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ABSTRACT

In these lecture notes prepared for the

11

th

Taiwan Spring School, Taipei 1997,

and updated for the Saalburg summer school 1998, we review the solutions of

O(N) or U(N) models in the large N limit and as 1=N expansions, in the case

of vector representations. The general idea is that invariant composite �elds have

small 
uctuations for N large. Therefore the method relies on constructing e�ec-

tive �eld theories for these composite �elds after integration over the initial degrees

of freedom. We illustrate these ideas by showing that the large N expansion allows

to relate the (�

2

)

2

theory and the non-linear �-model, models which are renormal-

izable in di�erent dimensions. In the same way large N techniques allow to relate

the Gross{Neveu, an example of a theory with four-fermi self-interaction, with a

Yukawa-type theory renormalizable in four dimensions, a topic relevant for four

dimensional �eld theory.

Among other issues for which large N methods are also useful we will brie
y

discuss �nite size e�ects and �nite temperature �eld theory, because they involve

a crossover between di�erent dimensions.

Finally we consider the case of a general scalar V (�

2

) �eld theory, explain how

the large N techniques can be generalized, and discuss some connected issues like

tricritical behaviour and double scaling limit. Some sections in these notes are

directly adapted from the work

Zinn-Justin J., 1989, Quantum Field Theory and Critical Phenomena, Claren-

don Press (Oxford third ed. 1996).

These lecture notes are dedicated to Mrs. T.D. Lee, who recently passed away,

as a testimony of gratitude for the long lasting friendship between our families.

�

email: zinn@spht.saclay.cea.fr

��

Laboratoire de la Direction des Sciences de la Mati�ere du Commissariat �a

l'Energie Atomique



2

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 The N-vector model near dimension four: Renormalization Group (RG) 6

2.1 Mean �eld theory and the stability of the gaussian �xed point . . . . 6

2.2 RG equations for the critical (massless) theory . . . . . . . . . . 10

2.3 RG equations and large distance behaviour: the "-expansion . . . . 12

2.4 Critical correlation functions with �

2

(x) insertions . . . . . . . . 12

2.5 Scaling behaviour in the critical domain . . . . . . . . . . . . . 14

2.6 Scaling laws in a magnetic �eld and below T

c

. . . . . . . . . . 16

2.7 Four dimensions: logarithmic corrections and triviality . . . . . . 20

Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . 20

3 The O(N) Spin Model at Low Temperature: the Non-Linear �-Model 22

3.1 The non-linear �-model . . . . . . . . . . . . . . . . . . . . 22

3.2 RG equations . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Discussion of the RG 
ow . . . . . . . . . . . . . . . . . . . 26

3.4 Integration of the RG equations . . . . . . . . . . . . . . . . 28

3.5 The dimension two . . . . . . . . . . . . . . . . . . . . . . 32

Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . 32

4

�

�

2

�

2

Field Theory and Non-Linear � Model in the Large N Limit . . 34

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Large N limit: the critical domain . . . . . . . . . . . . . . . 34

4.3 RG functions and leading corrections to scaling . . . . . . . . . 40

4.4 Small coupling constant and large momentum expansions for d < 4 . 44

4.5 The non-linear �-model in the large N limit . . . . . . . . . . . 44

4.6 The 1=N-expansion: an alternative �eld theory . . . . . . . . . . 48

4.7 Additional results . . . . . . . . . . . . . . . . . . . . . . 52

4.8 Dimension four: triviality, renormalons, Higgs mass . . . . . . . . 52

4.9 Finite size e�ects . . . . . . . . . . . . . . . . . . . . . . . 54

4.10 Field theory at �nite temperature . . . . . . . . . . . . . . . 56

4.11 Other methods. General vector �eld theories . . . . . . . . . . 58

Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . 60

5 Gross{Neveu and Gross{Neveu{Yukawa Models . . . . . . . . . . 62

5.1 The Gross{Neveu model . . . . . . . . . . . . . . . . . . . . 62

5.2 The Gross{Neveu{Yukawa model . . . . . . . . . . . . . . . . 64

5.3 RG equations near four dimensions . . . . . . . . . . . . . . . 64

5.4 GNY and GN models in the large N limit . . . . . . . . . . . . 68

5.5 The large N expansion . . . . . . . . . . . . . . . . . . . . 70

6 Other models with chiral fermions . . . . . . . . . . . . . . . . 74

6.1 Massless electrodynamics . . . . . . . . . . . . . . . . . . . 74

6.2 The large N limit . . . . . . . . . . . . . . . . . . . . . . 74

6.3 The U(N) Thirring model . . . . . . . . . . . . . . . . . . . 76

Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . 78



3

7 The O(N) vector model in the large N limit: multi-critical points and double

scaling limit . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.1 Double scaling limit: simple integrals and quantum mechanics . . . 82

7.2 The 2D V (�

2

) �eld theory in the double scaling limit . . . . . . . 86

7.3 The V (�

2

) in the large N limit: phase transitions . . . . . . . . 90

7.4 The scalar bound state . . . . . . . . . . . . . . . . . . . . 94

7.5 Stability and double scaling limit . . . . . . . . . . . . . . . . 96

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 98

Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . 98



4

1 Introduction

In these lectures we describe a few applications of large N techniques to quan-

tum �eld theories (QFT) with O(N) or U(N) symmetries, where the �elds are

in the vector representation. We want to show that large N results nicely com-

plement results obtained from more conventional perturbative renormalization

group (RG). Indeed the shortcoming of the latter method is that it mainly ap-

plies to gaussian or near gaussian �xed points. This restricts space dimension

to dimensions in which the corresponding e�ective QFT is renormalizable, or

after dimensional continuation, to the neighbourhood of such dimensions. Large

N techniques in some cases allow a study in generic dimensions. They rely on

noting that in the large N limit scalar (in the group sense) composite �elds have

small 
uctuations (central limit theorem). Therefore if we are able to construct

an e�ective �eld theory for the scalars, integrating out the initial degrees of free-

dom, we can solve the �eld theory in a 1=N expansion. Note that for vector

representations the number of independent scalars is �nite and independent of

N , unlike what happens for matrix representations. This explains why vector

models have been solved much more generally than matrix models.

In these lectures we will in particular stress two points: �rst it is necessary to

always check that the 1=N expansion is both IR �nite and renormalizable. Some

technical aspects of this question which will be described in section 4.6. This

is essential for the stability of the large N results and the existence of a 1=N

expansion. Second, the large N expansion is just a technique, with its own (often

unknown) limitations. It should not be discussed in isolation. Instead, as we shall

do in the following examples, it should be combined with other perturbative

techniques and the reliability of the 1=N expansion should be inferred from the

general consistency of all results.

Second-order phase transitions in classical statistical physics will provide us

with the �rst illustration of the usefulness of the large N expansion. Due to the

divergence of the correlation length at the critical temperature, systems then have

at and near T

c

universal properties which can be described by e�ective continuum

quantum�eld theories. TheN-vector model that we discuss below is the simplest

example but it has many applications since it allows to describe the critical

properties of systems like vapour{liquid, binary mixtures, super
uid Helium or

ferromagnetic transitions as well as the statistical properties of polymers. Before

showing what kind of information can be provided by large N techniques we will

�rst shortly recall what can be learned from perturbative renormalization group

(RG) methods. Long distance properties can be described in d = 4�" dimension

by a (�

2

)

2

�eld theory. Instead in d = 2+" the relevant QFT model is the O(N)

non-linear � model. It is somewhat surprising that the same statistical model

can be described by two di�erent theories. Since the results derived in this way

are valid a priori only for " small, there is no overlap to test the consistency.

The large N expansion will allow us to discuss generic dimensions and thus to
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understand the relation between both �eld theories.

Another domain of application of the large N expansion is �nite size e�ects

and �nite temperature �eld theory. In these situations a dimensional crossover

occurs between the large size or zero temperature situation where the in�nite

volume theory is relevant to a dimensionally reduced theory in the small volume

or high temperature limit. Both e�ective �eld theories being renormalizable in

di�erent dimensions, perturbative RG cannot describe correctly both situations.

Again large N techniques will help us to understand the crossover.

Four-fermi interactions have been proposed to generate a composite Higgs

particle in four dimensions, as an alternative to a Yukawa-type theory, as one

�nds in the Standard Model. Again, using the speci�c example of the Gross{

Neveu model, we will use large N techniques to clarify the relations between

these two approaches. We will �nally brie
y indicate that other models with

chiral properties, like massless QED or the Thirring model, can be studied by

similar techniques.

In the last section we return to scalar boson �eld theories, and examine multi-

critical points (where the large N technique will show some obvious limitations),

and the double scaling limit, a toy model for discussing problems encountered in

matrix models of 2D quantum gravity.

2 The N-vector model near dimension four: Renormalization Group

(RG)

The N-vector model is a lattice model described in terms of N-vector spin vari-

ables S

i

of unit length on each lattice site i, interacting through a short range

ferromagnetic O(N) symmetric two-body interaction V

ij

. The partition function

of such a model can be written:

Z =

Z

Y

i

dS

i

�

�

S

2

i

� 1

�

exp [�E (S) =T ] ; (2:1)

in which the con�guration energy E is:

E (S) = �

X

ij

V

ij

S

i

� S

j

: (2:2)

This model has a second order phase transition between a disordered phase at

high temperature, and a low temperature ordered phase where the O(N) sym-

metry is spontaneously broken, and the order parameter S

i

has a non-vanishing

expectation value. At a second order phase transition the correlation length di-

verges, and therefore a non-trivial long distance physics can be de�ned. Scaling

and universality properties emerge which we want to study.

To generate correlation functions one can add to E (S) a coupling to a space-

dependent magnetic �eld

E (S) = �

X

ij

V

ij

S

i

� S

j

+

X

i

H

i

� S

i

: (2:3)
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2.1 Mean �eld theory and the stability of the gaussian �xed point

To derive the critical properties of the N-vector model one can proceed in

the following way: one starts from the mean �eld approximation, valid in high

dimensions. One then shows that the mean �eld approximation is the �rst term

in a systematic expansion. One discovers that for dimensions d > 4 the successive

terms in the expansion do not modify the leading mean �eld behaviour. For d < 4

instead IR divergences appear and the mean �eld approximation is no longer

valid. Moreover a summation of the leading IR divergences to all orders in the

expansion leads to an e�ective local �

4

�eld theory. The corresponding action is

given by the �rst relevant terms of the Landau{Ginzburg{Wilson hamiltonian:

H (�) =

Z

d

d

x

�

1

2

c (r�)

2

+

1

2

a�

2

(x) + b

1

4!

�

�

2

(x)

�

2

�

; (2:4)

with a, b and c being regular functions of the temperature for T close to T

c

.

Note that the expression (2:4) , which in the sense of classical statistical physics

is a con�guration energy, is often called hamiltonian. The reason is that if one

starts from a classical hamiltonian and a functional integral over phase space,

the integral over conjugate momenta is gaussian and thus trivial. From the

point of view of quantum �eld theory the expression (2:4) has the form of an

euclidean action, analytic continuation to imaginary time of the classical �eld

theory action. We shall thus generally call it the action.

Alternatively one can imagine starting from the con�guration energy (2:2) and

constructing Wilson's renormalization group by integrating out short distance

degrees of freedom. The spin variable S

i

is then replaced by a local average, a

vector of continuous length of the type of the �eld �(x).

Mean �eld theory corresponds to the gaussian �xed point of this renormaliza-

tion group. At the critical temperature one �nds a massless free �eld theory

H

G

(�) =

Z

d

d

x

1

2

c (r�)

2

:

One then performs an analysis of the stability of the gaussian �xed point. Mean

�eld theory assumes that the order parameter, here the �eld �(x), is small and

varies only on macroscopic scales. Therefore a general action can be expanded

in powers of the �eld �(x) and derivatives.

H (�) =

Z

d

d

x

1

2

c (r�)

2

+

X

`

H

`

(�);

where

P

`

means sum over all space integrals H

`

(�) of O(N) symmetric monomi-

als in � of degree n

`

and containing m

`

derivatives (often below called operators,

a language borrowed from quantum �eld theory).
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A convenient way to understand the relevance of the H

`

(�) terms in the large

distance (infrared) limit is to rescale all space or momentum variables, and mea-

sure distances in units of the correlation length, or, at the critical temperature,

in some arbitrary unit much larger than the lattice spacing and corresponding

to the typical distances at which correlations are measured.

Let us perform such a rescaling here, and rescale also the �eld �(x) in such a

way that the coe�cient of [r�(x)]

2

, to which all contributions will be compared,

becomes the standard 1/2:

x 7! �x; (2:5)

�(x) 7! ��(x): (2:6)

After this rescaling all quantities have a dimension in units of �. Our choice of

normalization for the gradient term implies:

� = c

�1=2

�

1�d=2

; (2:7)

which shows that � now has in terms of � its canonical dimension d=2� 1.

A term H

`

(�) then is multiplied by

H

`

(�) 7! �

d�n

`

(d�2)=2�m

`

H

`

(�):

For � large we observe the following:

(i) The leading term is the term proportional to

R

d

d

x�

2

(x), which is multi-

plied by �

2

. This is not surprising since it gives a mass to the �eld and therefore

the theory moves away from the massless critical theory (the term is called rel-

evant).

(ii) If d > 4 all other terms are multiplied by negative powers and therefore

become negligible in the long distance limit. They are called irrelevant. The

gaussian �xed point is stable and mean �eld theory thus correct.

(iii) In four dimensions the �

4

interaction is independent of �: it is called

marginal while all other interactions remain irrelevant. The analysis of the sta-

bility of the gaussian �xed point then requires a �ner study which will be based

on the �eld theory perturbative renormalization group.

