Chiral Perturbation Theory

starting point :

QCD in chiral limit

$$\begin{split} N_f &= 2 \text{ [or 3] massless quarks } u, d \text{ [}, s\text{]} \\ \mathcal{L}_{\text{QCD}}^0 &= \overline{q} i \gamma^{\mu} \left(\partial_{\mu} + i g_s \frac{\lambda_{\alpha}}{2} G^{\alpha}_{\mu} \right) q + \mathcal{L}_{\text{heavy quarks}} + \dots \\ &= \overline{q_L} i D \hspace{-0.5mm}/ q_L + \overline{q_R} i D \hspace{-0.5mm}/ q_R + \mathcal{L}_{\text{heavy quarks}} + \dots \\ q_{R,L} &= \frac{1}{2} (1 \pm \gamma_5) q \text{ , } \qquad q = \begin{pmatrix} u \\ d \\ [s] \end{pmatrix} \end{split}$$

exhibits global symmetry

 $\underbrace{\frac{SU(N_f)_L \times SU(N_f)_R}{\text{chiral group } G}}_{\text{SU}(N_f)_R} \times U(1)_V \times U(1)_A$

 $U(1)_V$: baryon number $U(1)_A$: Abelian anomaly $\stackrel{N_f=3}{\Rightarrow} M_{\eta'} \neq 0$ strong evidence (phenom. + theory) for

spontaneous chiral symmetry breaking

$$G \longrightarrow H = SU(N_f)_V$$

 $N_f = 2$ isospin

 $N_f = 3$ flavour SU(3)

Mechanism for SCSB?

recall order parameter of SCSB

$$\lim_{V \to \infty} \langle 0 | [Q^V(x^0), A] | 0 \rangle \neq 0$$

QCD : axial charges
$$Q_A^a = Q_R^a - Q_L^a$$

 $(a = 1, \dots, N_f^2 - 1)$

A: colour singlet, pseudoscalar operators unique possibility for operator dim =3 : $A_b = \overline{q}\gamma_5\lambda_b q \rightarrow [Q^a_A, A_b] = -\frac{1}{2}\overline{q}\{\lambda_a, \lambda_b\}q$ $SU(N_f)_V$ invariance of the vacuum \rightarrow

$$\langle 0|\overline{u}u|0\rangle = \langle 0|\overline{d}d|0\rangle \left[=\langle 0|\overline{s}s|0\rangle\right]$$

 \Rightarrow sufficient condition for SCSB :

quark condensate $\langle 0 | \overline{q} q | 0 \rangle \neq 0$

certainly not necessary :

$$d = 5 : \langle 0 | \overline{q} \sigma_{\mu\nu} \lambda_{\alpha} q G^{\alpha\mu\nu} | 0 \rangle \neq 0$$

d = 6 : many more possibilities

Important question :

 $\langle 0 | \overline{q} q | 0 \rangle$ dominant order parameter of SCSB ?

answer could depend on N_f : $\langle 0|\overline{q}q|0\rangle$ probably decreases with N_f Moussallam; Descotes, Girlanda, Stern

 $N_f = 2$: answer from $\pi\pi$ scattering

Implementation of SCSB

 $\begin{array}{ll} \dim \ G/H = N_f^2 - 1 \ \mbox{Goldstone bosons} \\ \rightarrow & \mbox{pseudoscalar meson fields } \phi^a \\ \mbox{parametrize coset space} \end{array}$

 $L(\phi) = (u_L(\phi), u_R(\phi)) \in \mathbf{G}/\mathbf{H}$

chiral transformation $g = (g_L, g_R) \in G$ nonlinear realization $u_A(\phi) \xrightarrow{g} g_A u_A(\phi) h(g, \phi)^{-1} \qquad (A = L, R)$

 $u_A(\phi) \xrightarrow{\sim} g_A u_A(\phi) h(g,\phi) \xrightarrow{\sim} (A = L, R)$

