RENORMALIZATION GROUP：EXERCISES

J．ZINN－JUSTIN＊
IRFU，CEA，Paris－Saclay University
F－91191 Gif－sur－Yvette cedex，FRANCE．
and
上海大学（Shanghai University）

[^0]
Exercises

Exercise 1

Study the local stability of the Gaussian fixed point

$$
\rho_{\mathrm{G}}(q)=\mathrm{e}^{-q^{2} / 2} / \sqrt{2 \pi},
$$

by starting directly from the equation

$$
\begin{equation*}
\left[\mathcal{T}_{\lambda} \rho\right](q)=\lambda \int \mathrm{d} q^{\prime} \rho\left(q^{\prime}\right) \rho\left(\lambda q-q^{\prime}\right) \tag{1}
\end{equation*}
$$

Determine the value of the renormalization factor λ for which the Gaussian probability distribution ρ_{G} is a fixed point of \mathcal{T}_{λ}.

Setting $\rho=\rho_{\mathrm{G}}+\delta \rho$, expand equation (1) to first order in $\delta \rho$. Show that the eigenvectors of the linear operator acting on $\delta \rho$ have the form

$$
\delta \rho_{p}(q)=(\mathrm{d} / \mathrm{d} q)^{p} \rho_{\mathrm{G}}(q), \quad p>0 .
$$

Infer the corresponding eigenvalues.

Solution: a few indications. One recovers $\lambda=\sqrt{2}$. One linearizes the equation. One notes that probability conservation implies

$$
1=\int \mathrm{d} q \rho(q)=\int \mathrm{d} q\left[\rho_{\mathrm{G}}+\delta \rho(q)\right]=1+\int \mathrm{d} q \delta \rho(q) \Rightarrow \int \mathrm{d} q \delta \rho(q)=0 .
$$

Setting

$$
\left[\mathcal{T}_{\lambda}\left(\rho_{\mathrm{G}}+\delta \rho\right)\right]=\rho_{\mathrm{G}}+\mathcal{L} \delta \rho+O\left(\|\delta \rho\|^{2}\right)
$$

where the action of the linear operator \mathcal{L} on a function $\delta \rho$ is given by

$$
[\mathcal{L} \delta \rho](q)=2 \lambda \int \mathrm{~d} q^{\prime} \rho_{\mathrm{G}}\left(q^{\prime}\right) \delta \rho\left(\lambda q-q^{\prime}\right)
$$

one verifies that the eigenvectors of \mathcal{L} have the proposed form by integrating several times by parts.

Exercise 2
Random walk on a circle. To exhibit the somewhat different asymptotic properties of a random walk on compact manifolds, it is proposed to study random walk on a circle. One still assumes translation invariance. The random walk is then specified by a transition function $\rho\left(q-q^{\prime}\right)$, where q and q^{\prime} are two angles corresponding to positions on the circle. Moreover, the function $\rho(q)$ is assumed to be periodic and continuous. Determine the asymptotic distribution of the walker position. At initial time $n=0$, the walker is at the point $q=0$.

Solution. Due to translation invariance, the evolution equation is still a convolution, which simplifies in the Fourier representation. But, since the function $\rho(q)$ is periodic and continuous, it admits a Fourier series expansion of the form

$$
\rho(q)=\frac{1}{2 \pi} \sum_{\ell \in \mathbb{Z}} \mathrm{e}^{i q \ell} \tilde{\rho}_{\ell}
$$

with

$$
\tilde{\rho}_{\ell}=\int_{-\pi}^{+\pi} \mathrm{d} q \mathrm{e}^{-i q \ell} \rho(q)
$$

and, thus taking the absolute value on both side,

$$
\tilde{\rho}_{0}=1, \quad\left|\tilde{\rho}_{\ell}\right|<1 \quad \text { for } \quad \ell \neq 0 .
$$

Thus, at time n the distribution of the walker position can be written as

$$
P_{n}(q)=\frac{1}{2 \pi} \sum_{\ell \in \mathbb{Z}} \mathrm{e}^{i q \ell} \tilde{\rho}_{\ell}^{n}
$$

For $n \rightarrow \infty$, the sum converges exponentially toward the contribution $\ell=0$ and, thus,

$$
P_{n}(q) \underset{n \rightarrow \infty}{=} \frac{1}{2 \pi},
$$

which is a uniform distribution on the circle.

