms of the
antifield number is

s “ � ` � `
ÿ

k•0

sk, (4.15)

where � lowers the antifield number by 1, � preserves the antifield number,
while sk raises the antifield number by k.

From (4.13), it follows that the action of the BRST differential on fields
and antifields is explicitly given by

#
s�apxq “ ´ �RS

��å pxq ,

s�˚
apxq “ �RS

��apxq .
(4.16)

Since S is a local functional, the BRST differential can be extended to the
derivatives of the fields and antifields and written as a generalized vector field
on the jet-bundle that commutes with total derivatives.

It also follows from (4.11) and the definition of the antifield number that �
coincides with the Koszul-Tate differential analysed previously,

��˚
i “ �L

��i
, �C˚

↵ “ R`i
↵ r�˚

i s, ��a “ 0, (4.17)

while the BRST differential encodes gauge invariance in the sense that

��i “ Ri
↵pC↵q, (4.18)

i.e., to lowest order in antifield number, the BRST transformation of the orig-
inal fields is a gauge transformation with gauge parameters replaced by anti-
commuting ghosts.

The higher order terms in the master action encode how complicated the
algebra of gauge symmetries actually is. For instance, the next term is given in
terms of the structure operators of the algebra,

ª
dnx

1

2
C˚
↵f

↵
��pC�, C�q. (4.19)

This terms determines the BRST transformations of the ghosts to lowest order
in antifield number,

�C↵ “ ´1

2
f↵��pC�, C�q. (4.20)

1Anticanonical transformations are the obvious generalizations of the canonical transfor-
mations of Hamiltonian mechanics.
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For theories with closed algebras involving structure constants or field-
independent structure operators, this is the only additionl term needed in the
master action.

———-

4.2.1 Exercise 12
Check that in this particular case, the expansion of the BRST differential ac-
cording to antifield number stops in degree 0, s “ � ` �, and work out ��˚

i ,
�C˚

↵.

———-

The first, simple example is as usual electromagnetism, for which

�i “ Aµ, RµpCq “ BµC. (4.21)

In this case, no additional nonlinear terms have to be added to the master action,
which then is

S “
ª
d4x

„
´1

4
Fµ⌫F

µ⌫ ` A˚µBµC
⇢
. (4.22)

For nonabelian gauge theories based on semisimple Lie algebras, a case
which includes both Yang-Mills and Chern-Simons theories, the only addi-
tional nonlinear term required is the one involving the structure constants,

S “ SYM{CSrAs `
ª
dnx

„
A˚µ
↵ DµC

↵ ` 1

2
C˚
↵f

↵
��C

�C�

⇢
. (4.23)

Remark 15. For electromagnetism, Yang-Mills and Chern-Simons theories,
couplings to matter fields yi, which can be (complex) scalars, Dirac or Weyl
fermions that transform under a matrix resesentation representation T↵

i
j of the

gauge algebra,
rT↵, T�s “ f�↵�T�, (4.24)

are introduced as follows. In the Lagrangian LM ry, Bys, supposed to be invari-
ant under �kyi “ ´k↵T↵

i
jy

j with k↵ constant, one replaces Bµyi by Dµyi “
Bµyi ` A↵

µT↵
i
jy

j . It the follows that LM ry,Dys is invariant under the gauge
transformations �✏A↵

µ and �✏yi “ ´✏↵T↵ijyj with spacetime dependent gauge
parameters ✏↵pxq. The master action for the complete theory is then the one for
electromagnetism, Yang-Mills and Chern-Simons theories to which one adds

ª
dnx

`
LM ry,Dys ´ C↵T↵

i
jy

jy˚
i

˘
. (4.25)

For General Relativity, one introduces diffeomorphism ghosts ⇠µ, and in-
stead of structure constants, one deals with field-independent structure opera-
tors, since

�⇠gµ⌫ “ ´L⇠gµ⌫ , (4.26)



4 Batalin-Vilkovisky formalism 38

and
r�⇠1 , �⇠2sgµ⌫ “ ´Lr⇠1,⇠2sgµ⌫ ., (4.27)

The BV master action in this case is

S “
ª
dnx

”a|g|R ` g˚µ⌫L⇠gµ⌫ ` ⇠˚
µB⌫⇠µ⇠⌫

ı
. (4.28)

Finally for the Poisson-Sigma model, based on Exercise 10, one can show
that the BV master action is given by [27]

S “ SPSM `
ª
d2x

”
´ X˚

i ↵
ijCj ` ⌘˚iµpBµCi ` Bi↵jk⌘jµCkq

` 1

2
C˚iBi↵jkCjCk ` 1

4
✏µ⌫⌘

˚iµ⌘˚j⌫BiBj↵klCkCl

ı
, (4.29)

with ✏01 “ 1.