Def.: matrix field $U(\phi)$ (transforming linearly)

$$U(\phi) := u_R(\phi) u_L(\phi)^{\dagger} \xrightarrow{g} g_R U(\phi) g_L^{-1}$$

no loss of information compared to (u_L, u_R) : with standard choice of coset coordinates

$$u_R(\phi) = u_L(\phi)^{\dagger} := u(\phi) = \exp i\lambda_a \phi^a / 2F$$

 $\longrightarrow U(\phi) = u(\phi)^2$

Goldstone matrix element defines F:

$$\langle 0|\overline{q(x)}\gamma^{\mu}\gamma_{5}\frac{\lambda_{a}}{2}q(x)|\phi_{b}(p)\rangle = i\delta_{ab}Fp^{\mu}e^{-ipx}$$

meson decay constant in the chiral limit

Non-Goldstone fields (meson resonances , baryons , . . .)

$$\psi \xrightarrow{g \in \mathbf{G}} \underbrace{h_{\psi}(g, \phi)}_{SU(N_f)_V \text{ repr. of } \psi} \psi$$

CHPT : 2 choices of basis

 $\begin{array}{lll} \underline{U}\text{-}\mathrm{basis} & \underline{u}\text{-}\mathrm{basis} \\ \text{mesons only} & \text{mesons, baryons, } \dots \\ & & \mathbf{vielbein} \\ \partial_{\mu}U & u_{\mu} = i(u^{\dagger}\partial_{\mu}u - u\partial_{\mu}u^{\dagger}) \\ \partial_{\mu}U \rightarrow g_{R}\partial_{\mu}Ug_{L}^{\dagger} & u_{\mu} \rightarrow hu_{\mu}h^{-1} \\ \text{lowest-order invariant (nonlinear } \sigma \text{ model}) \\ \langle \partial_{\mu}U\partial^{\mu}U^{\dagger} \rangle & = & \langle u_{\mu}u^{\mu} \rangle \\ & \langle & \rangle = \mathrm{tr}_{\mathrm{N}_{\mathrm{f}}} \end{array}$

 $\begin{array}{l} \rightarrow \text{ derivative coupling of Goldstone fields} \\ \rightarrow \qquad \qquad \mathcal{L}_{\mathrm{eff}} \text{ nonrenormalizable} \end{array}$

However

no chiral symmetry in nature !

• explicit breaking : $m_q \neq 0$ $m_u, m_d \ll \Lambda \simeq M_{\rho}$ $N_f = 2 : \pi$ $m_s < M_{\rho}$ $N_f = 3 : \pi, K, \eta$ • electroweak interactions : included perturbatively in α, G_F

Main assumption of CHPT

expansion around chiral limit meaningful

therefore (even for $\alpha = G_F = 0$) :

2-fold expansion of chiral Lagrangians

- i. derivatives \sim momenta
- ii. quark masses

$$\mathcal{L}_{ ext{eff}} = \sum_{i,j} \mathcal{L}_{ij} \;, \qquad \mathcal{L}_{ij} = O(\partial^i m_q^j)$$

relation through meson masses :

$$M_M^2 \sim Bm_q + O(m_q^2)$$

 $B = -\langle 0|\overline{u}u|0\rangle/F^2$

 \rightarrow 2 different schemes depending on size of quark condensate $\sim B$

Standard CHPT

Weinberg, Gasser, Leutwyler

Ass.: $M_M^2 \sim Bm_q$ dominant contribution corresponds to $B(\nu = 1 \text{ GeV}) \simeq 1.4 \text{ GeV}$

 $\rightarrow 3M_{\eta_8}^2 = 4M_K^2 - M_\pi^2$ Gell-Mann, Okubo

 \rightarrow chiral counting : $m_q = O(M^2) = O(p^2)$

$$\mathcal{L}_{ ext{eff}} = \sum_n \mathcal{L}_n \;, \qquad \mathcal{L}_n = \sum_{i+2j=n} \mathcal{L}_{ij}$$

mesons $n = 2, 4, 6, \dots$ mesons + baryons $n = 1, 2, 3, \dots$

Generalized CHPT

Stern, Knecht, Moussallam

allow for possibility of small quark condensate e.g.: $B(\nu = 1 \text{ GeV}) = O(F_{\pi} = 92.4 \text{ MeV})$ $\rightarrow M_M^2 \sim O(m_a^2)$ dominant more natural counting : $m_q = O(p)$