(iv) Below four dimensions the �

4

interaction becomes relevant, the gaussian

�xed point is certainly unstable. The question of the existence of another non-

trivial �xed point is non-perturbative and cannot be easily answered. Partial

answers are based upon the following assumption: the dimensions of operators

are continuous functions of the space dimension. This means that we are go-

ing to look for a �xed point which, when d approached four, coalesces with the

gaussian �xed point. Moreover even at this new �xed point, at least in some

neighbourhood of dimension four, all operators except (�

2

)

2

should remain ir-

relevant. The action (2:4) should contain all relevant operators and therefore

enough information about the non-trivial �xed point.
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After the rescaling (2:5,2:6) the action H (�) then becomes:

H (�) =

Z

d

d

x

�

1

2

[r�(x)]

2

+

1

2

r�

2

(x) +

1

4!

g�

4�d

�

�

2

(x)

�

2

�

; (2:8)

with r = a�

2

=c, g = b=c

2

. The action (2:8) generates a perturbative expansion of

�eld theory type which can be described in terms of Feynman diagrams. These

have to be calculated with a momentumcut-o� of order �, re
ection of the initial

microscopic structure. The corresponding theory is thus analogous to regularized

quantum �eld theory. The precise cut-o� procedure can be shown to be irrelevant

except that it should satisfy some general regularity conditions. For example the

propagator can be modi�ed (as in Pauli{Villars's regularization) but the inverse

propagator in momentum space must remain a regular function of momentum

(the forces are short range).

Let us call r

c

the value of the parameter r which corresponds, at g �xed, to

the critical temperature T

c

at which the correlation length � diverges. In terms

of the scale � the critical domain is then de�ned by:

physical mass = �

�1

� � ) jr � r

c

j � �

2

distances� 1=� or momenta� �;

magnetization M � j h�(x)i j � �

�1

� �

(d=2)�1

:

(2:9)

Note that these conditions are met if � is identi�ed with the cut-o� of a usual �eld

theory. However an inspection of the action (2:8) also shows that, in contrast with

conventional quantum �eld theory, the �

4

coupling constant has a dependence

in � given a priori. For d < 4 the �

4

coupling is very large in terms of the

scale relevant for the critical domain. In the usual formulation of quantum �eld

theory instead the bare coupling constant also is an adjustable parameter. This

implies for instance that for d < 4 (super-renormalizable theory) the coupling

constant varies when the correlation length changes. This is a somewhat arti�cial

situation if one believes that that the initial bare or microscopic theory has a

physical meaning.

The critical properties of the �eld theory (like the long distance behaviour

of correlation functions) can then be analyzed by RG methods in 4 � " dimen-

sion, i.e. near the so-called upper-critical dimension (and with some additional

assumptions in d < 4).

Dimensions of �elds. Because we deal with translation invariant theories, we

will generally discuss the scaling behaviour of correlation functions in momentum

variables. Let us relate the scaling behaviour of connected correlation functions

expressed in terms of space and momentum variables. When functions have a

scaling behaviour, one de�nes

*

n

Y

i=1

O

i

(x

i

=�)

+

c

= �

D

*

Y

i

O

i

(x

i

)

+

c

with D =

X

i

d

O

i

; (2:10)
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where O

i

, sometimes called operator, is a local polynomial in the basic �elds

(associated with the order parameter), and the quantity d

O

i

, which we sometimes

also denote [O

i

], is called the dimension of the �eld (operator) O

i

.

After Fourier transformation and factorization of the �-function of momentum

conservation, one then �nds, in d space dimension,

*

n

Y

i=1

O

i

(�p

i

+

c

= �

D

0

*

Y

i

O

i

(p

i

)

+

c

with now D

0

= d+

X

i

(d

O

i

� d) : (2:11)

Finally it is convenient to introduce the Legendre transform �(�) of the gener-

ating functional W (H) = T lnZ of �-�eld connected correlation functions. We

denote by W

(n)

and �

(n)

the corresponding connected and 1PI functions. One

veri�es that if one performs a Legendre transformation on the source associated

with the �eld (operator) O

i

, the quantity d

O

i

� d in equation (2:11) is replaced

by �d

O

i

.

2.2 RG equations for the critical (massless) theory

The �eld theory with the action (2:8) can now be studied by �eld theoretical

methods. From simple power counting arguments one concludes that the critical

(or massless) theory does not exist in perturbation theory for any dimension

smaller than 4. If we de�ne, by dimensional continuation, a critical theory in

d = 4� " dimensions, even for arbitrarily small " there always exists an order in

perturbation (� 2 /") at which IR (infrared) divergences appear. Therefore the

idea, originally due to Wilson and Fisher, is to perform a double series expansion

in powers of the coupling constant g and ". Order by order in this expansion,

the critical behaviour di�ers from the mean �eld behaviour only by powers of

logarithm, and we can construct a perturbative critical theory by adjusting r to

its critical value r

c

(T = T

c

).

To study the large cut-o� limit we then use methods developed for the con-

struction of the renormalized massless �

4

�eld theory. We introduce rescaled

(renormalized) correlation functions, de�ned by renormalization conditions at a

new scale �� �, and functions of a renormalized coupling constant g

r

. We write

here equations for Ising-like systems, the �eld � having only one component. The

generalization to the N-vector model with O(N) symmetry, is straightforward

except in the low temperature phase or in a symmetry breaking �eld, a situation

which will be examined in section 2.6. Then:

8

>

>

>

<

>

>

>

:

�

(2)

r

(p; g

r

; �;�)j

p

2

=0

= 0 ;

@

@p

2

�

(2)

r

(p; g

r

; �;�)j

p

2

=�

2

= 1 ;

�

(4)

r

(p

i

= ��

i

; g

r

; �;�) = �

"

g

r

;

(2:12)
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in which �

i

is a numerical vector. These correlation functions are related to the

original ones by the equations:

�

(n)

r

(p

i

; g

r

; �;�) = Z

n=2

(g;�=�) �

(n)

(p

i

; g;�) : (2:13)

Renormalization theory tells us that the functions �

(n)

r

(p

i

; g

r

; �;�) of equation

(2:13) have at p

i

, g

r

and � �xed, a large cut-o� limit which are the renormalized

correlation functions �

(n)

r

(p

i

; g

r

; �). A detailed analysis actually shows that at

any �nite order in perturbation theory:

�

(n)

r

(p

i

; g

r

; �;�) = �

(n)

r

(p

i

; g

r

; �) +O

�

�

�2

(ln �)

L

�

; (2:14)

in which the power L of ln � increases with the order in g and ". Furthermore

the renormalized functions �

(n)

r

do not depend on the speci�c cut-o� procedure

and, given the normalization conditions (2:12), are therefore universal. Since

the renormalized functions �

(n)

r

and the initial ones �

(n)

are asymptotically pro-

portional, both functions have the same small momentum or large distance be-

haviour. To determine the universal critical behaviour it is thus su�cient to

study the renormalized �eld theory. And indeed most peturbative calculations

of universal quantities have been performed in this framework. However, it is

interesting to determine not only the asymptotic critical behaviour, but also the

corrections to the asymptotic theory. Furthermore, renormalized quantities are

not directly obtained in non-perturbative calculations. For these reasons it is

also useful to express the implications of equation (2:13) directly on the initial

theory.

Bare RG equations. Let us di�erentiate equation (2:13) with respect to � at

g

r

and � �xed, taking into account (2:14):

�

@

@�

�

�

�

�

g

r

;� �xed

Z

n=2

(g;�=�) �

(n)

(p

i

; g;�) = O

�

�

�2

(ln �)

L

�

: (2:15)

We now neglect corrections subleading (in perturbation theory) by powers of �.

Then, using chain rule, we can rewrite equation (2:15) as:

�

�

@

@�

+ � (g;�=�)

@

@g

�

n

2

� (g;�=�)

�

�

(n)

(p

i

; g;�) = 0 : (2:16)

The functions � and �, which are dimensionless and may thus depend only on

the dimensionless quantities g and �=�, are de�ned by:

� (g;�=�) = �

@

@�

�

�

�

�

g

r

;�

g ; (2:17a)

� (g;�=�) = ��

@

@�

�

�

�

�

g

r

;�

lnZ (g;�=�) : (2:17b)



11

However, the functions � and � can also be directly calculated from equation

(2:16) in terms of functions �

(n)

which do not depend on �. Therefore the

functions � and � cannot depend on the ratio �=� (in the de�nitions (2:17)

consistency requires that contributions which goes to zero like some power of

� /�, should be neglected, as in equation (2:15)). Then equation (2:16) can be

rewritten:

�

�

@

@�

+ � (g)

@

@g

�

n

2

�(g)

�

�

(n)

(p

i

; g;�) = 0 : (2:18)

Equation (2:18) is an equation satis�ed when the cut-o� is large by the physical

correlation functions of statistical mechanics which are also the bare correlation

functions of quantum �eld theory. It expresses the existence of a renormalized

theory.

2.3 RG equations and large distance behaviour: the "-expansion

Equation (2:18) can be solved by the method of characteristics: one introduces

a dilatation parameter �, together with a running coupling constant g(�) and a

scale dependent �eld renormalization Z(�) satisfying the 
ow equations

�

d

d�

g (�) = � (g (�)) ; g (1) = g ; (2:19a)

�

d

d�

lnZ (�) = � (g (�)) ; Z (1) = 1 : (2:19b)

The behaviour of correlation functions for jp

i

j � � (�! 0) is then governed by

IR �xed points, zeros of the RG �-function with a positive slope.

The RG functions � and � can be calculated in perturbation theory. From

the relation between bare and renormalized coupling constant and the de�nition

(2:17a) it follows that (" = 4� d):

� (g; ") = �"g +

N + 8

48�

2

g

2

+O

�

g

3

; g

2

"

�

: (2:20)

Let us now assume that g initially is su�ciently small, so that perturbation

theory is applicable. We see that above or at four dimensions, i.e. " � 0, the

function � is positive and g(�) decreases approaching the origin g = 0. We

recover that the gaussian �xed point is IR stable for d > 4, and �nd that it ia

also stable at d = 4.

Below four dimensions, instead, the gaussian �xed point g = 0 is IR repulsive.

However, expression (2:20) shows that, for " small, �(g) now has a non-trivial

zero g

�

:

�(g

�

) = 0; g

�

=

48�

2

N + 8

"+O

�

"

2

�

; with �

0

(g

�

) � ! = " +O

�

"

2

�

: (2:21)
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The slope ! at the zero is positive. This non-gaussian �xed point thus is IR

stable, at least in the sense of an "-expansion. In four dimensions it merges with

the gaussian �xed point and the eigenvalue ! vanishes, indicating the appearance

of a marginal operator.

The solution of the RG equation then determines the behaviour of �

(n)

(p

i

; g;�)

for jp

i

j � �:

�

(n)

(�p

i

; g;�) �

�!0

�

d�(n=2)(d�2+�)

�

(n)

(p

i

; g

�

;�) ; (2:22)

where � = �(g

�

). Critical correlation functions have a power law behaviour for

small momenta, independent of the initial value of the �

4

coupling constant g.

In particular the small momentum behaviour of the inverse two-point function

is obtained for n = 2. For the two-point function W

(2)

(p) this yields:

W

(2)

(p) =

h

�

(2)

(p)

i

�1

�

jpj!0

1

�

p

2��

: (2:23)

The spectral representation of the two-point function implies � > 0. A short

calculation yields:

� =

N+2

2(N+8)

2

"

2

+O

�

"

3

�

: (2:24)

The scaling in equation (2:22) indicates that the �eld �(x), which had at the gaus-

sian �xed point a canonical dimension (d � 2)=2, has now acquired an \anoma-

lous" dimension d

�

(see the discussion of the end of section 2.1):

d

�

=

1

2

(d� 2 + �) :

These results call for a few comments. Within the framework of the "-expansion,

one thus proves that all correlation functions have, for d < 4, a long distance

behaviour di�erent from the one predicted by mean �eld theory. In addition

the critical behaviour does not depend on the initial value of the �

4

coupling

constant g. At least for " small one may hope that the analysis of leading IR

singularities remains valid and thus it does not depend on any other coupling

either. Therefore the critical behaviour is universal, although less universal than

in mean �eld theory, in the sense that it depends only on some small number of

qualitative features of the system under consideration.

2.4 Critical correlation functions with �

2

(x) insertions

RG equations for critical correlation functions with

R

d

d

x�

2

(x) insertions can

also be derived. The operator �

2

(x) has a direct physical interpretation. It is

the most singular part (i.e. the most relevant) of the energy density (2:4). Long

distance scaling properties follow. Moreover these RG equations can be used to

derive RG equations for correlation functions in the whole critical domain.
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We denote by �

(l;n)

(q

1

; : : : ; q

l

; p

1

; : : : ; p

n

; g;�) the mixed 1PI correlation func-

tions of the order parameter �(x) and the energy density

1

2

�

2

(x) (n� �elds and

l

1

2

�

2

operators, with (l + n) � 2). Renormalization theory tells us that we can

de�ne renormalized correlation functions �

(l;n)

r

(q

i

; p

j

; g

r

; �) which, in addition to

conditions (2:12), satisfy:

�

(1;2)

r

(q; p

1

; p

2

; g

r

; �)

�

�

�

p

2

1

=p

2

2

=�

2

; p

1

�p

2

=�

1

3

�

2

= 1 ;

�

(2;0)

r

(q;�q; g

r

; �)

�

�

�

q

2

=

4

3

�

2

= 0 ;

(2:25)

and are related to the original ones by:

lim

�!1

Z

n=2

(Z

2

=Z)

l

h

�

(l;n)

(q

i

; p

j

; g;�)� �

n0

�

l2

�

�"

A

i

= �

(l;n)

r

(q

i

; p

j

; g

r

; �) :

(2:26)

Z

2

(g;�=�) and A (g;�=�) are two new renormalization constants.

Di�erentiating with respect to � at g

r

and � �xed, as has been done in section

2.2, and using chain rule one obtains a set of RG equations:

�

�

@

@�

+ � (g)

@

@g

�

n

2

� (g)� l�

2

(g)

�

�

(l;n)

= �

n0

�

l2

�

�"

B (g) : (2:27)

In addition to � and � (equations (2:17)) two new RG functions, �

2

(g) and B(g),

appear:

�

2

(g) = ��

@

@�

�

�

�

�

g

r

;�

ln [Z

2

(g;�=�) /Z (g;�=�) ] ; (2:28)

B (g) =

"

�

@

@�

�

�

�

�

g

r

;�

� 2�

2

(g)� "

#

A (g;�=�) : (2:29)

Note that for n = 0, l = 2, the RG equation (2:27) is not homogeneous. This is a

consequence of the non-multiplicative character of renormalization in this case.