4.3 Gauge fixation
We already discussed how, because of gauge symmetry, the quadratic kernel
of the action is non-invertible. In fact, this is not changed in the master ac-
tion (4.11), since we have not introduced any additional terms quadratic in the
classical fields. In order to have an invertible quadratic kernel and thus well-
defined free propagators, allowing us to perform computations in perturbation
theory, we still need to gauge-fix the theory.

In order to do so, one usually has to introduce more fields and antifields, be-
longing to the so called nonminimal sector: for theories of Yang-Mills type,
these will be the fermionic antighosts C̄↵ of ghost number ´1, the bosonic
Lagrange multiplier (also called Nakanishi-Lautrup auxiliary field) B↵ of
gost number 0 and their respective antifields C̄˚

↵, B
˚
↵ of respective ghost num-

bers 0,´1. The complete set of fields is then �a “ p�i, C↵, C̄↵, B↵q.
The master action is extended to the non-minimal sector through

SNM “ S ´
ª
dnxC̄˚

↵B
↵. (4.30)

The BRST transformation of these new fields generated by S are then

sC̄↵ “ B↵, sB↵ “ 0, (4.31)
sC̄↵̊ “ 0, sB˚

↵ “ ´C̄˚
↵, (4.32)

so that it is simply a shift symmetry, not affecting the physics. From the point of
view of the cohomology of s, C̄↵ and B↵, their antifields and all their deriva-
tives form so-called contractible pairs, which means that they do not con-
tribute to any of the relevant cohomology groups. They are only needed as a
convenient means to fix the gauge.

This is done through a so-called gauge-fixing fermion  r�s, which is a
fermionic functional of the fields alone of ghost number ´1 (and thus neces-
sarily dependent on fields from the non-minimal sector). For a large class of
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gauges in Yang-Mills type theories for example, it may be choosen as

 “
ª
dnxC̄↵

ˆ
BµAµ� ´ ⇠

2
B�

˙
g↵�, (4.33)

where g↵� is the Cartan-Killing metric of the gauge group, that can be used,
together with its inverse, to lower and raise Lie algebra indices.

The gauge-fixed action is then defined by a shift of the antifields by a ”func-
tional gradient” term of the gauge-fixing fermion:

S r�, �̃˚s “ SNM

„
�, �̃˚ ` � 

��

⇢
. (4.34)

In the specific case of Yang-Mills type theories in which  is defined by (4.33)
and the solution of the master action is linear in antifields, the gauge-fixed
action is

S r�, �̃˚s “ SYM,CS ´ s ´
ª
dnx s�a�̃˚

a, (4.35)

with

´ s “
ª
dnx

„
´BµC̄↵DµC↵ ´ pBµAµ

↵qB↵ ` ⇠

2
B↵B

↵

⇢
. (4.36)

A crucial point of the BV construction is that the gauge-fixing is a canon-
ical transformation, which means that it leaves the canonical antibracket re-
lations invariant. In fact, it is a canonical transformation of the second type
(following the classification of Goldstein’s textbook), for which  is the gen-
erator. This can be easily seen by identifying the fields with the coordinates of
classical mechanics, and the antifields with the momenta:

q Ø �, p Ø �˚. (4.37)

We recall that a canonical transformation qdp “ QdP ` dF of the second type
is generated by a function F of the form

F “ F2pq, P q ´ QP, (4.38)

and transforms the canonical variables as

p “ BF2

Bq , Q “ BF2

BP . (4.39)

Gauge-fixing is a transformation of exactly this type, with

F2 “ qP `  pqq ùñ
#
p “ P ` B 

Bq
q “ Q.

(4.40)

This fact has the important consequence that the gauge-fixed master action
is still a solution of the master equation in the new variables,

pS , S q�,�̃˚ “ 0. (4.41)
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The gauge fixed (antifield-dependent) BRST differential is defined by s “
pS , ¨q�,�̃˚ and is nilpotent off-shell, s2 “ 0.