(same) effective Lagrangian is reordered e.g., for mesons

$$\mathcal{L}_{\text{eff}} = \tilde{\mathcal{L}}_2 + \tilde{\mathcal{L}}_3 + \tilde{\mathcal{L}}_4 + \dots$$

 $\begin{array}{rl} \textbf{Drawback}: \text{ more unknown LECs at given order} \\ \rightarrow & \text{less predictive} \end{array}$

present status

no compelling evidence against standard chiral counting crucial test $(N_f = 2) : \pi \pi \to \pi \pi$

Construction of \mathcal{L}_{eff}

couple external matrix fields v_{μ}, a_{μ}, s, p

 $\mathcal{L}^{0}_{\text{QCD}} \to \mathcal{L}^{0}_{\text{QCD}} + \overline{q}\gamma^{\mu}(v_{\mu} + a_{\mu}\gamma_{5})q - \overline{q}(s - ip\gamma_{5})q$

 $\rightarrow \qquad \mathcal{L}_{\mathrm{eff}} \ \mathrm{inherits}$

local chiral symmetry

advantages

- \mathcal{L}_{eff} , Green functions (of quark currents) manifestly chiral invariant
- phys. amplitudes : $v_{\mu} = a_{\mu} = p = 0$ $s = \text{diag}(m_u, m_d[, m_s])$

Effective chiral Lagrangian

strong interactions of mesons (standard CHPT)

$$\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_2 + \mathcal{L}_4 + \mathcal{L}_6 + \dots$$

$$\mathcal{L}_{2} = \frac{F^{2}}{4} \langle D_{\mu}UD^{\mu}U^{\dagger} + \chi U^{\dagger} + \chi^{\dagger}U \rangle$$
$$= \frac{F^{2}}{4} \langle u_{\mu}u^{\mu} + \chi_{+} \rangle$$

gauge-covariant derivative

$$D_{\mu}U = \partial_{\mu}U - i(v_{\mu} + a_{\mu})U + iU(v_{\mu} - a_{\mu})$$
$$\chi = 2B(s + ip) , \qquad \chi_{+} = u^{\dagger}\chi u^{\dagger} + u\chi^{\dagger}u$$

2 parameters :

$$F_{\pi} = F [1 + O(m_q)]$$

$$\langle 0|\overline{u}u|0\rangle = -F^2 B [1 + O(m_q)]$$

CHPT at lowest order : $O(p^2)$

 \mathcal{L}_2 at tree level \simeq current algebra amplitudes depend only on F_{π}, M_M^2

e.g.:
$$\pi \pi \to \pi \pi$$

 $A_2(s,t,u) = \frac{s - M_\pi^2}{F_\pi^2}$ Weinberg
 \to absolute prediction from pure symmetry !

CHPT at $O(p^4)$

chiral Lagrangian \mathcal{L}_4 contains 10 (7) measurable LECs for $N_f = 3$ (2) T \mathcal{L}_{eff} hermitian \rightarrow tree amplitudes real BUT unitarity + analyticity \rightarrow complex amps. example : $\pi\pi \rightarrow \pi\pi$ Im $t_l^I(s) \ge (1 - \frac{4M_\pi^2}{s})^{\frac{1}{2}} |t_l^I(s)|^2$

partial waves $t_l^I(s)$ start at $O(p^2)$

Chiral Lagrangian of $O(p^4)$ for $N_f = 3$

Gasser, Leutwyler

$$\begin{aligned} \mathcal{L}_{4} &= L_{1} \langle D_{\mu} U^{\dagger} D^{\mu} U \rangle^{2} + L_{2} \langle D_{\mu} U^{\dagger} D_{\nu} U \rangle \langle D^{\mu} U^{\dagger} D^{\nu} U \rangle \\ &+ L_{3} \langle D_{\mu} U^{\dagger} D^{\mu} U D_{\nu} U^{\dagger} D^{\nu} U \rangle + L_{4} \langle D_{\mu} U^{\dagger} D^{\mu} U \rangle \langle \chi^{\dagger} U + \chi U^{\dagger} \rangle \\ &+ L_{5} \langle D_{\mu} U^{\dagger} D^{\mu} U (\chi^{\dagger} U + U^{\dagger} \chi) \rangle + L_{6} \langle \chi^{\dagger} U + \chi U^{\dagger} \rangle^{2} \\ &+ L_{7} \langle \chi^{\dagger} U - \chi U^{\dagger} \rangle^{2} + L_{8} \langle \chi^{\dagger} U \chi^{\dagger} U + \chi U^{\dagger} \chi U^{\dagger} \rangle \\ &- i L_{9} \langle F_{R}^{\mu\nu} D_{\mu} U D_{\nu} U^{\dagger} + F_{L}^{\mu\nu} D_{\mu} U^{\dagger} D_{\nu} U \rangle + L_{10} \langle U^{\dagger} F_{R}^{\mu\nu} U F_{L \mu \nu} \rangle \\ &+ 2 \text{ contact terms} \end{aligned}$$