In the homogeneous case, equation (2:27) can be solved exactly in the same

way as equation (2:16). A new function �

2

(�) has to be introduced, associated

with the RG function �

2

(g). Again the solution of equation (2:27) combined with

simple dimensional analysis leads to the scaling behaviour

�

(l;n)

(�q

i

;�p

j

; g;�) /

�!0

�

d�n(d�2+�)=2�l=�

; (2:30)

where the correlation length exponent � is related to �

2

(g

�

) by:

� = [�

2

(g

�

) + 2]

�1

: (2:31)
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The dimension of the �eld �

2

follows (see section 2.1)

d

�

2
= d� 1=� : (2:32)

Using equations (2:28,2:31) it is easy to calculate �

2

(g) at one-loop order. At the

�xed point g = g

�

(equation (2:21)) one then obtains the exponent �:

2� = 1 +

(N+2)

2(N+8)

"+O

�

"

2

�

:

The




�

2

�

2

�

correlation function. The �

2

(energy density) two-point function

�

(2;0)

satis�es an inhomogeneous RG equation. To solve it one �rst looks for a

particular solution, which can be chosen of the form �

�"

C

2

(g):

� (g)C

0

2

(g)� ["+ 2�

2

(g)]C

2

(g) = B (g) : (2:33)

The solution is uniquely determined by imposing its regularity at g = g

�

.

The general solution of equation (2:27) is then the sum of this particular

solution and of the general solution of the homogeneous equation which has a

behaviour given by equation (2:30):

�

(2;0)

(�q; g;�)� �

�"

C

2

(g) �

�!0

�

d�2=�

: (2:34)

Remarks.

(i) The physics we intend to describe corresponds to integer values of ",

" = 1; 2. Although we can only prove the validity of all RG results within

the framework of the "-expansion, we shall eventually assume that their valid-

ity extends beyond an in�nitesimal neighbourhood of dimension 4. The large

N-expansion provides a test of the plausibility of this assumption. The decisive

test comes, of course, from the comparison with experimental or numerical data.

(ii) In four dimensions the �

4

interaction is marginally irrelevant; the renor-

malized coupling constant of the �

4

�eld theory goes to zero only logarithmically

when the cut-o� becomes in�nite. This induces logarithmic corrections to mean

�eld theory. Moreover, since no other �xed point seems to exist, this leads to

the so-called triviality property (see section 2.7) of the �

4

quantum �eld theory.

2.5 Scaling behaviour in the critical domain

We have described the scaling behaviour of correlation functions at criticality,

T = T

c

. We now consider the critical domain which is de�ned by the property

that the correlation length is large with respect to the microscopic scale, but

�nite.

Remark. The temperature is coupled to the total con�guration energy. There-

fore a variation of the temperature generates a variation of all terms contributing
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to the e�ective action. However the most relevant contribution (the most IR sin-

gular) corresponds to the �

2

(x) operator. We can therefore take the di�erence

t = r � r

c

/ T � T

c

between the coe�cient of �

2

in (2:8) and its critical value

as a linear measure of the deviation from the critical temperature. Dimensional

analysis then yields the relation

�

(n)

(p

i

; t; g;�) = �

d�n(d�2)=2

�

(n)

�

p

i

�

�1

; t�

�2

; g; 1

�

: (2:35)

With this parametrization the critical domain corresponds to jtj � �

2

.

Expansion around the critical theory. One thus adds to the critical action a

term of the form

1

2

t

R

d

d

x�

2

(x). To derive RG equations in the critical domain

one expands correlation functions in formal power series of t. The coe�cients

are critical correlation functions involving �

2

(x), for which RG equations have

been derived in section 2.4, inserted at zero momentum. Some care has to be

taken to avoid obvious IR problems. Summing the expansion, one obtains RG

equations valid for T 6= T

c

, jT � T

c

j � 1.

After summation of the t-expansion one �nally obtains the RG equation:

�

�

@

@�

+ � (g)

@

@g

�

n

2

� (g)� �

2

(g) t

@

@t

�

�

(n)

(p

i

; t; g;�) = 0 : (2:36)

Scaling laws above T

c

. As for previous RG equations, equation (2:36) can be

integrated by using the method of characteristics. In addition to the functions

g(�) and Z(�), one needs a running temperature t(�). Taking the large �, or

the small � limit one �nally obtains:

�

(n)

(p

i

; t; g;� = 1) �

t�1

jp

i

j�1

m

(d�n(d�2+�)=2)

F

(n)

+

(p

i

/m) ; (2:37)

with:

m (� = 1) = �

�1

� t

�

: (2:38)

From equation (2:37) we infer that the quantity m is proportional to the physical

mass or inverse correlation length. Equation (2:38) then shows that the diver-

gence of the correlation length � = m

�1

at T

c

is characterized by the exponent

�.

For t 6= 0, the correlation functions are �nite at zero momentum and behave

as:

�

(n)

(0; t; g;�) / t

�(d�n(d�2+�)=2)

: (2:39)

In particular for n = 2 we obtain the inverse magnetic susceptibility:

�

�1

= �

(2)

(p = 0; t; g;�) / t

�(2��)

: (2:40)

The exponent which characterizes the divergence of � is usually called 
. The

equation (2:39) establishes the relation between exponents:


 = � (2� �) : (2:41)
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2.6 Scaling laws in a magnetic �eld and below T

c

In order to pass continuously from the disordered (T > T

c

) to the ordered

phase (T < T

c

), avoiding the critical singularities at T

c

, it is necessary to add

to the action an interaction which explicitly breaks its symmetry. One thus add

a small magnetic �eld to the spin interactions. One then derives RG equations

in a �eld, or at �xed magnetization. In this way correlation functions above

and below T

c

can be continuously connected, and scaling laws established in the

whole critical domain. The �rst example is provided by the relation between

�eld and magnetization, i.e. the equation of state.

The equation of state. Let us callM the expectation value of �(x) in a constant

�eld H (for N > 1 the quantities M and H should be regarded as the length of

the corresponding vectors). The thermodynamic potential per unit volume, as a

function of M , is by de�nition:




�1

� (M; t; g;�) =

1

X

n=0

M

n

n!

�

(n)

(p

i

= 0; t; g;�) : (2:42)

The magnetic �eld H is given by:

H = 


�1

@�

@M

=

1

X

n=1

M

n

n!

�

(n+1)

(p

i

= 0; t; g;�) : (2:43)

Noting that n �M (@=@M), we immediately derive from the RG equation (2:36),

the RG equation satis�ed by H (M; t; g;�):

�

�

@

@�

+ � (g)

@

@g

�

1

2

� (g)

�

1 +M

@

@M

�

� �

2

(g) t

@

@t

�

H (M; t; g;�) = 0 :

(2:44)

To integrate equation (2:44) by the method of characteristics we have to intro-

duce, in addition to the functions g(�), t(�) and Z(�), a new function M(�).

However one veri�es that M(�) is given by M(�) =MZ

�1=2

(�).

Then from the arguments outlined in previous sections one derives the scaling

form

H (M; t; g; 1) �M

�

f

�

tM

�1=�

�

; (2:45)

with:

� =

1

2

�(d� 2 + �) = �d

�

; � =

d+ 2� �

d� 2 + �

=

d

d

�

� 1 : (2:46)

Equation (2:45) exhibits the scaling properties of the equation of state. Moreover

equations (2:46) relate the traditional critical exponents which characterize the

vanishing of the spontaneous magnetization and the singular relation between

magnetic �eld and magnetization at T

c

respectively to the exponents � and �

introduced previously.
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The universal function f(x) is in�nitely di�erentiable at x = 0. because when

M is di�erent from zero the theory remains massive even at t = 0. The magnetic

�eld H has a regular expansion in odd powers of M for t > 0. This implies

that when the variable x becomes large and positive, f(x) has the expansion

(Gri�th's analyticity):

f(x) =

1

X

p=0

a

p

x


�2p�

: (2:47)

The appearance of a spontaneous magnetization, below T

c

, implies that the

function f(x) has a negative zero x

0

. Then equation (2:45) leads to the relation:

M = jx

0

j

��

(�t)

�

for H = 0 ; t < 0 : (2:48)

Equation (2:48) gives the behaviour of the spontaneous magnetization when the

temperature approaches the critical temperature from below.

Correlation functions in a �eld. We now examine the behaviour of correlation

functions in a �eld. We write expressions for Ising-like systems. In the ordered

phase some qualitative di�erences appear between systems which have a discrete

and a continuous symmetry. We illustrate these di�erences with an example at

the end of the section.

The correlation functions at �xed magnetization M are obtained by expand-

ing the generating functional � (M (x)) of 1PI correlation functions, around

M (x) = M . From the RG equations satis�ed by the correlation functions in

zero magnetization (equations (2:36)) it is then easy to derive:

�

�

@

@�

+ � (g)

@

@g

�

1

2

� (g)

�

n+M

@

@M

�

� �

2

(g) t

@

@t

�

�

(n)

(p

i

; t;M; g;�) = 0 :

(2:49)

This equation can be solved by exactly the same method as equation (2:44). One

�nds

�

(n)

(p

i

; t;M; g;� = 1) � m

[d�(d�2+�)=2]

F

(n)

�

p

i

=m; tm

�1=�

�

; (2:50)

for jp

i

j � 1, jtj � 1, M � 1 and with the de�nition:

m =M

�=�

: (2:51)

The r.h.s. of equation (2:50) now depends on two di�erent mass scales: m =

M

�=�

and t

�

.

Correlation functions below T

c

. We have argued above that correlation func-

tions are regular functions of t for small t, provided M does not vanish. It is

therefore possible to cross the critical point and to then take the zero external

magnetic �eld limit. In the limit M becomes the spontaneous magnetization
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which is given, as a function of t, by equation (2:48). After elimination of M in

favour of t in equation (2:50), one �nds the critical behaviour below T

c

:

�

(n)

(p

i

; t;M (t;H = 0) ; g; 1) �m

d�n(d�2+�)=2

F

(n)

�

(p

i

/m ) ; (2:52)

with:

m = jx

0

j

��

(�t)

�

; H = 0 ; t < 0 : (2:53)

We conclude that the correlation functions have exactly the same scaling be-

haviour above and below T

c

.

The extension of these considerations to the functions with �

2

insertions, �

(l;n)

is straightforward. In particular the same method yields the behaviour of the

speci�c heat below T

c

:

�

(2;0)

(q = 0;M (H = 0; t)) ��

�"

C

2

(g) �

for t < 0

A

�

(�t)

��

; (2:54)

which similarly proves that the exponent above and below T

c

are the same.

Note that the constant term �

�"

C

2

(g) which depends explicitly on g is the

same above and below T

c

, in contrast with the coe�cient of the singular part.

The derivation of the equality of exponents above and below T

c

, relies on the

existence of a path which avoids the critical point, along which the correlation

functions are regular, and the RG equations everywhere satis�ed.

Remark. The universal functions characterizing the behaviour of correlation

functions in the critical domain still depend on the normalization of physical

parameters t, H,M , distances or momenta. Quantities which are independent of

these normalizations are universal pure numbers. Simple examples are provided

by the ratios of the amplitudes of the singularities above and below T

c

like A

+

=A

�

for the speci�c heat.

The O(N)-symmetric N-vector model. We now indicate a few speci�c proper-

ties of models in which the action has a continuous O(N) symmetry.

The di�erences concern correlation functions in a �eld or below T

c

. The addi-

tion of a magnetic �eld term in an O(N) symmetric action has various e�ects.

First, the magnetization and the magnetic �eld are now vectors. The RG

equations have exactly the same form as the Ising-like N = 1 case but the

scaling forms derived previously apply to the modulus of these vectors.

Second, since magnetic �eld or magnetization distinguish a direction in vector

space, there now exist 2

n

n-point functions, each spin being either along the

magnetization or orthogonal to it. When the continuous O(N) symmetry of the

action is broken linearly in the dynamical variables (as in the case of a magnetic

�eld) these di�erent correlation functions are related by a set of identities, called

WT identities. The simplest one involves the 2-point function �

�1

T

, at zero
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momentum, of the components orthogonal toM, i.e. the transverse susceptibility

�

T

�

T

(p = 0) = �

�1

T

= H=M : (2:55)

It follows that if H goes to zero below T

c

, H=M and therefore �

T

at zero mo-

mentum vanish. The latter property implies the existence of N � 1 (massless)

Goldstone modes corresponding to the spontaneous breaking of the O(N) sym-

metry.

Note �nally that the inverse longitudinal 2-point function �

L

(p) has IR sin-

gularities at zero momentum in zero �eld below T

c

generated by the Goldstone

modes. This is characteristic of continuous symmetries, and will play an essential

role in next section.

2.7 Four dimensions: logarithmic corrections and triviality

Let us just brie
y comment about the situation in four dimensions. If we solve

the RG equation

�

d

d�

g(�) = �

�

g(�)

�

;

for the running coupling constant, assuming that �(g) remains positive for all

g > 0 (no non-trivial �xed point), we �nd that g(�) goes to zero logarithmically;

the operator �

4

is marginally irrelevant. Writing generally

�(g) = �

2

g

2

+ �

3

g

3

+O(g

4

); �

2

> 0 ;

we �nd for �! 0:

ln � = �

1

�

2

g(�)

�

�

3

�

2

2

ln g(�) +K(g); (2:56)

with:

K(g) =

1

�

2

g

�

�

3

�

2

2

ln g �

Z

g

0

dg

0

�

1

�(g

0

)

�

1

�

2

g

02

+

�

3

�

2

2

g

0

�

:

Since the running coupling constant goes to zero in the long distance limit,

quantities can be calculated from perturbation theory. From the point of view of

critical phenomena logarithmic corrections to mean �eld theory are generated.

Finally let us note that empirical evidence coming from lattice calculations

strongly suggests the absence of any other �xed point.

From the point of view of particle physics one faces the triviality problem: for

any initial bare coupling constant g the renormalized coupling g(�=�) at scale �

much smaller than the cut-o� � behaves like

g(�=�) �

1

�

2

ln(�=�)

; (2:57)
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Therefore if one insists in sending the cut-o� to in�nity one �nds a free (trivial)

�eld theory. However in the modern point of view of e�ective �eld theories, one

accepts the idea that quantum �eld theories may not be consistent on all scales

but only in a limited range. Then the larger is the range the smaller is the low

energy e�ective coupling constant. In the standard model these comments may

apply to the weak-electromagnetic sector which contains a �

4

interaction and

trivial QED.
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3 The O(N) Spin Model at Low Temperature: the Non-Linear �-Model

Let us again consider the lattice model (2:1,2:2) of section 2 with partition func-

tion:

Z =

Z

Y

i

dS

i

�

�

S

2

i

� 1

�

exp

X

ij

V

ij

S

i

� S

j

=T :

We will now discuss this model from the point of view of a low temperature

expansion. The methods we employ, however, apply only to continuous symme-

tries, here to N � 2. They rely on the property that models with continuous

symmetries, in contrast to models with discrete symmetries, have a non-trivial

long distance physics at any temperature below T

c

, due to the massless Goldstone

modes.

