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a. Show that for a vector field A,

(2% A] = —P?A, — 2P, PP Ay,

[(W?. A] =—2P*A, + 2P, P’ Ag.

b. Show that the eigenvalue equations

P?A, =m?A,, [Z2-A] =MA,,  [W?-A] = kA,

« «

have 2 solutions:
(i) a scalar solution (pure gradient)

A=-3m? k=0, A,=P, 0, Pd=m?d;

(ii) a transverse (divergence-free) vector solution

A=-—m? k=-2m% P?*A,=m?A,, P“A,=0.

c. Show that for a symmetric tensor field

VAR Alys

(W2 Al

(8)

= —2P2Aa5 — 4PaP7Af37 — 4PBP7A047 + 277Q5P7P5A75 + QPQPfBA,Y'Y,

= —6P2Aa3 + 4PaP’YA5,Y —+ 4P/3P'YACW — 2P04P514,},’y

+ 2105 (P?A] — PYP°ALs) .



d. Show that in this case the eigenvalue equations appropriately generalized from (6)
have 4 solutions:
(i) A pure-trace scalar

A=0, k=0, Aup="1.3P, P*®=md; (10)

(i) A traceless scalar

1
A= —8m2, k=0, Aaﬁ = <PaP5 T4 naﬂp2) Q, P*Q = m2Q; (11)

(iii) A transverse (divergence-free) vector
A= —6m* k=-2m Aup=P,V3+PsV,, P*V,=0, PV,=mV,; (12)
(iv) A traceless transverse tensor
A= -2m? k=-6m? A" =0, P*A,=0, P*A,5=m>A. (13)
e. Check that in all cases the eigenvalues of W? satisfy

—#%:s@+1% (14)

where s = 0 for scalars, s = 1 for vectors and s = 2 for pure symmetric tensors.

. Anti-symmetric tensor fields

Let t,, = —t,, be an anti-symmetric tensor field. Define
P,P, P,P,
‘9#1/ = Nuw — %7 Wyy = % (15)

a. Show that one can define 2 projection operators for t,,:
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with the properties
W . 0® = A8 @ 4o =1, (17)

where the unit operator on anti-symmetric tensors is

(676 — 6.6,

N | —

1 —

b. Consider the field equation
OO ex = mPt,. (18)
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Check that it is regular (no non-local poles), and that for m? > 0 it implies
N =0, Oty =mt,,, (19)

i.e., the field is divergence-free and satisfies the Klein-Gordon equation.
c. Show that the field eqn. (18) can be derived from an action

2
m
42

9 mv (20)

1
S = /d4l’ |:—§ ((%tm + 0Vt)\u + 8,\tw,)2 —

d. Check that in the massless case m? = 0, both the action and the field equation
are invariant under abelian gauge transformations

ty =t + 0,8 — 0,8, (21)

pv

e. Explain how these gauge transformations can be used to reobtain the condition
that ¢,, is divergence-free also in the massless case.



4. The Einstein form of the action for GR is
1
S = 52 d*zy/—gg" (L,5T,0 =T, 005 (22)

The metric connection is
1 K
F;W)\ = 5 g)\ (augzm + al/g;m - 3n9;w) . (23)

a. Show that
NG = T v + T3 G- (24)
and that

O/=g = V=T, (25)

b. By partial integration derive the identities

v K 1 12 K
/ d*z/=gg" T 2T, 5 ~ 5 / d*z/=g g™ (O\L,) + T, 105,

(26)
/ d'z/=g " T, )T\ 0~ / d'z/=gg" 0,13,
up to boundary terms.
c. Using these results show that
1
S = 53 / d'z/=gg" (O\L,) — 0L, =T, T, ¢+ T, T\F)
) (27)
~ - /dA‘x\/—gR.
2kK2
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5. The field equation for the massless spin-2 field in Minkowski space-time is
Ol — 0,050, — 0,001, + 0,0,1, — 1y (B — 0xONN™) = =K T, (28)
a. Check that the equation is invariant under gauge transformations
5h,u1/ = ugu + al/éu- (29)

b. The Einstein equations can be simplified by switching to different field variables

_ 1
Py = Py — 3 Ny (30)



Show that 1
h;u/ = h,uu - 5 Wuuh)\)\a (31)

and rewrite the Einstein equations in terms of Buv:
Ohy — 0,050, — 0,001}, + 1, 0ONR™ = =87 GT,,. (32)
Check the invariance under the modified gauge transformations
R = Py + 0,60 + 00 — N ONE™ (33)

c. Define the momentum components €, (k) of the redfined spin-2 field E;w by

By () = /%ew(k)e_ik'x. (34)

Prove that the reality of h,, requires e, (k) = €., (—Fk), and show that in empty
space (1, = 0)

ke — kuk en, — kuken, + k" ke = 0, (35)
and derive the corresponding gauge transformations in momentum space:
€ = v + kpaw, + kyay — Koy, (36)
with
. d4k —ik-x *
§u=1 W (ke 5 O‘y(k) = —a,(—k).
d. Show that one can find a gauge transformation parameter «, such that
2
kte, =0 and k%, =0. (37)
This implies that ¢/, (k) # 0 only on the light cone k* = 0:

el (k) = e (k,wi) 0(k?), (38)
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and that the metric perturbation can be expanded as

_ A2k ) )
h/“/(:[j) - / M (euy(k, wk)efz(k-rfwkt) + ezu(k’wk>ez(k-r—wkt)) ’ (39)

with the convention wy = vV Kk2.
e. Check, that the momentum amplitude e,, (k) satisfies

kiem = Wk€opu, (40)



and this condition is respected by gauge transformations on the light cone:
a, = a,(k, wg) 5(k%),

such that
660 = €00 + Wk Qo + k- a,

€y = eio + kiag + wya;, (41)

egj = ey + kia; + kja; — 055 (k- a — wgap) .

Find (ag, a) such that

3
€oo = €0 = Z e, = 0. (42)
k=1

1 1 k;
ag = —m (600 + Z ek;k) ,  a; = —w—kﬁ’io + m <€00 + Zk: ekk> . (43)

f. Explain that there are only 2 polarization modes for a perturbation with wave
vector k, and that these can be taken to be space-like, transverse and traceless:

€oo — €0 — 0, Z k;iel-j = 0, Zeii =0. (44)

In particular explain that for a pertubation mode moving in the z-direction one can
take

eMV(k27 wk) = A-i-(kz)e:V + Ax (kz>€;>jw (45)
with
00 0 0 0000
01 0 0 0010
+ X _
o=l 00 10| “wT|lo100 (46)
00 0 0 0000

g. Prove, that these gauge transformations turn the solutions for the metric pertur-
bations h,, into a solution of the linearized Einstein equations with the properties

hoo = hio = 0, Z hi =0, Zaiﬁij =0, Dhij =0. (47)