$$F_{R}^{\mu\nu} = \partial^{\mu}r^{\nu} - \partial^{\nu}r^{\mu} - i[r^{\mu}, r^{\nu}], \quad r^{\mu} = v^{\mu} + a^{\mu}$$
$$F_{L}^{\mu\nu} = \partial^{\mu}l^{\nu} - \partial^{\nu}l^{\mu} - i[l^{\mu}, l^{\nu}], \quad l^{\mu} = v^{\mu} - a^{\mu}$$

$$L_i = L_i^r(\mu) + \Gamma_i \Lambda(\mu)$$

$$\Lambda(\mu) = \frac{\mu^{d-4}}{(4\pi)^2} \left\{ \frac{1}{d-4} - \frac{1}{2} [\log 4\pi + 1 + \Gamma'(1)] \right\}$$
$$L_i^r(\mu_2) = L_i^r(\mu_1) + \frac{\Gamma_i}{16\pi^2} \ln \frac{\mu_1}{\mu_2}$$

systematic low-energy expansion

 \rightarrow loop expansion for n > 2

loop amps. are in general divergent

regularization \underline{and} renormalization

Consequences :

- renormalization guarantees independence of regularization (no cutoff dependence)
- divergences absorbed by coupling constants in $\mathcal{L}_4, \mathcal{L}_6, \ldots$
- renormalized LECs scale dependent : contain effects of (heavy) states not included in L_{eff} as explicit fields

example : CHPT for
$$N_f = 2$$

only pions in \mathcal{L}_{eff}

 \rightarrow LECs contain effects of K, η, \ldots

In principle :

LECs dimensionless functions of

 $\Lambda_{\rm QCD}, \, m_c, \, m_b, \, m_t$

In practice :

matching (at $\Lambda \simeq M_{\rho}$) not possible in perturbation theory \rightarrow

need to bridge gap between

CHPT	\longleftrightarrow	pert. QCD
$E < M_{\rho}$		$E > 1.5 { m ~GeV}$

Different approaches:

most successful or promising \rightarrow phenomenological : resonance saturation theoretical : lattice, large N_c

Loop Expansion

 \sim expansion around classical solution

of which equation ?

Chiral Lagrangian (mesons, standard CHPT)

 $\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_2 + \mathcal{L}_4 + \mathcal{L}_6 + \dots$

to ensure systematic chiral expansion :

expand around solution of

EOM of lowest-order Lagrangian \mathcal{L}_2

 \rightarrow perturbative propagator always $O(p^2)$

Successive orders in the chiral expansion characterized by

chiral dimension D_L

= degree of homogeneity in external momenta and meson masses Meson sector (standard CHPT)

general loop diagram with

- L : number of loops
- N_n : number of vertices from \mathcal{L}_n
- I : number of internal meson lines

$$\rightarrow \quad D_L = 4L + \sum_{n \ge 2} nN_n - 2I$$

connected diagram : $L = I - \sum_n N_n + 1$

$$\rightarrow D_L = 2L + 2 + \sum_{n \ge 4} (n-2)N_n \ge 2L + 2$$

scale of chiral expansion

 D_L increases with L, but phys. dim. fixed $\rightarrow \frac{1}{F^2} \frac{1}{(4\pi)^2}$ for each loop

for mesons
$$\rightarrow$$
 expansion in $\frac{p^2}{(4\pi F)^2}$
 $N_f = 3 : \frac{p^2}{(4\pi F)^2} = 0.18 \frac{p^2}{M_K^2}$