We �rst prove universal properties of the low temperature, ordered, phase

at �xed temperature. Then, in the non-abelian case, N > 2, we show that

additional information about critical properties can be obtained, by analyzing

the instability of the ordered phase at low temperature and near two dimensions,

due to Goldstone mode interactions.

The analysis is based on the following observation: The N-vector model

(2:1,2:2) can be considered as a lattice regularization of the non-linear �-model

(note 2S

i

� S

j

= 2 � (S

i

� S

j

)

2

). The low temperature expansion of the lattice

model is the perturbative expansion of the regularized �eld theory. The �eld

theory is renormalizable in dimension two. RG equations, valid in two and more

generally 2 + " dimension follow. Their solutions will help us to understand the

long distance behaviour of correlation functions.

It is somewhat surprising that two di�erent continuum �eld theories, the (�

2

)

2

and the non-linear �-model describe the long distance physics of the same lattice

model. This point will be clari�ed by an analysis of the 1=N-expansion of both

�eld theories. This property, totally mysterious at the classical level, emphasizes

the essential nature of quantum (or statistical) 
uctuations.

3.1 The non-linear �-model

We now study the non-linear �-model from the point of view of renormalization

and renormalization group. In continuum notation the �eld S(x) has unit length

and the action is

S(S) =

1

2t

Z

d

d

x@

�

S(x) � @

�

S(x);

where t is proportional to the temperature T . To generate perturbation theory

we parametrize the �eld S(x):

S(x) = f�(x); �(x)g;

and eliminate locally the �eld �(x) by:

�(x) =

�

1� �

2

(x)

�

1=2

:
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This parametrization is singular but this does not show up in perturbation theory

which assumes �(x) small.

The O(N) symmetry. The O(N � 1) subgroup which leaves the component �

invariant acts linearly on the N�1 component vector �. However a general O(N)

transformation will transform � into a linear combination of � and

p

1� �

2

.

The O(N) symmetry is realized non-linearly. An in�nitesimal transformation

corresponding to the generators of O(N) not belonging to O(N � 1) takes the

form

�� = !

p

1� �

2

;

where ! is a N � 1 component vector of parameters corresponding to these

generators.

As we have done for the

�

�

2

�

2

model, we scale all distances in order to measure

momenta in units of the inverse lattice spacing �. We thus write the partition

function:

Z =

Z

h

�

1� �

2

(x)

�

�1=2

d�(x)

i

exp [�S(�)] ; (3:1)

with

S(�) =

�

d�2

2t

Z

d

d

x g

ij

(�)@

�

�

i

(x)@

�

�

j

(x); (3:2)

where g

ij

is the metric on the sphere

g

ij

= �

ij

+

�

i

�

j

1� �

2

: (3:3)

Moreover, as expected, the functional measure is related to the metric by

q

det(g

ij

) =

1

p

1� �

2

:

Propagator, perturbation theory and power counting. Unlike the �

4

�eld theory,

the action is non-polynomial in the �elds. An expansion of the action in powers

of � generates an in�nite number of interactions. However we note that the

power of t in front of a diagram counts the number of loops. Therefore at a �nite

loop order, only a �nite number of interactions contribute.

The � propagator is proportional to:

�

�

(k) =

t�

2�d

k

2

;

The � thus has the usual canonical dimension (d� 2)=2. Since we have interac-

tions with arbitrary powers of �, the model is renormalizable in two dimensions,

where all interactions have dimension two.
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The role of the functional measure. If we try to write the functional measure

as an additional interaction we �nd

Y

x

1

p

1� �

2

(x)

= exp

�

�

1

2

X

x

ln(1� �

2

(x)

�

:

This quantity is well-de�ned on the lattice but not in the continuum. This prob-

lem, which already appears in quantum mechanics (d = 1) re
ects the necessity

of a lattice regularization to precisely de�ne the quantum hamiltonian in the

presence of interactions with derivatives. A perturbative solution is provided by

dimensional regularization, where this term can simply be omitted. In lattice

regularization it cancels quadratic divergences.

IR divergences, spontaneous symmetry breaking and the role of dimension two.

We see that the perturbative phase of the non-linear � model is automatically

a phase in which the O(N) symmetry is spontaneously broken, and the (N � 1)

components of S(x), �(x), are massless Goldstone modes.

(i) For d � 2 we know from the Mermin{Wagner theorem that SSB with order-

ing (hSi 6= 0) is impossible in a model with continuous symmetry and short range

forces. Correspondingly IR divergences appear in the perturbative expansion of

the non-linear � model for d � 2, for example h�i diverges at order t as

R

d

d

p=p

2

.

For d � 2 the critical temperature T

c

vanishes and perturbation theory makes

sense only in presence of an IR cut-o� which breaks explicitly the symmetry and

orders the spins (thus selecting a classical minimum of the action). Therefore

nothing can be said about the long distance properties of the unbroken theory

directly from perturbation theory.

(ii) For d > 2 instead, perturbation theory which predicts spontaneous sym-

metry breaking (SSB), is not IR divergent. This is consistent with the property

that in the N-vector model, for d > 2, the O(N) symmetry is spontaneously

broken at low temperature. At T < T

c

�xed, the large distance behaviour of the

theory is dominated by the massless or spin wave excitations. On the other hand

nothing can be said, in perturbation theory, of a possible critical region T � T

c

.

To go somewhat beyond perturbation theory we shall use �eld theory RG

methods. It is therefore necessary to �rst de�ne the model in two dimensions

where it is renormalizable. There IR divergences have to be dealt with. We

thus introduce an IR cut-o� in the form of a magnetic �eld in the � direction (a

constant source for the � �eld)

S(�; h) =

�

d�2

t

Z

d

d

x

(

1

2

"

(@

�

�(x))

2

+

(� � @

�

�(x))

2

1� �

2

(x)

#

� h

p

1� �

2

(x)

)

:

(3:4)

Expanding the additional term in powers of � we see that it generates a mass

term

�

�

(k) =

t�

2�d

k

2

+ h

;
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and additional interactions of dimension 0 in d = 2.

We then proceed in formal analogy with the case of the

�

�

2

�

2

�eld theory,

i.e. study the theory in 2 + " dimension as a double series expansion in the

temperature t and ". In this way the perturbative expansion is renormalizable

and RG equations follow.

3.2 RG equations

Using power counting and some non-trivial WT identies (quadratic in the 1PI

functional) one can show that the renormalized action takes the form:

S

r

(�

r

; h

r

) =

�

d�2

Z

2t

r

Z

t

Z

d

d

x

h

(@

�

�

r

)

2

+ (@

�

�

r

)

2

i

�

�

d�2

t

r

h

r

Z

�

r

(x)d

d

x ; (3:5)

in which � is the renormalization scale and:

�

r

(x) =

�

Z

�1

� �

2

r

�

1=2

: (3:6)

Note that the renormalization constants can and thus will be chosen h indepen-

dent. This is automatically realized in the minimal subtraction scheme.

The relation:

�

r

(x) = Z

�1=2

�(x); (3:7)

implies

�

d�2

h

r

t

r

= �

d�2

Z

1=2

h

t

: (3:8)

With our conventions the coupling constant, which is proportional to the tem-

perature, is dimensionless. The relation between the cut-o� dependent and the

renormalized correlation functions is:

Z

n=2

(�=�; t) �

(n)

(p

i

; t; h;�) = �

(n)

r

(p

i

; t

r

; h

r

; �) : (3:9)

Di�erentiating with respect to � at renormalized parameters �xed, we obtain

the RG equations:

�

�

@

@�

+ �(t)

@

@t

�

n

2

�(t) + �(t)h

@

@h

�

�

(n)

(p

i

; t; h;�) = 0 ; (3:10)

where the RG functions are de�ned by:

�(t) = �

@

@�

�

�

�

�

ren:�xed

t ;

�(t) = �

@

@�

�

�

�

�

ren:�xed

(� lnZ) ;

�(t) = �

@

@�

�

�

�

�

ren:�xed

ln h :

(3:11)
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The coe�cient of @=@h can be derived from equation (3:8) which implies (taking

the logarithm of both members):

0 = h

�1

�

@

@�

h+ d� 2�

1

2

�(t)�

�(t)

t

; (3:12)

and therefore:

�(t) = 2� d+

1

2

�(t) +

�(t)

t

: (3:13)

To be able to discuss correlation functions involving the �-�eld, we also need the

RG equations satis�ed by connected correlation functions W

(n)

:

�

�

@

@�

+ �(t)

@

@t

+

n

2

�(t) +

�

1

2

�(t) +

�(t)

t

� "

�

h

@

@h

�

W

(n)

= 0 ; (3:14)

in which we now have set:

d = 2 + " : (3:15)

The two RG functions can be obtained at one-loop order from a calculation of

the 2-point function �

(2)

:

�

(2)

(p) =

�

"

t

�

p

2

+ h

�

+

�

p

2

+

1

2

(N � 1)h

�

1

(2�)

d

Z

�

d

d

q

q

2

+ h

+O(t) : (3:16)

Applying the RG equation (3:10) to �

(2)

and identifying the coe�cients of p

2

and h, we derive two equations which determine �(t) and � (t) at one-loop order

�(t) = "t �

(N � 2)

2�

t

2

+O

�

t

3

; t

2

"

�

; (3:17a)

�(t) =

(N � 1)

2�

t+O

�

t

2

; t"

�

: (3:17b)

3.3 Discussion of the RG 
ow

From the expression of �(t) in equation (3:17a) we immediately conclude:

For d � 2 (" � 0), t = 0 is an unstable IR �xed point, the IR instability being

induced by the vanishing mass of the would-be Goldstone bosons. The spectrum

of the theory thus is not given by perturbation theory and the perturbative as-

sumption of spontaneous symmetry breaking at low temperature is inconsistent.

As mentioned before, this result agrees with rigorous arguments. Note that since

the model depends only on one coupling constant, t = 0 is also a UV stable �xed

point (the property of large momentum asymptotic freedom). Section 3.5 con-

tains a short discussion of the physics in two dimensions for N > 2. The abelian

case N = 2 is special and has to be discussed separately.
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For d > 2, i.e. " > 0, t = 0 is a stable IR �xed point, the O(N) symmetry

is spontaneously broken at low temperature in zero �eld. The e�ective coupling

constant, which determines the large distance behaviour, approaches the origin

for all temperatures t < t

c

, t

c

being the �rst non-trivial zero of �(t). Therefore

the large distance properties of the model can be obtained from low temperature

expansion and renormalization group, replacing the perturbative parameters by

e�ective parameters obtained by solving the RG equations.

The critical temperature. Finally we observe that, at least for " positive and

small, and N > 2, the RG function �(t) has a non-trivial zero t

c

:

t

c

=

2�"

N � 2

+O

�

"

2

�

) � (t

c

) = 0 ; and �

0

(t

c

) = �"+O

�

"

2

�

: (3:18)

Since t

c

is an unstable IR �xed point, it is by de�nition a critical temperature.

Consequences of this property are studied below. Let us only immediately note

that t

c

is also a UV �xed point, i.e. it governs the large momentum behaviour of

the renormalized theory. The large momentumbehaviour of correlation functions

is not given by perturbation theory but by the �xed point. As a consequence

the perturbative result that the theory cannot be rendered �nite for d > 2 with

a �nite number of renormalization constants, cannot be trusted.

We now discuss more precisely the solutions of the RG equations.

3.4 Integration of the RG equations

We �rst examine the implications of the RG equations for the large distance

behaviour of correlation functions for d > 2 where t = 0 is an IR �xed point.

Equation (3:10) can be solved as usual by the method of characteristics, i.e. by

introducing a scaling parameter � and running parameters. It is here convenient

to proceed somewhat di�erently by looking for a solution of the form

�

(n)

(p

i

; t; h;�) = �

�d

(t)M

�n

0

(t)F

(n)

�

p

i

�(t); h=h

0

(t)

�

: (3:19)

The ansatz (3:19) solves the RG equations provided the unknown functions

M

0

(t), �(t) and h

0

(t) are chosen to be

M

0

(t) = exp

�

�

1

2

Z

t

0

� (t

0

)

� (t

0

)

dt

0

�

; (3:20)

�(t) = �

�1

t

1="

exp

�

Z

t

0

�

1

� (t

0

)

�

1

"t

0

�

dt

0

�

; (3:21)

with then

h

0

(t) = tM

�1

0

(t)�

�d

(t)�

2�d

: (3:22)

Note that the function �(t) has in zero �eld the nature of a correlation length.
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For the connected correlation functions the same analysis leads to:

W

(n)

(p

i

; t;H;�) = �

d(n�1)

(t)M

n

0

(t)G

(n)

�

p

i

�(t); h=h

0

(t)

�

: (3:23)

It is convenient to also introduce the function K(t)

K(t) =M

0

(t) [��(t)]

d�2

=t = 1 +O(t): (3:24)

Combining equation (3:19) with dimensional analysis we can rewrite the scaling

relation in an equivalent form

�

(n)

(p

i

; t; h;�) �M

�n

0

(t)[K(t)h]

d=2

� �

(n)

 

p

i

[K(t)h]

1=2

;

t [K(t)]

d=2

M

0

(t)

�

h

�

2

�

(d�2)=2

; 1; 1

!

:(3:25)

Let us apply this result to the determination of the singularities near the coex-

istence curve, i.e. at t �xed below the critical temperature when the magnetic

�eld h goes to zero.

The coexistence curve. The magnetization is given by

M(t; h;�) � h�(x)i = �

�"

t

@�

(0)

@h

; (3:26)

(�

(0)

is the magnetic �eld dependent free energy). At one-loop order in a �eld

one �nds

M = 1�

N � 1

2

�

�"

t

1

(2�)

d

Z

�

d

d

q

q

2

+ h

+O

�

t

2

�

:

Thus from relation (3:25) follows

M(t; h;� = 1) =M

0

(t)�

N � 1

2

t [K(t)]

d=2

h

(d�2)=2

�(1 � d=2)

(4�)

d=2

+O

�

h; h

d�2

�

:

This result shows that M

0

(t) is the spontaneous magnetization and displays the

singularity of the scaling equation of state (section 2.6) on the coexistence curve

(H = 0, T < T

c

) for N > 1, and in all dimensions d > 2.