Note that in theories with a master action that is linear in antifields, the
BRST transformations of the fields coincide before and after gauge fixing,
s �a “ s�a. In the general case, defining the gauge fixed BRST differen-
tial without antifields by sg�a “ s �ar�, �̃˚ “ 0s, we have

sgS r�, 0s “ 0, (4.42)

which follows by putting the antifields �̃˚
a to zero in 1

2pS , S q “ 0. Except for
theories with a linear dependence in antifields, sg is in general only nilpotent
when the equations of motion defined by S p�, 0q hold, psgq2�a « 0. This
follows by putting the antifields �̃˚

a to zero in pS , pS ,�aq�,�̃˚q�,�̃˚ “ 0.
In order to avoid this and to better control the original gauge invariance

of the theory, it is most convenient not to put the antifields �̃˚ to zero dur-
ing renormalization. These antifields then act as sources for the (non-linear)
BRST transformation whose renormalization is then controlled together with
the renormalization of the (gauge fixed) action.

———-

4.3.1 Exercise 13

Eliminate the auxiliary fields B↵ in the gauge fixed master action with anti-
fields for Yang-Mills type theories. Show that sgC̄a is only nilpotent on-shell.
Work out the momentum space propagators in Yang-Mills and Chern-Simons
theories with and without auxiliary B↵ fields.

———-

4.4 Independence of gauge fixing
The statement that we didn’t spoil the physical content of gauge invariance
after gauge-fixing is captured by the following:

Theorem 8 (Fradkin-Vilkovisky theorem). Expectation values of BRST-closed
operators are independent of the choice of gauge-fixing.

Indeed, let  and  ` � be two different gauge-fixing fermions, and
Xr�, �̃˚s be BRST closed, i.e., such that

pS , Xq “ 0. (4.43)

In particular, if X only depends on the original fields, this condition means that
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X is gauge invariant. we have,

x0,`8|TX̂|0,´8y `� ´ x0,`8|TX̂|0,´8y 
“

ª
rd�s

´
e

i
~S `� ´ e

i
~S 

¯
X

“ i

~

ª
rd�s�

RS 

��̃˚
A

�L� 

��A
e

i
~S X ` Opp� q2q

“p´q|A|`1 i

~

ª
rd�s�

Lp� q
��A

�RS 

��̃˚
A

e
i
~S X ` Opp� q2q

“ i

~

ª
rd�s� �L

��A

”
ps �Aqe i

~S X
ı

` Opp� q2q.

(4.44)

Here in the second equality we have expanded the exponential of the action to
first order in the deformation of the gauge-fixing, while in the fourth equality
we have performed an integration by parts inside the functional integral, and
we have noted that �RS 

��˚
A

“ ´s �A. Neglecting the contact term contribu-

tion �L

��A ps �Aq which is proportional to �p0q and taking into account antifield
dependent BRST invariance of the gauge fixed action in the form

s �
A �

LS 
��A

“ 1

2
pS , S q “ 0, (4.45)

and also (4.43), we find that

x0,`8|TX̂|0,´8y `� ´ x0,`8|TX̂|0,´8y 
“ i

~

ª
rd�s� e i

~S ps �Aq�
LX

��A
` Opp� q2q

“ i

~

ª
rd�s� e i

~S 
�RS 
��A

�LX

��̃˚
A

` Opp� q2q,
(4.46)

The term of first order in � then vanishes on account of the Schwinger-Dyson
equations of the theory.

Remark 16. These are formal arguments that hold at tree level. They may be
violated by ~-correction when taking renormalization into account. Some of
these ~-corrections are captured in an elegant way by the so-called quantum
BV formalism. However, this formalism remains formal as well unless due care
is devoted to renormalization.