The maximum value of $\left|\tilde{\rho}_{\ell}\right|$ for $\ell \neq 0$, which yields the leading correction, defines a time

$$
\tau=\max _{\ell \neq 0}-\frac{1}{\ln \left|\tilde{\rho}_{\ell}\right|},
$$

which characterizes the exponential decay of corrections, called the relaxation time.

Exercise 3
Another universality class
One considers now the transition probability $\rho\left(q-q^{\prime}\right)$ with

$$
\rho(q)=\frac{2}{3 \pi} \frac{2+q^{2}}{\left(1+q^{2}\right)^{2}} .
$$

The initial distribution is again

$$
P_{0}(q)=\delta(q)
$$

Evaluate the asymptotic distribution $P_{n}(q)$ for $n \rightarrow \infty$.
Solution. The Fourier transform $\tilde{\rho}(k)$ of $\rho(q)$ is

$$
\tilde{\rho}(k)=\int d q \mathrm{e}^{i k q} \rho(q)=(1+|k| / 3) \mathrm{e}^{-|k|}
$$

and, thus,

$$
w(k)=\ln (1+|k| / 3)-|k|=-\frac{2}{3}|k|-\frac{1}{18} k^{2}+O\left(|k|^{3}\right) .
$$

The non-analytic behaviour is a direct consequence of the slow decay of the transition function, which has no second moment.

Introducing the transformation

$$
\left[\mathcal{T}_{\lambda}\right](k)=2 w(k / \lambda)
$$

and expanding for $k \rightarrow 0$, we see that the only fixed point solution corresponds to $\lambda=2$ and is

$$
w_{*}(k)=-\frac{2}{3}|k|
$$

The asymptotic distribution is then

$$
P_{\infty}(q)=\frac{1}{\pi} \int \mathrm{~d} q \mathrm{e}^{i k q} \mathrm{e}^{-w_{*}(k)}=\frac{12}{\pi\left(9 q^{2}+4\right)},
$$

which is a Cauchy-Lorentz distribution.
Exercise 4
Random walk and detailed balance. One considers a Markovian process in continuum space with, as transition probability, the Gaussian function

$$
\rho\left(q, q^{\prime}\right)=\frac{1}{\sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(q-\lambda q^{\prime}\right)^{2}\right]
$$

where λ is a real parameter with $|\lambda|<1$.
Show that $\rho\left(q, q^{\prime}\right)$ satisfies the condition of detailed balance (10). Infer the asymptotic distribution at time n when $n \rightarrow \infty$. Associate to $\rho\left(q, q^{\prime}\right)$ a real symmetric operator as in equation (11).

Solution. The ratio $\rho\left(q, q^{\prime}\right) / \rho\left(q^{\prime}, q\right)$ can be factorized into a ratio of two functions of q and q^{\prime} that correspond to normalizable distributions. One infers from the detailed balance condition the asymptotic distribution

$$
P_{\infty}(q)=\sqrt{\left(1-\lambda^{2}\right) / 2 \pi} \mathrm{e}^{-\left(1-\lambda^{2}\right) q^{2} / 2} .
$$

One then introduces the real symmetric operator that has the same spectrum as ρ :

$$
\mathcal{T}\left(q, q^{\prime}\right)=\frac{1}{\sqrt{2 \pi}} \exp \left[-\frac{1}{4}\left(1+\lambda^{2}\right)\left(q^{2}+q^{\prime 2}\right)+\lambda q q^{\prime}\right]
$$

For $\lambda>0$, one can set $\lambda=\mathrm{e}^{-\theta}, \theta>0$ and, after a linear transformation on q, q^{\prime} one recovers, after some rescaling, the density matrix at thermal equilibrium of the harmonic oscillator. One infers the eigenvalues

$$
\tau_{k}=\mathrm{e}^{-k \theta}, \quad k \geq 0
$$

The case $\lambda<0$ can be studied, for example, by setting $\lambda=-\mathrm{e}^{-\theta}$ and the spectrum is

$$
\tau_{k}=(-1)^{k} \mathrm{e}^{-k \theta}, \quad k \geq 0
$$

More directly, one can study the action of ρ on the functions

$$
\psi_{k}(q)=\frac{\mathrm{d}^{k}}{(\mathrm{~d} q)^{k}} P_{\infty}(q)
$$

The result is then obtained by successive integrations by parts.

[^0]: ＊Email ：jean．zinn－justin＠cea．fr
 Lectures delivered at the 21th Saalburg School，Wolfersdorf September 2015