The equation of state in the critical domain. Let now instead use the scaling

form (3:19)

M = �

2�d

t

@�

(0)

@h

=M

0

(t)F

(0)

�

h=h

0

(t)

�

: (3:27)

Inversion of this relation yields the scaling form of the equation of state:

h = h

0

(t)f

�

M

M

0

(t)

�

; (3:28)
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and the 1PI correlation functions can thus be written in terms of the magneti-

zation as:

�

(n)

(p

i

; t;M;�) = �

�d

(t)M

�n

0

(t)F

(n)

�

p

i

� (t) ;

M

M

0

(t)

�

: (3:29)

The equations (3:28,3:29) are consistent with the equations (2:45,2:50): the ap-

pearance of two di�erent functions �(t) and M

0

(t) corresponds to the existence

of two independent critical exponents �; � in the (�

2

)

2

�eld theory. They extend,

in the large distance limit, the scaling form of correlation functions, valid in the

critical region, to all temperatures below t

c

. There is however one important dif-

ference between the RG equations of the

�

�

2

�

2

theory and of the �-model: the

�

�

2

�

2

theory depends on two coupling constants, the coe�cient of �

2

which plays

the role of the temperature, and the coe�cient of

�

�

2

�

2

which has no equivalent

here. The correlation functions of the continuum

�

�

2

�

2

theory have the exact

scaling form (3:29) only at the IR �xed point. In contrast, in the case of the

�-model, it has been possible to eliminate all corrections to scaling corresponding

to irrelevant operators order by order in perturbation theory. We are therefore

led to a remarkable conclusion: the correlation functions of the O(N) non-linear

model are identical to the correlation functions of the

�

�

2

�

2

�eld theory at the IR

�xed point. This conclusion is supported by the analysis of the scaling behaviour

performed within the 1=N expansion (see equation (4:53)).

Critical exponents. Let us now study more precisely what happens when t

approaches t

c

(for N > 2). The function �(t) diverges as:

�(t) � �

�1

(t

c

� t)

1

/

�

0

(t

c

)

: (3:30)

We conclude that the correlation length exponent � is given by

� = �

1

�

0

(t

c

)

: (3:31)

For d close to 2 the exponent � thus behaves like:

� � 1=" : (3:32)

The function M

0

(t) vanishes at t

c

:

lnM

0

(t) = �

1

2

� (t

c

)

�

0

(t

c

)

ln (t

c

� t) + const. : (3:33)

This yields the exponent � and thus also � through the scaling relation � =

1

2

�(d� 2 + �):

� = � (t

c

) � " : (3:34)
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A leading order we �nd:

� =

"

N � 2

+O

�

"

2

�

: (3:35)

We �nally note that the singularity of �

(n)

coming from the prefactor �

�d

M

�n

0

indeed agrees near t

c

with the result of equation (2:37).

Consideration of operators with four derivatives allows also to calculate the

exponent ! which characterizes leading corrections to scaling. One �nds

! = 4� d� 2"=(N � 2) +O("

2

) :

The nature of the correlation length �(t). The length scale �(t) is a cross-over

scale between two di�erent behaviours of correlation functions. For distances

large compared to �(t), the behaviour of correlation functions is governed by

the Goldstone modes (spin wave excitations) and can thus be deduced from the

perturbative low temperature expansion. However when t approaches t

c

, �(t)

becomes large. There then exist distances large with respect to the microscopic

scale but small with respect to �(t) in which correlation functions have a critical

behaviour. In this situation we can construct continuum correlation functions

consistent on all scales, the critical behaviour being also the large momentum

behaviour of the renormalized �eld theory.

General comment. From the consideration of the low temperature expansion

we have been able to describe, for theories with a continuous symmetry, not only

the complete structure of the low temperature phase, and this was expected, but

also, in the non-abelian case, the critical behaviour near two dimensions .

This result is somewhat surprising: Indeed perturbation theory is only sen-

sitive to the local structure of the sphere S

2

= 1 while the restoration of sym-

metry involves the sphere globally. This explains the peculiarity of the abelian

case N = 2 because locally a circle cannot be distinguished from a non-compact

straight line. For N > 2 the sphere has instead a local characteristic curvature.

Still di�erent regular compact manifolds may have the same local metric, and

therefore the same perturbation theory. They all have the same low tempera-

ture physics. However the previous results concerning the critical behaviour are

physically relevant only if they are still valid when " is not in�nitesimal and t

approaches t

c

, a condition which cannot be checked directly. In particular the

low temperature expansion misses in general terms decreasing like exp (const:=t)

which may in some cases be essential for the physics. Therefore in section 4.6 we

will establish a direct relation between the O(N) � model and the

�

�

2

�

2

�eld

theory to all orders in the large N expansion. This gives us some con�dence

that the previous considerations are valid for the N-vector model at least for N

su�ciently large. On the other hand the physics of N = 2 is not well reproduced.

Cardy and Hamber have speculated about the RG 
ow for N close to 2 and di-

mension d close to 2, incorporating phenomenologically the Kosterlitz{Thouless

transition in their analysis.
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3.5 The dimension two

Dimension two is of special interest from the particle physics point of view.

The RG function �(t) is then:

�(t) = �

(N � 2)

2�

t

2

+O

�

t

3

�

: (3:36)

The non-linear �-model for N > 2 is the simplest example of a so-called asymp-

totically free �eld theory (UV free) since the �rst coe�cient of the �-function

is negative, in contrast with the �

4

�eld theory. Therefore the large momen-

tum behaviour of correlation functions is entirely calculable from perturbation

theory and RG arguments. There is, however a counterpart, the theory is IR

unstable and thus, in zero �eld h, the spectrum of the theory is not perturba-

tive. Contrary to perturbative indications, it consists of N massive degenerate

states since the O(N) symmetry is not broken. Asymptotic freedom and the non-

perturbative character of the spectrum are also properties of QCD, the theory

of strong interactions, in four dimensions, .

If we now de�ne a function �(t) by:

�(t) = �

�1

exp

�

Z

t

dt

0

� (t

0

)

�

; (3:37)

we can again integrate the RG equations and we �nd that �(t) is the correlation

length in zero �eld. In addition we can use the explicit expression of the �-

function to calculate the correlation length or the physical mass for small t:

�

�1

(t) = m(t) = K�t

�1=(N�2)

e

�2�=[(N�2)t]

(1 +O(t)) : (3:38)

However the exact value of the integration constant K, which gives the physical

mass in the RG scale, can only be calculated by non-perturbative techniques.

Finally the scaling forms (3:19,3:23) imply that the perturbative expansion at

�xed magnetic �eld is valid, at low momenta or large distances, and for h=h

0

(t)

large.
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4

�

�

2

�

2

Field Theory and Non-Linear � Model in the Large N Limit

In the preceding sections we have derived universal properties of critical systems

within the frameworks of the formal " = 4 � d and " = d � 2 expansions (at

least for N > 2). It is therefore reassuring to verify, at least in some limiting

case, that the results obtained in this way remain valid even when " is no longer

in�nitesimal. We show in this section that, in the case of the O(N) symmetric

�

�

2

�

2

�eld theory, the same universal properties can also be derived at �xed

dimension in the large N limit, and more generally order by order in the large

N-expansion. We then examine the non-linear �-model in the same limit.

4.1 Introduction

We again consider the partition function:

Z =

Z

[d�(x)] exp [�S(�)] ; (4:1)

where S(�) is the O(N) symmetric action (2:8) (u = �

4�d

g):

S (�) =

Z

�

1

2

[@

�

�(x)]

2

+

1

2

r�

2

(x) +

u

4!

�

�

2

(x)

�

2

�

d

d

x : (4:2)

A cut-o� �, consistent with the symmetry, is implied.

The solution of the model in the large N limit is based on a idea of mean �eld

theory type: it can be expected that for N large the O(N) invariant quantities

self-average and therefore have small 
uctuations. Thus for example




�

2

(x)�

2

(y)

�

�

N!1




�

2

(x)

� 


�

2

(y)

�

:

This suggests to take �

2

(x) as a dynamical variable. Technically, in the case

of the

�

�

2

�

2

theory, this can be achieved by using an identity similar to the

Hubbard transformation:

exp

�

1

2

r�

2

+

u

4!

�

�

2

�

2

�

/

Z

d� exp

�

3

2u

�

2

�

3r

u

��

1

2

��

2

�

; (4:3)

where the integration contour is parallel to the imaginary axis. By introducing a

�eld �(x) the identity can be used for each point x inside the functional integral

(4:1). The new functional integral is then gaussian in � and the integral over

the �eld � can be performed. The dependence on N of the partition function

becomes explicit. Actually it is convenient to separate the components of � into

one component �, andN�1 components �, and integrate only over � (for T < T

c

it may even be convenient to integrate over only N�2 components). For N large
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the di�erence is negligible. To generate � correlation functions we also add a

source H(x) to the action

Z(H) =

Z

[d�(x)] [d�(x)] exp

�

�S

N

(�; �) +

Z

d

d

xH(x)�(x)

�

; (4:4)

with:

S

N

(�; �) =

Z

�

1

2

(@

�

�)

2

�

3

2u

�

2

(x) +

3r

u

�(x) +

1

2

�(x)�

2

(x)

�

d

d

x

+

(N � 1)

2

tr ln [��+ �(�)] : (4:5)

�-�eld correlation functions. In this formalism it is natural to also calculate

correlation functions involving the �-�eld. These have a simple interpretation in

the initial �-�eld formalism. Indeed let us add a source j

�

for � in the action

(4:5). Then reintroducing the �-�eld and integrating over � we recover instead

of action (4:2),

S(�)� (u=6)�

2

j

�

+ (u=6)j

2

�

� rj

�

: (4:6)

Therefore j

�

generates the �

2

correlation functions, up to a multiplicative factor

and a translation of the connected 2-point function.

4.2 Large N limit: the critical domain

We now take the large N limit at Nu �xed. With this condition S

N

is of

order N and the functional integral can be calculated for N large by steepest

descent. We expect � = O(N

1=2

), � = O(1). We look for a uniform saddle point

(�(x); �(x) space-independent),

�(x) = � ; �(x) = � :

Di�erentiating then action (4:5) with respect to � and � we obtain the saddle

point equations:

�� = 0 ; (4:7a)

�

2

N

�

6

Nu

(� � r) +

1

(2�)

d

Z

�

d

d

p

p

2

+ �

= 0 : (4:7b)

Remark. In the large N limit the leading perturbative contributions come

from chains of \bubble" diagrams of the form displayed in �gure 1. These dia-

grams form asymptotically a geometrical series which is summed by the algebraic

techniques explained above.

Fig. 1 Leading diagrams in the limit N !1.
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The low temperature phase. Equation (4:7a) implies either � = 0 or � = 0.

In the low temperature phase �, the average value of the �eld, does not vanish.

Equation (4:7b) then yields:

�

2

N

= �

6

Nu

r �

1

(2�)

d

Z

�

d

d

p

p

2

: (4:8)

Note that this equation has solutions only for d > 2. This is a manifestation

of the Mermin{Wagner{Coleman theorem: in a system with only short range

forces a continuous symmetry cannot be broken for d � 2, in the sense that the

average � of the order parameter necessarily vanishes. Physically the would-be

Goldstone modes are responsible for this property: being massless, as we know

from general arguments and as the propagator in the r.h.s. of (4:8) con�rms,

they induce an IR instability for d � 2.

Setting

r

c

= �

Nu

6

1

(2�)

d

Z

�

d

d

p

p

2

; (4:9)

r = r

c

+ (u=6) � ; (4:10)

we can rewrite equation (4:8):

�

2

= �� = (�� )

2�

with � =

1

2

� (4:11)

The expectation value of the �eld vanishes for r = r

c

, which therefore corresponds

to the critical temperature. Moreover we �nd that for N large the exponent �

remains classical, i.e. mean-�eld like, in all dimensions.

The high temperature phase. Above T

c

, � vanishes. In expression (4:5) we see

that the �-propagator then becomes

�

�

=

1

p

2

+ �

: (4:12)

Therefore �

1=2

is at this order the physical mass, i.e. the inverse correlation

length �

�1

of the �eld �

m = �

�1

= �

1=2

: (4:13)

From equation (4:7b) we can verify that @r=@� is positive. The minimum value

of r, obtained for � = 0, is r

c

. Using equations (4:9,4:10) in equation (4:7b) we

then �nd:

6

u

+

N

(2�)

d

Z

�

d

d

p

p

2

(p

2

+m

2

)

=

�

m

2

: (4:14)
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(i) For d > 4 the integral in (4:14) has a limit for m = 0 and therefore at

leading order:

m

2

= �

�2

� � and thus � =

1

2

; (4:15)

which is the mean �eld result.

(ii) For 2 < d < 4 instead, the integral behaves for m small like (setting

d = 4� "):

D

1

(m

2

) �

1

(2�)

d

Z

�

d

d

p

p

2

(p

2

+m

2

)

= C(d)m

�"

� a(d)�

�"

+O

�

m

2�"

�

�2

�

;

(4:16)

with

N

d

=

2

(4�)

d=2

�(d=2)

(4:17a)

C(d) = �

�

2 sin(�d=2)

N

d

; (4:17b)

where we have introduced for convenience the usual loop factor N

d

. The con-

stant a(d) which characterizes the leading correction in equation (4:16), depends

explicitly on the regularization, i.e. the way large momenta are cut.

The leading contribution, form! 0, to the l.h.s. of equation (4:14) now comes

from the integral. Keeping only the leading term in (4:16) we obtain:

m = �

�1

� �

1=(2�")

; (4:18)

which shows that the exponent � is not classical:

� =

1

2� "

=

1

d� 2

� (4:19)

(iii) For d = 4 the l.h.s. is still dominated by the integral:

D

1

(m

2

) =

1

(2�)

4

Z

�

d

4

p

p

2

(p

2

+m

2

)

�

m! 0

1

8�

2

ln(�=m):

The correlation length no longer has a power law behaviour but instead a mean-

�eld behaviour modi�ed by a logarithm. This is typical of a situation where the

gaussian �xed point is stable, in the presence of a marginal operator.