4.5 Slavnov-Taylor identities and Zinn-Justin equa-
tion

BRST invariance of the gauge fixed action (with antifields) leads to relations
among correlation functions, generalizing the Slavnov-Taylor (ST) identities
of non-abelian gauge theories. They are most economically stated in terms of
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generating functionals. Indeed, starting from translation invariance of the path
integral, neglecting contact terms and using (4.45), we get

0 “ 1

ZrJ, �̃˚s
ª

rd�s �
L

��A

´
s �

Ae
i
~ pS `JA�Aq

¯

“ ip´q|A|JA
~ZrJ, �̃˚s

ª
rd�ss �Ae

i
~ pS `JA¨�Aq “ i

~p´q|A|JAx{s �AyJ,�̃˚
. (4.47)

Defining the normalized generating functional for connected Green’s functions
W rJ, �̃˚s through

e
i
~W rJ,�̃˚s “ ZrJ, �̃˚s

Zr0, 0s , (4.48)

this equation can be written as

p´q|A|JA
�RW
��˚

A

“ 0. (4.49)

Finally, performing the Legendre transform with respect to JA,

�̃A “ x�AyJ,�̃˚ “ �LW

�JA
, (4.50)

with inverse relation JA “ JAr�̃, �̃˚s, we can define the quantum effective
action,

�r�̃, �̃˚s “
”
WrJ, �̃˚s ´ JA�̃

A
ı ����

J“Jr�̃,�̃˚s
, (4.51)

which can be shown to be the generating functional of 1PI diagrams. In partic-
ular, the fact that the effective action is defined as a Legendre transformation
implies

�R�

��̃A
“ ´JAr�̃, �̃˚s, �R�

��˚
A

“ �RW
��̃˚

A

|J“Jr�̃,�̃˚s. (4.52)

In terms of the effective action, the ST identity then takes the form of the
generalized Zinn Justin equation, i.e., the master equation for the effective
action,

1

2
p�,�q�̃,�̃˚ “ 0. (4.53)

4.6 Elements of renormalization
The effective action is crucial for the renormalized theory: once its is well-
defined so is the complete theory. This is because connected Green’s functions
can be constructed by using the effective action in order to derive the Fyenman
rules while summing over connected tree graphs alone. The passage from con-
nected to all Green’s functions is purely combinatorial, while the passage from
Green’s functions to S-matrix elements through reduction formulas does not
involve ultraviolet issues either.
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Gauge invariance is encoded in the master equation for the effective action,
whose derivation above was formal. In order to go beyond such formal consid-
erations, one may start by assuming the existence of a regularisation scheme
that is consistent with gauge invariance, such as dimensional regularization in
the absence of chiral fermions and the Levi-Civita (pseudo-)tensor. In this case,
the regularized effective action �reg continues to satisfy the master action,

1

2
p�reg,�regq�̃,�̃˚ “ 0. (4.54)

When using that

�regr�̃, �̃˚s “ S r�̃, �̃˚s ` ~�p1q ` Op~2q, (4.55)

with ~ keeping track of the loop order in the perturbative expansion, and taking
into account the master equation for S , the master equation for �reg reduces
at order ~ to

pS ,�p1qq�̃,�̃˚ “ 0. (4.56)

The 1-loop contribution is made of a divergent and a finite part,

�p1q “ 1

"
�p1q
div ` �p1q

fin , (4.57)

where we implicitly are assuming dimensional regularization but 1{" could be
replaced by another ultraviolet regulator regulator. A crucial property is that
the one-loop divergences are local functionals. We then get

pS ,�p1q
fin q “ 0, pS ,�p1q

divq “ 0, (4.58)

because the two terms are of different orders in ". The latter equation thus
means that one-loop divergences are BRST-closed local functionals. If further-
more, they can be expressed as

�p1q
div “ pS ,⌅q, (4.59)

for some local function ⌅ of ghost number -1, then they are trivial divergences
in the sense that they can be absorbed by a canonical redefinition of fields and
antifields, while the absorption of nontrivial divergences requires the presence
of appropriate coupling constants in the starting point action.

Non trivial divergences are thus decribed by antifield-dependent BRST co-
homology in ghost number 0 in the space of local functionals,

H0ps q » H0psq, (4.60)

where we stress that this cohomology is isomorphic to the gauge fixing inde-
pendent cohomology associated to the minimal solution of the master action
since both are related by an anticanonical transformation and the trivial pairs
of the gauge fixing sector drop out of cohomology.