CHPT at $O(p^6)$

skeleton diagrams for $D_L = 6$:

$$L = 2$$

$$L = 1 : N_4 = 1$$

$$L = 0$$

$$M_4 = 1$$

$$M_4 = 0$$

$$L = 0 : N_6 = 1$$
 or $N_4 = 2$ I,g

Exercise : all
$$O(p^6)$$
 diagrams for $\pi\pi \to \pi\pi$

Complete calculations to $O(p^6)$

(standard CHPT)

$N_f = 2$	
$\overline{\gamma\gamma ightarrow\pi^{0}\pi^{0}}$	Bellucci et al. (1994)
$\gamma\gamma ightarrow \pi^+\pi^-$	Bürgi (1996)
$\pi ightarrow l u_l \gamma$	Bijnens and Talavera (1997)
$\pi\pi o \pi\pi$	Bijnens et al. $(1996, 1997)$
π form factors	Bijnens et al. (1998)
$N_f = 3$	
$\overline{VV, AA}$	Golowich and Kambor (1995, 1997)

V V, AA	Golowich and Kambor $(1995, 1997)$
	Amoros et al. (1999)
form factors	Post and Schilcher (1997)
$K \to \pi \pi l \nu_l$	Amoros et al. (1999)

Renormalization

process independent procedure useful \rightarrow divergent part of Z[v, a, s, p]method : heat kernel expansion

advantages

- nontrivial check for explicit loop calculations (discussion)
- RGE for renormalized, scale dep. LECs
- leading infrared singularities : chiral logs

$$O(p^4) \;\; : \; L=0,1$$

divergences in dim. regularization

$$\frac{\mu^{d-4}}{(4\pi)^2} \left[\frac{1}{d-4} + \frac{1}{2} \ln M^2 / \mu^2 + \ldots \right]$$

independent of arbitrary scale μ M: typical scale

$$M = M_{\pi}(M_K)$$
 for $N_f = 2(3)$

Renormalization :

$$L_i(d) = \mu^{d-4} \left[\frac{\Gamma_i}{(4\pi)^2(d-4)} + \underbrace{L_i^r(\mu)}_{\text{ren. LEC}} + \dots \right]$$

again scale independent

coefficients Γ_i chosen to cancel divergences \rightarrow

amps. depend on scale-indep. combinations

$$L_i^r(\mu) - \frac{1}{2}\Gamma_i l$$

with chiral log $l = \frac{1}{(4\pi)^2} \ln M^2 / \mu^2$

renormalization group equations

 \rightarrow

$$\mu \frac{dL_i^r(\mu)}{d\mu} = -\frac{\Gamma_i}{(4\pi)^2}$$

$$\rightarrow \quad L_i^r(\mu_2) = L_i^r(\mu_1) + \frac{\Gamma_i}{16\pi^2} \ln \frac{\mu_1}{\mu_2}$$

Phenomenological values of $L_i^r(M_{\rho})$

i	$L_i^r(M_\rho) \times 10^3$		
	1995	2000 (Amoros et al.)	main source
1	0.4 ± 0.3	0.52 ± 0.23	$K_{e4}, (\pi\pi \to \pi\pi)$
2	1.35 ± 0.3	0.72 ± 0.24	$K_{e4}, (\pi\pi \to \pi\pi)$
3	-3.5 ± 1.1	-2.70 ± 0.99	$K_{e4}, (\pi\pi \to \pi\pi)$
4	-0.3 ± 0.5		Zweig rule
5	1.4 ± 0.5	0.65 ± 0.12	F_K/F_{π}
6	-0.2 ± 0.3		Zweig rule
7	-0.4 ± 0.2	-0.26 ± 0.15	Gell-Mann–Okubo,
			L_{5}, L_{8}
8	0.9 ± 0.3	0.47 ± 0.18	$M_{K^0} - M_{K^+}, L_5$
9	6.9 ± 0.7		$\langle r^2 angle_V^\pi$
10	-5.5 ± 0.7		$\pi \to e \nu \gamma$