(iv) Examining equation (4:7b) for � = 0 and d = 2 we �nd that the correlation

length becomes large only for r ! �1. This peculiar situation will be discussed

in the framework of the non-linear �-model.

Finally, in the critical limit � = 0, � vanishes and thus from the form (4:12) of

the �-propagator we �nd that the critical exponent � remains classical for all d

� = 0 ) d

�

=

1

2

(d � 2) : (4:20)
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We verify that the exponents �; �; � satisfy the scaling relation proven within the

framework of the "-expansion

� = �d

�

:

Singular free energy and scaling equation of state. In a constant magnetic �eld

H in the � direction, the free energy W (H)=
 per unit volume is given by

W (H)=
 = lnZ=
 =

3

2u

�

2

�

3r

u

��

1

2

��

2

+H� �

N

2

tr(��+ �);

where 
 is the total space volume and �; � the saddle point values are given by

equation (4:7b) and the modi�ed saddle point equation (4:7a):

�� = H : (4:21)

The thermodynamical potential �(M) is the Legendre transform ofW (H). First

M = 


�1

@W

@H

= � ;

because partial derivatives of W with respect to �; � vanish as a consequence of

the saddle point equations. It follows

V (M) � �(M)=
 = HM �W (H)=
 = �

3

2u

�

2

+

3r

u

�+

1

2

�M

2

+

N

2

tr(��+�):

As a property of the Legendre transform, the saddle point equation for � is now

obtained by writing that the derivative of � vanishes.

The term tr ln can be evaluated for large � in terms of r

c

and the quantities

de�ned in (4:16). One �nds

tr ln[(�� �)�

�1

] =

1

(2�)

d

Z

d

d

p ln[(p

2

+ �)=p

2

]

= �2

C(d)

d

�

d=2

�

6r

c

Nu

�+

a(d)

2

�

2

�

4�d

+O(�

1+d=2

�

�2

):

The thermodynamical potential becomes

V (M) =

3

2

�

1

u

�

�

1

u

�

�

2

+

3(r � r

c

)

u

�+

1

2

�M

2

�

NC(d)

d

�

d=2

; (4:22)

where we have de�ned

u

�

=

6

Na(d)

�

"

: (4:23)
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Note that for � small the term proportional to �

2

is negligible with respect to

the singular term �

d=2

for d < 4. At leading order in the critical domain

V (M) =

1

2

��+

1

2

�M

2

�

NC(d)

d

�

d=2

; (4:24)

where � has been de�ned in (4:10).

The saddle point equation for � takes the simple form

� +M

2

�NC(d)�

d=2�1

= 0;

and thus

� =

�

1

NC(d)

�

� +M

2

�

�

2=(d�2)

:

It follows that the leading contribution, in the critical domain, to the thermody-

namical potential is given by

V (M) �

(d � 2)

2d

1

�

NC(d)

�

2=(d�2)

(� +M

2

)

d=(d�2)

: (4:25)

Various quantities can be derived from V (M), for example the equation of state

by di�erentiating with respect to M . The resulting scaling equation of state is

H =

@V

@M

= h

0

M

�

f

�

�=M

2

�

; (4:26)

in which h

0

is a normalization constant, The exponent � is given by:

� =

d+ 2

d� 2

; (4:27)

in agreement with the general scaling relation relation � = d=d

�

� 1, and the

function f(x) by:

f(x) = (1 + x)

2=(d�2)

: (4:28)

The asymptotic form of f(x) for x large implies 
 = 2=(d�2) again in agreement

with the scaling relation 
 = �(2 � �). Taking into account the values of the

critical exponents 
 and � it is then easy to verify that the function f satis�es

all required properties like for example Gri�th's analyticity (see section 2.6). In

particular the equation of state can be cast into the parametric form:

� = R

1=2

� ;

� = 3R

�

1� �

2

�

;

H = h

0

R

�=2

�

�

3� 2�

2

�

2=(d�2)

:

q

p� q

Fig. 2 The \bubble" diagram B

�

(p;m).
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Leading corrections to scaling. The �

2

term yields the leading corrections to

scaling. It is subleading by a power of �

�

2

=�

d=2

= O(�

(4�d)=(d�2)

):

We conclude

!� = (4� d)=(d� 2) ) ! = 4� d : (4:29)

We have identi�ed the exponent ! which governs the leading corrections to scal-

ing. Note that for the special value u = u

�

this correction vanishes.

Speci�c heat exponent. Amplitude ratios. Di�erentiating twice V (M) with

respect to � we obtain the speci�c heat at �xed magnetization

C

H

=

1

(d � 2)

1

�

NC(d)

�

2=(d�2)

(� +M

2

)

(4�d)=(d�2)

: (4:30)

For M = 0 we identify the speci�c exponent �

� =

4� d

d� 2

; (4:31)

which indeed is equal to 2�d�, as predicted by scaling laws. Among the ratio of

amplitudes one can calculate for example R

+

�

and R

c

(for de�nitions see chapter

28 of main reference)

(R

+

�

)

d

=

4N

(d� 2)

3

�(3� d=2)

(4�)

d=2

; R

c

=

4� d

(d� 2)

2

: (4:32)

The � and (�)

2

two-point functions. Di�erentiating twice the action (4:5) with

respect to �(x), then replacing the �eld �(x) by its expectation value m

2

, we

�nd the �-propagator �

�

(p) above T

c

�

�

(p) = �

2

N

�

6

Nu

+B

�

(p;m)

�

�1

; (4:33)

where B

�

(p;m) is the bubble diagram of �gure 2:

B

�

(p;m) =

1

(2�)

d

Z

�

d

d

q

(q

2

+m

2

)

h

(p� q)

2

+m

2

i

: (4:34)

The �-propagator is negative because the �-�eld is imaginary. As noted in 4.1,

it is simply related to the �

2

2-point function




�

2

�

2

�

=

B

�

(p;m)

1 + (Nu=6)B

�

(p;m)

: (4:35)
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At zero momentum we recover the speci�c heat. The small m expansion of

B

�

(0;m) can be derived from the expansion (4:16). One �nds

B

�

(0;m) =

1

(2�)

d

Z

�

d

d

q

(q

2

+m

2

)

2

=

@

@m

2

�

m

2

D

1

(m

2

)

�

=

m��

(d=2 � 1)C(d)m

�"

� a(d)�

�"

+ � � � : (4:36)

The singular part of the speci�c heat thus vanishes as m

"

, in agreement with

equation (4:30) for M = 0.

In the critical theory (m = 0 at this order) for 2 � d � 4 the denominator is

also dominated at low momentum by the integral

B

�

(p; 0) =

1

(2�)

d

Z

�

d

d

q

q

2

(p� q)

2

=

2<d<4

b(")p

�"

� a(d)�

�"

+O

�

�

�2

p

2�"

�

;

(4:37)

where

b (") = �

�

sin(�d=2)

�

2

(d=2)

�(d� 1)

N

d

; (4:38)

and thus:

�

�

(p) �

p!0

�

2

Nb(")

p

"

: (4:39)

We again verify consistency with scaling relations. In particular we note that in

the large N limit the dimension [�] of the �eld � is

[�] =

1

2

(d + ") = 2 ; (4:40)

a result important for the 1=N perturbation theory.

Remarks.

(i) For d = 4 the behaviour of the propagator is still dominated by the integral

which has a logarithmic behaviour �

�

/ 1= ln(�=p).

(ii) Note therefore that for d � 4 the contributions generated by the term

proportional to �

2

(x) in (4:5) always are negligible in the critical domain.

4.3 RG functions and leading corrections to scaling

The RG functions. For a more detailed veri�cation of the consistency of the

large N results with the RG framework, we now calculate RG functions at leading

order. One �rst easily veri�es that, at leading order for � large, m solution of

equation (4:14) satis�es

�

@m

@�

+N"a(d)�

�"

u

2

6

@m

@u

= 0 ;
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where the constant a(") has been de�ned in (4:16). It depends on the cut-o�

procedure but for " = 4� d small satis�es

a(") � 1=(8�

2

"): (4:41)

We then set (equation (4:23)):

u = g�

"

; g

�

= u

�

�

�"

= 6=(Na) : (4:42)

In the new variables �; g; � we obtain an equation which expresses that m is RG

invariant

�

�

@

@�

+ � (g)

@

@g

� �

2

(g)�

@

@�

�

m(�; g;�) = 0 ; (4:43)

with

�(g) = �"g(1� g=g

�

); (4:44)

�

�1

(g) = 2 + �

2

(g) = 2� "g=g

�

: (4:45)

When a(d) is positive (but this not true for all regularizations, see the discussion

below), one �nds an IR �xed point g

�

, as well as exponents ! = ", and �

�1

=

d � 2, in agreement with equations (4:29,4:19). In the framework of the "-

expansion ! is associated with the leading corrections to scaling. In the large N

limit ! remains smaller than two for " < 2, and this extends the property to all

dimensions 2 � d � 4.

Finally, applying the RG equations to the propagator (4:12), we �nd

�(g) = 0 ; (4:46)

a result consistent with the value (4:20) found for �.

Leading corrections to scaling. From the general RG analysis we expect the

leading corrections to scaling to vanish for u = u

�

. This property has already

been veri�ed for the free energy. Let us now consider the correlation length or

massm given by equation (4:14). If we keep the leading correction to the integral

for m small (equation (4:16)) we �nd

6

u

�

6

u

�

+NC(d)m

�"

+O

�

m

2�"

�

�2

�

=

�

m

2

; (4:47)

where equation (4:42) has been used. We see that the leading correction again

vanishes for u = u

�

. Actually all correction terms suppressed by powers of order

" for d ! 4 vanish simultaneously as expected from the RG analysis of the �

4

�eld theory. Moreover one veri�es that the leading correction is proportional to

(u � u

�

)�

"=(2�")

, which leads to !� = "=(2 � "), in agreement with equations

(4:29,4:19).
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In the same way if we keep the leading correction to the �-propagator in the

critical theory (equation (4:37)) we �nd:

�

�

(p) = �

2

N

�

6

Nu

�

6

Nu

�

+ b(")p

�"

�

�1

; (4:48)

where terms of order �

�2

and 1=N have been neglected. The leading corrections

to scaling again exactly cancel for u = u

�

as expected.

Discussion.

(i) One can show that a perturbation due to irrelevant operators is equivalent,

at leading order in the critical region, to a modi�cation of the (�

2

)

2

coupling.

This can be explicitly veri�ed here. The amplitude of the leading correction to

scaling has been found to be proportional to 6=Nu � a(d)�

�"

where the value

of a(d) depends on the cut-o� procedure and thus of contributions of irrelevant

operators. Let us call u

0

the (�

2

)

2

coupling constant in another scheme where a is

replaced by a

0

. Identifying the leading correction to scaling we �nd the relation:

6�

"

Nu

� a(d) =

6�

"

Nu

0

� a

0

(d);

homographic relation which is consistent with the special form (4:44) of the

�-function.

(ii) The sign of a(d). It is generally assumed that a(d) > 0. This is indeed what

one �nds in the simplest regularization schemes, like the simplest Pauli{Villars's

regularization where a(d) is positive in all dimensions 2 < d < 4. Moreover a(d)

is always positive near four dimensions where it diverges like

a(d) �

d!4

1

8�

2

"

:

Then there exists an IR �xed point, non-trivial zero of the �-function. For this

value u

�

the leading corrections to scaling vanish.

However for d �xed, d < 4, this is not a universal feature. For example in the

case of simple lattice regularizations it has been shown that in d = 3 the sign is

arbitrary.

However, if a(d) is negative, the RG method for large N (at least in the per-

turbative framework) is confronted with a serious di�culty. Indeed the coupling


ows in the IR limit to large values where the large N expansion is no longer

reliable. It is not known whether this signals a real physical problem, or is just

an artifact of the large N limit.

Another way of stating the problem is to examine directly the relation between

bare and renormalized coupling constant. Calling g

r

m

4�d

the renormalized 4-

point function at zero momentum, we �nd

m

4�d

g

r

=

�

4�d

g

1 + �

4�d

gNB

�

(0;m)=6

: (4:49)



43

In the limit m� � the relation can be written

1

g

r

=

(d� 2)NC(d)

12

+

�

m

�

�

4�d

�

1

g

�

Na(d)

6

�

: (4:50)

We see that when a(d) < 0 the renormalized IR �xed point value cannot be

reached by varying g > 0 for any �nite value of m=�. In the same way leading

corrections to scaling can no longer be cancelled.

4.4 Small coupling constant and large momentum expansions for d < 4

Section 4.6 is devoted to a systematic discussion of the 1=N expansion. How-

ever the 1=N correction to the two-point function will help us to immediately

understand the problem of the massless �eld theory for d < 4.

We have seen that, in the framework at the 1=N expansion, we can calculate

at �xed dimension d < 4 in the critical limit (T = T

c

;m

2

= 0). This implies

that the terms of the 1=N expansion cannot be expanded in a power series of

the coupling constant, at least with integer powers. Note that since the gaussian

�xed point is an UV �xed point, the small coupling expansion is also a large

momentum expansion. To understand the phenomenon we consider the h��i

correlation function at order 1=N . At this order only one diagram contributes

(�gure 3), containing two �

2

� vertices. After mass renormalization and in the

large cut-o� limit we �nd:

�

(2)

��

(p) = p

2

+

2

N(2�)

d

Z

d

d

q

(6=Nu) + b(")q

�"

�

1

(p + q)

2

�

1

q

2

�

+O

�

1

N

2

�

:

(4:51)

An analytic study of the integral reveals that it has an expansion of the form

X

k�1

�

k

u

k

p

2�k"

+ �

k

u

(2+2k)="

p

�2k

: (4:52)

The coe�cients �

k

; �

k

can be obtained by performing a Mellin transformation

over u on the integral. Indeed if a function f(u) behaves like u

t

for u small, then

the Mellin transformM(s)

M(s) =

Z

1

0

duu

�1�s

f(u);

has a pole at s = t. Applying the transformation to the integral, and inverting

q and u integrations we have to calculate the integral

Z

1

0

du

u

�1�s

(6=Nu) + b(")q

�"

=

N

6

�

Nb(")q

�"

6

�

1�s

�

sin�s

�
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�

�

Fig. 3 The diagram contributing to �

(2)

��

at order 1=N .

Then the value of the remaining q integral follows from the generic result (4:78).

The terms with integer powers of u correspond to the formal perturbative

expansion where each integral is calculated for " small enough. �

k

has poles at

" = (2l + 2)=k for which the corresponding power of p

2

is �l, i.e. an integer.