In renormalizable theories one can show that, once lower order divergences
have been absorbed to a given order, the divergences at the next order are again
BRST closed.
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Remark 17. The classical problem of constructing interactions consistent with
gauge invariance (sometimes also refered to as “Noether procedure”) can be
formulated as a classical deformation problem using the BV formalism [28].
Similarily to divergences which consitute a quantum deformation, infinitesimal
deformations in that context are also controlled by antifield-dependent BRST
cohomology in ghost number 0 in the space of local functionals. The deforma-
tion parameter is no longer ~ but can for instance be related to the number of
fields involved in the interactions or to the couplings constants. In the context
of non-commutative Yang-Mills models, the existence of Seiberg-witten maps
can also be discussed in these terms [29, 30].

Up to now, we have assumed that the regularization used was compatible
with gauge invariance, so that the master equation was still satisfied after reg-
ularization. It is however possible that no such regulator exists: in such a case
the generating functional � no longer satisfies the master equation, but rather

1

2
p�,�q “ ~A ˝ �, (4.61)

where the insertion A corresponds again to a local functional, called the anomaly.
In this equation, � either refers to the renormalized effective action in the case
of of power counting renormalizable theories and the equation is derived using
the so-called quantum action principle in the framework of BPHZ renormal-
ization (see [24] for a review), or it refers to the regularized effective action
for instance in the context of dimensional renormalization, where so-called
evanescent terms proportional to ✏ and due to the regularization, produce the
right hand side (see [31, 32] for more details and also [33] for related consid-
erations). Note that in both these frameworks divergences, respectively the as-
sociated finite amiguities in the BPHZ approach, are still controlled by H0psq,
even in the presence of anomalies.

The generalized Wess-Zumino consistency conditions then follows:

p�, p�,�qq “ 0 ùñ p�,A ˝ �q “ 0. (4.62)

To the lowest order in ~, this means that

pS ,Aq “ 0. (4.63)

In this case, if the anomaly is exact,

A “ pS ,⌃q, (4.64)

it can be reabsorbed by adding a local, BRST breaking counterterm, ⌃, S Ñ
S ´ ⌃. Hence, to lowest nontrivial order, anomalies are characterized by
antifield-dependent BRST cohomology in ghost number 1 in the space of local
functionals,

H1ps q » H1psq, (4.65)

the determination of which is a gauge-invariant, computable problem.
In Yang-Mills theory, the Adler-Bardeen anomaly constitues a famous

example of such a cohomology class. It is computed in the so-called universal
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algebra and corresponds to !1,4 in the chain of descent equations that relates a
characteristic class in form degree 6 to a primitive element in ghost number 3,

Tr F 3 “ d!0,5,

s!0,5 ` dH!
1,4 “ 0,

s!1,4 ` dH!
2,3 “ 0,

...
s!4,1 ` dHTr C

3 “ 0,

sTr C3 “ 0.

(4.66)

When imposing power-counting restrictions, semi-simple Yang-Mills theo-
ries can be shown to be renormalizable quite easily in this framework. Indeed,
in this case, it is almost straightforward to show that the only BRST cohomol-
ogy class in ghost number 0 in the space of local functionals corresponds to the
classical, gauge invariant Yang-Mills action itself: all divergences which are
not absorbable by canonical field-antifield redefinitions can thus be absorbed
by redefinitions of the couplings associated with the different simple factor of
the gauge algebra.

The problem of completely characterizing antifield-dependent BRST co-
homology in various ghost numbers, independently of power-counting restric-
tions, has been addressed for Yang-Mills type theories in [34,35] and reviewed
in [17]. The inclusion of free abelian vector fields has been completed more
recently [36, 37]. Einstein gravity has been considered in [38].

Based on these results, it has been argued [39] that these theories are renor-
malizable in the modern sense, that is to say, in the sense of effective field
theories: for semi-simple Yang-Mills theory or Einstein gravity, the antifield-
dependent BRST cohomology is exhausted by integrated, on-shell gauge in-
variant observables. Once these are included with independent couplings from
the very beginning, all divergences can be absorbed, either by anticanonical
field-antifield redefinitions or by redefinitions of these couplings.

———-

Summary In this set of lectures, we have tried to set up the relevant back-
ground material to compute antifield-dependent BRST cohomology classes in
the space of local functionals for generic irreducible gauge theories. What
physical information they provide may be summarized in the following table:

g Hgpsq
... H;

-3 H;
-2 reducibility parameters (Killing vectors) / ADM-type surface charges
-1 conserved currents and global symmetries
0 loop divergences, consistent deformations
1 anomalies
...
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