$O(p^6)$: L = 0, 1, 2

reducible diagrams c,e,g :

with appropriate choice of \mathcal{L}_4 (discussion) :

sum c+e+g finite and scale independent

irreducible diagrams a,b,d:

divergences should be polynomials in

masses and momenta of $O(p^6)$

However : diagrams a,d involve

Green function G(x, x) (and derivatives)

$$G(x,x) = \frac{2\mu^{d-4}}{(4\pi)^2} \left(\frac{1}{d-4} + \frac{1}{2}\ln M^2/\mu^2\right) a_1(x,x) + \underbrace{\overline{G}(x,x)}_{\text{finite,nonlocal}}$$

 $a_1(x, x)$: (local) Seeley-DeWitt coefficient

$$\Rightarrow \quad \text{diagrams a,b,d separately have} \\ \hline \text{nonlocal divergences} \\ \text{of the type} \\ \frac{1}{d-4}\overline{G}(x,x) \quad \text{and} \quad \frac{1}{d-4}\ln M^2/\mu^2 \\ \end{cases}$$

proper renormalization at $O(p^4) \rightarrow$

nonlocal divergences cancel in

sum a+b+d

remaining divergences : polynomials of $O(p^6)$ in coordinate space :

dimensionless, divergent coefficients C_i

of chiral Lagrangian

 $\mathcal{L}_{6} = \sum_{i=1}^{53(90)} \underbrace{C_{i}}_{\text{coeffs. monomials}} \underbrace{O_{i}}_{\text{for}} \quad N_{f} = 2(3)$

tree diagram f :

divergent parts of C_i chosen to make

$$a+b+d+f$$
 finite \Rightarrow

complete functional $Z_6[v, a, s, p]$

finite and scale independent

with renormalized LECs $C_i^r(\mu)$

renormalization group equations

$$\mu \frac{dC_i^r(\mu)}{d\mu} = \frac{1}{(4\pi)^2} \left[2\hat{\Gamma}_i^{(1)} + \hat{\Gamma}_i^{(L)}(\mu) \right]$$

 $\hat{\Gamma}_i^{(1)}$: constants $\hat{\Gamma}_i^{(L)}$ ()

$$\hat{\Gamma}_i^{(L)}(\mu)$$
 : linear combs. of $L_i^r(\mu)$

Chiral logs

often numerically important or even dominant ($\rightarrow \pi\pi$ scattering)

trivial observation :

total amplitudes are scale independent

 \rightarrow chiral logs disappear for $\mu = M$

$$l = \frac{1}{(4\pi)^2} \ln M^2 / \mu^2 = 0$$

However

 $\mu = M$ generates "unnaturally" big $L_i^r(\mu) \rightarrow$ infrared singularities shifted into LECs

natural size : $L_i^r(\mu \simeq M_{\rho})$

Chiral logs at $O(p^6)$

double chiral logs appear in following combinations (exercise)

irreducible	$4L_i^r(\mu)l - \Gamma_i l^2 := k_i$
reducible	$[L_i^r(\mu) - \frac{1}{2}\Gamma_i l][L_j^r(\mu) - \frac{1}{2}\Gamma_j l]$
	$= L_i^r(\mu)L_j^r(\mu) - \frac{1}{8}(\Gamma_i k_j + \Gamma_j k_i)$

 $\Rightarrow \quad \text{full dependence on } l^2, lL_i^r, L_i^r L_j^r$ in terms of k_i and $L_i^r L_j^r$

Generalized double-log approximation

Bijnens, Colangelo, E.

Remarks :

• coeffs. calculable from diagrams with $L \leq 1$ (exercise)

Weinberg

• indication for size of $O(p^6)$ corrections no substitute for full calculation Example : $F_K/F_{\pi} = 1.22 \pm 0.01$ GDLA : corrections big $(6 \div 12\%)$ $F_K/F_{\pi} - 1$ is used to fix LEC L_5^r : $L_5^r(M_{\rho}) = (1.4 \pm 0.5) \times 10^{-3}$

recent fit with full $O(p^6)$ calculation (Amoros, Bijnens, Talavera) :

$$L_5^r(M_{\rho}) = (0.65 \pm 0.12) \times 10^{-3}$$

Exercise : summing chiral logs ?