One veri�es that �

l

has a pole at the same value of " and that the singular

contributions cancel in the sum. For these dimensions logarithms of u appear in

the expansion.

4.5 The non-linear �-model in the large N limit

We have noticed that the term proportional to

R

d

d

x�

2

(x), which has dimension

4� d for large N in all dimensions, is irrelevant in the critical domain for d < 4

and can thus be omitted at leading order (this also applies to d = 4 where it

is marginal but yields only logarithmic corrections). Actually the constant part

in the inverse propagator as written in equation (4:48) plays the role of a large

momentum cut-o�. Let us thus consider the action (4:67) without the �

2

term.

If we then work backwards, reintroduce the initial �eld � and integrate over �(x)

we �nd

Z =

Z

[d�(x)] �

�

�

2

(x) �

6

u

�

m

2

� r

�

�

exp

�

�

Z

1

2

(@

�

�(x))

2

d

d

x

�

: (4:53)

Under this form we recognize the partition function of the O(N) symmetric non-

linear �-model in an unconventional normalization. We have therefore discovered

a remarkable correspondence: to all orders in an 1=N expansion the renormalized

non-linear �-model is identical to the renormalized

�

�

2

�

2

�eld theory at the IR

�xed point.

The large N limit. In order to more explicitly show the correspondence be-

tween the set of parameters used in the two models, let us directly solve the

�-model in the large N limit. We rewrite the partition function:

Z =

Z

[d�(x)d�(x)] exp [�S(�; �)] ; (4:54)

with:

S(�; �) =

1

2t

Z

d

d

x

h

(@

�

�)

2

+ �

�

�

2

� 1

�

i

: (4:55)
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Integrating, as we did in section 4.1, over N � 1 components of � and calling �

the remaining component, we obtain:

Z =

Z

[d�(x)d�(x)] exp [�S

N

(�; �)] ; (4:56)

with:

S

N

(�; �) =

1

2t

Z

h

(@

�

�)

2

+

�

�

2

(x) � 1

�

�(x)

i

d

d

x +

1

2

(N � 1) tr ln [��+ �(�)] :

(4:57)

The large N limit is here taken at tN �xed. The saddle point equations, analo-

gous to equations (4:7), are:

m

2

� = 0 ; (4:58a)

�

2

= 1�

(N � 1)t

(2�)

d

Z

�

d

d

p

p

2

+m

2

; (4:58b)

where we have set h�(x)i = m

2

. At low temperature � is di�erent from zero and

thus m, which is the mass of the �-�eld, vanishes. Equation (4:58b) gives the

spontaneous magnetization:

�

2

= 1�

(N � 1)t

(2�)

d

Z

�

d

d

p

p

2

: (4:59)

Setting

1

t

c

=

(N � 1)

(2�)

d

Z

�

d

d

p

p

2

; (4:60)

we can write equation (4:59):

�

2

= 1� t=t

c

: (4:61)

Thus t

c

is the critical temperature where � vanishes.

Above t

c

, � instead vanishes and m, which is now the common mass of the �-

and �-�eld, is for 2 < d < 4 given by:

1

t

c

�

1

t

=m

d�2

(N � 1)

(2�)

d

Z

d

d

p

p

2

(p

2

+ 1)

+O

�

m

2

�

d�4

�

: (4:62)

We recover the scaling form of the correlation length � = 1=m. From the equa-

tions (4:61,4:62), we can also derive the RG functions at leading order for N

large:

�(t) = "t�

N

2�

t

2

; �(t) =

N

2�

t : (4:63)
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It is also easy to calculate the thermodynamical potential, Legendre transform

of W (H) = t lnZ(H):

V (M) = �(M)=
 =

d� 2

2d

1

�

NC(d)

�

2=(d�2)

(M

2

� 1 + t=t

c

)

d=(d�2)

; (4:64)

a result which extends equation (4:25) to all temperatures below t

c

. The cal-

culation of other physical quantities and the expansion in 1=N follow from the

considerations of previous sections and section 4.6.

Two dimensions and the question of Borel summability. For d = 2 the critical

temperature vanishes and the parameter m has the form:

m � �

e

�2�=(Nt)

; (4:65)

in agreement with the RG predictions. Note that the �eld 2-point function takes

in the large N-limit the form:

�

(2)

��

(p) = p

2

+m

2

: (4:66)

The mass term vanishes to all orders in the expansion in powers of the coupling

constant t, preventing any perturbative calculation of the mass of the �eld. The

perturbation series is trivially not Borel summable. Most likely this property is

also true for the model at �nite N . On the other hand if we break the O(N)

symmetry by a magnetic �eld, adding a term h� to the action, the physical mass

becomes calculable in perturbation theory.

Corrections to scaling and the dimension four. In equation (4:62) we have

neglected corrections to scaling. If we take into account the leading correction

we get instead:

m

2

�

C(d)m

d�4

� a(d)�

d�4

�

/ t� t

c

;

where a(d), as we have already explained, is a constant which explicitly depends

on the cut-o� procedure and can thus be varied by changing contributions of

irrelevant operators. By comparing with the results of section 4.3, we discover

that, although the non-linear �-model super�cially depends on one parameter less

than the corresponding �

4

�eld theory, actually this parameter is hidden in the

cut-o� function. This remark becomes important in the four dimensional limit

where most leading contributions come from the leading corrections to scaling.

For example for d = 4 equation (4:62) takes a di�erent form, the dominant term

in the r.h.s. is proportional to m

2

lnm. We recognize in the factor lnm the

e�ective �

4

coupling at mass scale m. Beyond the 1=N expansion, to describe

with perturbation theory and renormalization group the physics of the non-linear

� model it is necessary to introduce the operator

R

d

d

x�

2

(x), which irrelevant

for d < 4, becomes marginal, and to return to the �

4

�eld theory.



47

4.6 The 1=N-expansion: an alternative �eld theory

Preliminary remarks. Power counting. Higher order terms in the steepest

descent calculation of the functional integral (4:4) generate a systematic 1=N

expansion. Let us �rst slightly rewrite action (4:5). We shift the �eld �(x) by

its expectation value m

2

(equation (4:13)), �(x) 7! m

2

+ �(x):

S

N

(�; �) =

1

2

Z

d

d

x

�

(@

�

�)

2

+m

2

�

2

+ �(x)�

2

(x) �

3

u

�

2

(x) �

6

u

�

m

2

� r

�

�(x)

�

+

(N � 1)

2

tr ln

�

��+m

2

+ �(�)

�

: (4:67)

We now analyze the terms in the action (4:67) from the point of view of large N

power counting. The dimension of the �eld �(x) is (d � 2)=2. From the critical

behaviour (4:39) of the �-propagator we have deduced the canonical dimension

[�] of the �eld �(x):

2 [�]� " = d i:e: [�] = 2 :

As noted above, �

2

has dimension 4 > d and is thus irrelevant. The interaction

term

R

�(x)�

2

(x)d

d

x has dimension zero. It is easy to verify that the non-local

interactions involving the �-�eld, coming from the expansion of the tr ln, have

all also the canonical dimension zero:

�

tr

h

�(x)

�

��+m

2

�

�1

i

k

�

= k [�]� 2k = 0 :

This power counting property has the following implication: In contrast with

usual perturbation theory, the 1=N expansion generates only logarithmic correc-

tions to the leading long distance behaviour for any �xed dimension d, 2 < d � 4.

The situation is thus similar to the situation one encounters for the "-expansion

(at the IR �xed point) and one expects to be able to calculate universal quanti-

ties like critical exponents for example as power series in 1=N . However, because

the interactions are non-local, the results of renormalization theory do not im-

mediately apply. We now construct an alternative quasi-local �eld theory, for

which the standard RG analysis is valid, and which reduces to the large N �eld

theory in some limit.

An alternative �eld theory. To be able to use the standard results of renor-

malization theory we reformulate the critical theory to deal with the non-local

interactions. Neglecting corrections to scaling we start from the non-linear �-

model in the form (4:55):

Z =

Z

[d�(x)] [d�(x)] exp [�S (�; �)] ; (4:68)

S(�; �) =

1

2t

Z

d

d

x

h

(@

�

�)

2

+ �

�

�

2

� 1

�

i

: (4:69)
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The di�culty arises from the �-propagator, absent in the perturbative formu-

lation, and generated by the large N summation. We thus add to the action

(4:69) a term quadratic in � which at tree level of standard perturbation theory

generates a �-propagator of the form (4:39). The modi�ed action S

v

then is

S

v

(�; �) =

1

2

Z

d

d

x

�

1

t

h

(@

�

�)

2

+ �

�

�

2

� 1

�

i

�

1

v

2

�(�@

2

)

�"=2

�

�

: (4:70)

In the limit where the parameter v goes to in�nity the coe�cient of the additional

term vanishes, and the initial action is recovered.

We below consider only the critical theory. This means that the couplings of

all relevant interactions will be set to their critical values. These interactions

contain a term linear in � and a polynomial in �

2

of degree depending on the

dimension. Note that in some discrete dimensions some monomials become just

renormalizable. We therefore work in generic dimensions. The quantities we

shall calculate are regular in the dimension. The �eld theory with the action

(4:70) can be studied with standard �eld theory methods. The peculiar form

of the � quadratic term, which is not strictly local, does not create a problem.

Similar terms are encountered in statistical systems with long range forces. The

simple consequence is that the �-�eld is not be renormalized because counter-

terms are always local.

It is convenient to rescale � 7! �

p

t, � 7! v�:

S

v

(�; �) =

1

2

Z

d

d

x

h

(@

�

�)

2

+ v��

2

� �(�@

2

)

�"=2

�+ relevant terms

i

:

The renormalized critical action then reads:

[S

v

]

ren

=

1

2

Z

d

d

x

h

Z

�

(@

�

�)

2

+ v

r

Z

v

��

2

� �(�@

2

)

�"=2

�+ relevant terms

i

:

(4:71)

It follows that the RG equations for 1PI correlation functions of l � �elds and n

� �elds in the critical theory take the form:

�

�

@

@�

+ �

v

2
(v)

@

@v

2

�

n

2

�(v)

�

�

(l;n)

= 0 : (4:72)

We can then calculate the RG functions as power series in 1=N . It is easy to verify

that v

2

has to be taken of order 1=N . Therefore to generate a 1=N expansion

one �rst has to sum the multiple insertions of the one-loop � two-point function,

contributions which form a geometrical series. The � propagator then becomes

�

�

(p) = �

2p

4�d

b(")D(v)

; (4:73)



49

where we have de�ned

D(v) = 2=b(") +Nv

2

:

The solution to the RG equations (4:72) can be written:

�

(l;n)

(�p; v;�) = Z

�n=2

(� )�

d�2l�n(d�2)=2

�

(l;n)

(p; v(� );�); (4:74)

with the usual de�nitions

�

dv

2

d�

= �(v(� )) ; �

d lnZ

d�

= �(v(� )) :

We are interested in the neighbourhood of the �xed point v

2

=1. One veri�es

that the RG function �(v) approaches the exponent � obtained by direct calcula-

tion, and the RG �-function behaves like v

2

. The 
ow equation for the coupling

constant becomes:

�

dv

2

d�

= �v

2

; ) v

2

(� ) � �

�

: (4:75)

We then note that to each power of the � �eld corresponds a power of v. It

follows

�

(l;n)

(�p; v;�) / v

l

(� )�

d�2l�n(d�2+�)

/ �

d�(2��=2)l�n(d�2+�)

: (4:76)

To compare with the result (2:30) obtained from the perturbative renormalization

group one has still to take into account that the functions �

(l;n)

de�ned here are

obtained by an additional Legendre transformation with respect to the source of

�

2

. Therefore

2� �=2 = d

�

2
= d� 1=� : (4:77)

Fig. 4 Diagram contributing to �

(3)

���

at order 1=N .

Fig. 5 Diagram contributing to �

(3)

���

at order 1=N .
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RG functions at order 1=N . Most calculations at order 1=N rely on the eval-

uation of the generic integral

1

(2�)

d

Z

d

d

q

(p+ q)

2�

q

2�

= p

d�2��2�

�(� + � � d=2)�(d=2 � �)�(d=2 � �)

(4�)

d=2

�(�)�(�)�(d � �� �)

:

(4:78)

For later purpose it is convenient to set:

X

1

=

2N

d

b(")

=

4�(d � 2)

�(d=2)�(2 � d=2)�

2

(d=2� 1)

=

4 sin(�"=2)�(2 � ")

��(1 � "=2)�(2 � "=2)

: (4:79)

To compare with �xed dimension results note X

1

� 2(4 � d) for d ! 4 and

X

1

� (d� 2) for d! 2.

The calculation of the h��i correlation function at order 1=N involves the

evaluation of the diagram of �gure 3. We want to determine the coe�cient

of p

2

ln �=p. Since we work at one-loop order we can instead replace the �

propagator q

�"

by q

2�

and send the cut-o� to in�nity. We then use the result

(4:78) with � = 1. In the limit 2� ! �" the integral has a pole. The residue

of the pole yields the coe�cient of p

2

ln � and the �nite part contains the p

2

ln p

contribution

�

(2)

��

(p) = p

2

+

"

4� "

2N

d

b(")D(v)

v

2

p

2

ln(�=p):

Expressing that the function satis�es the RG equation we obtain the function

�(v).

The second RG function can be deduced from the divergent parts of the h���i

function

�

(3)

���

= v +A

1

v

3

D

�1

(v) ln � +A

2

v

5

D

�2

(v) ln � + �nite ;

with

A

1

= �

2

b(")

N

d

= �X

1

A

2

= �

4N

b

2

(")

(d� 3)b(")N

d

= �2N(d � 3)X

1

;

where A

1

and A

2

correspond to the diagrams of �gures 4 and 5 respectively.

Applying the RG equation one �nds the relation at order 1=N

�

v

2
(v) = 2v

2

�(v)� 2A

1

v

4

D

�1

(v)� 2A

2

v

6

D

�2

(v): (4:80)

We thus obtain

�(v) =

"v

2

4� "

X

1

D

�1

(v); (4:81)

�

v

2
(v) =

8v

4

4� "

X

1

D

�1

(v) + 4N(1 � ")v

6

X

1

D

�2

(v); (4:82)
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where the �rst term in �

v

2
comes from A

1

and � and the second from A

2

.

Extracting the large v

2

behaviour we �nd

� =

"

N(4 � ")

X

1

+O(1=N

2

):; (4:83)

� =

4(3� ")(2 � ")

N(4 � ")

X

1

> 0 ;

and thus

1

�

= d� 2 +

2(3 � ")(2 � ")

N(4 � ")

X

1

+O(1=N

2

): (4:84)

4.7 Additional results

The calculations beyond the order 1=N are rather technical. The reason is

easy to understand: Because the e�ective �eld theory is renormalizable in all

dimensions 2 � d � 4, the dimensional regularization, which is so useful in

perturbative calculations, no longer works. Therefore either one keeps a true

cut-o� or one introduces more sophisticated regularization schemes. For details

the reader is referred to the literature.

Generic dimensions. The exponents 
 and � are known up to order 1=N

2

and

1=N

3

respectively in arbitrary dimensions but the expressions are too compli-

cated to be reproduced here. The expansion of 
 up to order 1=N can be directly

deduced from the results of the preceding sections:


 =

1

1� "=2

�

1�

3

2N

X

1

�

+O

�

1

N

2

�

: (4:85)

The exponents ! and � = !�, governing the leading corrections to scaling, can

also be calculated for example from the




�

2

��

�

function:

! = "

�

1�

2(3� ")

2

(4� ")N

X

1

�

+O

�

1

N

2

�

; (4:86)

� = !� =

"

2� "

�

1�

2(3 � ")

N

X

1

�

+O

�

1

N

2

�

: (4:87)

Note that the exponents are regular functions of " up to " = 2 and free of

renormalon singularities at " = 0.

The equation of state and the spin{spin correlation function in zero �eld are

also known at order 1=N , but since the expressions are complicated we refer the

reader to the literature for details.

Three dimensional results. Let us give the expansion of � in three dimensions

at the order presently available:

� =

�

1

N

+

�

2

N

2

+

�

3

N

3

+O

�

1

N

4

�

;
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with

�

1

=

8

3�

2

; �

2

= �

8

3

�

2

1

; �

3

= �

3

1

�

�

797

18

�

61

24

�

2

+

27

8

 

00

(1=2) +

9

2

�

2

ln 2

�

;

 (x) being the logarithmic derivative of the � function.

The exponent 
 is known only up to order 1=N

2

:


 = 2�

24

N�

2

+

64

N

2

�

4

�

44

9

� �

2

�

+O

�

1

N

3

�

:

Note that the 1=N expansion seems to be rapidly divergent and certainly a

direct summation of these terms does not provide very good estimates of critical

exponents in 3 dimensions for useful values of N .

4.8 Dimension four: triviality, renormalons, Higgs mass

A number of issues concerning the physics of the (�

2

)

2

theory in four dimensions

can be addressed within the framework of the large N expansion. For simplicity

reasons we consider here only the critical (i.e massless) theory.

Triviality and UV renormalons. It is easy to verify that the renormalized

coupling constant g

r

, de�ned as the value of the vertex h����i at momenta of

order �� �, is given by:

g

r

=

g

1 +

1

6

NgB

�

(�)

; (4:88)

where B

�

(p) corresponds to the bubble diagram (�gure 2)

B

�

(p) �

p��

1

8�

2

ln(�=p) + const: : (4:89)

We see that when the ratio �=� goes to zero, the renormalized coupling constant

vanishes, for that all g. This is the so-called triviality property. In the standard

treatment of quantum �eld �eld, one usually insists in taking the in�nite cut-o�

� limit. Here one then �nds only a free �eld theory. Another way of formulating

the problem is the following: it is impossible to construct in four dimensions a

�

4

�eld theory consistent (in the sense of satisfying all usual physical require-

ments) on all scales for non zero coupling. Of course in the logic of e�ective �eld

theories this is no longer an issue. The triviality property just implies that the

renormalized or e�ective charge is logarithmically small as indicated by equa-

tions (4:88,4:89). Note that if g is generic (not too small) and �=� large, g

r

is

essentially independent of the initial coupling constant. Only if the bare coupling

is small is the renormalized coupling an adjustable, but bounded, quantity.

Let us now imagine that we work formally and, ignoring the problem, we

express the leading contribution to the four-point function in terms of the renor-

malized constant:

g

1 +

N

48�

2

g ln(�=p)

=

g

r

1 +

N

48�

2

g

r

ln(�=p)

:
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We then �nd that the function has a pole for

p = �

e

48�

2

=(Ng

r

)

:

This pole corresponds to the Landau ghost for this theory which has g = 0 as an

IR �xed point. If we calculate contributions of higher orders, for example to the

two-point function, this pole makes the loop integrals diverge. In an expansion in

powers of g

r

, each term is instead calculable but one �nds, after renormalization,

UV contributions of the type

Z

1

d

4

q

q

6

�

�

Ng

r

48�

2

ln(�=q)

�

k

/

k!1

�

Ng

r

96�

2

�

k

k! :

The perturbative manifestation of the Landau ghost is the appearance of contri-

butions to the perturbation series which are not Borel summable. By contrast the

contributions due to the �nite momentum region, which can be evaluated by a

semiclassical analysis, are Borel summable, but invisible for N large. This e�ect

is called UV renormalon e�ect. Note �nally that this UV problem is independent

of the mass of the �eld �, that we have taken zero for simplicity reasons.

IR renormalons. We now illustrate the problem of IR renormalons with the

same example of the massless (�

2

)

2

theory (but now zero mass is essential), in

four dimensions, in the large N limit. We calculate the contribution of the small

momentum region to the mass renormalization, at cut-o� � �xed. In the large

N limit the mass renormalization is then proportional to (see equation (4:51))

Z

�

d

4

q

q

2

�

1 +

1

6

NgB

�

(q)

�

�

Z

d

4

q

q

2

�

1 +

N

48�

2

g ln(�=q)

�

:

It is easy to expand this expression in powers of the coupling constant g. The

term of order k in the limit k !1 behaves as (�1)

k

(N=96�

2

)

k

k!. This contri-

bution has the alternating sign of the semiclassical contribution. Note that more

generally for N �nite on �nds (��

2

=2)

k

k!. IR singularities are responsible for

additional, Borel summable, contributions to the large order behaviour.

In a theory asymptotically free for large momentum, clearly the roles of IR

and UV singularities are interchanged.

The mass of the � �eld in the phase of broken symmetry. The �

4

theory is

a piece of the Standard Model, and the �eld � then represents the Higgs �eld.

With some reasonable assumptions it is possible to establish for �nite N a semi-

quantitative bound on the Higgs mass. Let us examine here what happens for

N large.

In the phase of broken symmetry the action, after translation of average values,

includes a term proportional to �� and thus the propagators of the �elds � and

� are elements of a 2� 2 matrix M:

M

�1

(p) =

�

p

2

�

� �3=u�

1

2

NB

�

(p)

�

;
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where � = h�(x)i. In four dimensions B

�

is given by equation (4:89). It is

convenient to introduce a mass scale M , RG invariant, such that

48�

2

Nu

+ 8�

2

B

�

(p) � ln(M=p);

and thus

M /

e

48�

2

=Nu

� :

The mass of the �eld � at this order is a solution to the equation detM = 0.

One �nds

p

2

ln(M=p) = �(16�

2

=N)�

2

) m

2

�

ln(iM=m

�

) = (16�

2

=N)�

2

:

The mass m

�

solution to the equation is complex, because the particle � can

decay into massless Goldstone bosons. At � �xed, the mass decreases when the

cut-o� increases or when the coupling constant goes to zero. Expressing that the

mass must be smaller than the cut-o�, one obtains an upper-bound on m

�

(but

which slightly depends on the chosen regularization).

4.9 Finite size e�ects

Another question can be studied in the large N limit, �nite size e�ects. It is

di�cult to discuss all possible �nite size e�ects because the results depend both

on the geometry of the system and on the boundary conditions. In particular one

must discuss separately boundary conditions depending whether they break or

not translation invariance. In the �rst case new e�ects appear which are surface

e�ects, and that we do not examine here. Note that the periodic conditions are

not the only ones which preserve translation invariance. For systems which have a

symmetry one can glue the boundaries after having made a group transformation.

Thus here one could also choose antiperiodic conditions or more generally �elds

di�ering by a transformation of the O(N) group.

Moreover if we are interested only in qualitative aspects we can limit ourselves

to a simple geometry, in each direction the system having the same �nite size

L, all other sizes being in�nite (but we thus exclude some questions concerning

crossover regimes). Even so the number of di�erent possible situations remains

large, and we limit ourselves here to two examples.

We consider the example of periodic boundary conditions in two cases: �nite

volume (the geometry of the hypercube or rather hypertorus) in this section, and

QFT at �nite temperature in next section.

From the point of view of renormalization group, �nite size e�ects, which only

a�ect the IR domain, do not change UV divergences. The RG equations remain

the same, only the solutions are modi�ed by the appearance of new dimensional

quantities. Thus if �nite sizes are characterized by only one length L, solutions

will be functions of an additional argument L=� where � is the correlation length.
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A property characteristic of a system of �nite size is the quanti�cation of

momenta in Fourier space. For periodic conditions, if we call L the size du

system in each direction, we have

p

�

= 2�n

�

=L ; n

�

2Z:

In particular, in a massless theory the zero mode p = 0 now corresponds to

an isolated pole of the propagator. This automatically leads to IR divergences

in all dimensions. Therefore in equations (4:7) the solution � 6= 0 no longer

exists. This is not surprising: there are no phase transitions in a �nite volume.

Neglecting corrections to scaling laws we can then write equation (4:58b):

1 = (N � 1)tL

�d

X

n

�

1

m

2

+ (2�n=L)

2

; (4:90)

where the sums are cut by a cut-o� �.

To discuss the equation it is convenient to introduce the function A(s) (related

to Jacobi's elliptic functions)

A(s) =

+1

X

n=�1

e

�sn

2

: (4:91)

Using Poisson's transformation it is easy to show

A(s) = (�=s)

1=2

A

�

�

2

=s

�

: (4:92)

Using this de�nition, and introducing the critical temperature t

c

, one can write

equation (4:90) (for 2 < d < 4)

1

t

�

1

t

c

= (N � 1)L

�d

Z

1

0

ds

�

e

�sm

2

A

d

(4�

2

s=L

2

)� L

d

(4�s)

�d=2

�

: (4:93)

Setting s 7! L

2

s and introducing the function F :

F (z) =

Z

1

0

ds

�

e

�sz

2

A

d

(4�

2

s) � (4�s)

�d=2

�

; (4:94)

we can rewrite the relation

1

t

�

1

t

c

= (N � 1)L

2�d

F (mL): (4:95)

For jt � t

c

j � �

d�2

we �nd a scaling form which is in agreement with the RG

result, which predicts (1=� = d� 2 +O(1=N)):

Lm(t; L) = L=�(t; L) = f

�

(t� t

c

)L

1=�

�

:
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Here the length � has the meaning of a correlation length only for � < L. Since

� = 0, the magnetic susceptibility � in zero �eld instead is always given by

� = t=m

2

.

One veri�es that for t > t

c

�xed, L ! 1 and thus mL ! 1 one recovers

the in�nite volume limit. On the contrary in the low temperature phase for

t < t

c

�xed, L !1, mL goes to zero. Thus the contribution of the zero mode

dominates in the r.h.s. of equation (4:90). Using the relation (4:92) one then

�nds

F (z) =

1

z

2

+K(d) +O

�

z

2

�

;

K(d) =

Z

1

0

ds

h

A

d

(4�

2

s) � 1� (4�s)

�d=2

i

;

and thus

�(L; t) =

t

m

2

=

1

N � 1

(1 � t=t

c

)L

d

� tL

2

K(d) +O

�

L

4�d

=(t � t

c

)

�

: (4:96)

We see that the susceptibility diverges with the volume, an indication of the

existence of a broken symmetry phase.

Note �nally that it is instructive to make a similar analysis for di�erent bound-

ary conditions which have no zero mode.

For d = 2 the regime where �nite size e�ects are observables corresponds to

t ln(L�) = O(1), i.e. to a regime of low temperature. The zero mode dominates

for t ln(L�)� 1, and the susceptibility is then given by

�(t; L) �

1

N

L

2

[1 +O(t ln(L�))] :

4.10 Field theory at �nite temperature

Quantum �eld theory at �nite temperature can be considered as a system

which has a �nite size in one direction. Indeed the partition function is given

by tr

e

�LH

, where H is the hamiltonian and L

�1

the temperature. For a scalar

�eld theory with euclidean lagrangian density L(�) this leads to the functional

integral

Z =

Z

[d�] exp

"

�

Z

L

0

d�

Z

d

d�1

xL(�)

#

;

where the �eld � satis�es periodic boundary conditions only in one direction

�(� = 0; x) = �(� = L; x):

Let us again consider, as an example, the non-linear � model. We �nd a �nite

size system, but the interpretation of parameters is di�erent. The variable t now
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represents the coupling constant of the QFT. Since L is the inverse temperature,

the limit L!1 corresponds to the limit of vanishing temperature.

The saddle point equation (4:58b), in the symmetric phase � = 0, becomes

1 = (N � 1)t

1

(2�)

d�1

L

Z

d

d�1

k

X

n

1

m

2

+ k

2

+ (2�n=L)

2

: (4:97)

On immediately veri�es that the IR problem induced by the zero mode has the

following consequences: since one integrates only over d� 1 dimensions, a phase

transition is only possible for d > 3. Qualitatively at large distance the condition

of �nite temperature leads to a property of dimensional reduction d 7! d�1. The

large N expansion is thus particularly well suited to the study of this problem

which exhibits a crossover between two di�erent dimensions.

Again using Schwinger's representation of the propagator, integrating over k

and introducing the function (4:91) we can rewrite equation (4:97):

1

t

�

1

t

c

=

N � 1

(4�)

(d�1)=2

L

2�d

G(mL) (4:98)

G(z) =

Z

1

0

ds s

�(d�1)=2

h

e

�z

2

s

A(4�

2

s) � (4�s)

�1=2

i

: (4:99)

Here �

L

= m

�1

has really the meaning of a correlation length.

This equation has a scaling form for d < 4. The behaviour of the system then

depends on the ratio between L and the correlation length �

1

of the system at

zero temperature. For t > t

c

�xed and L large (with respect to 1=�) we recover

the zero temperature limit. For t� t

c

small we �nd a crossover between a regime

of small and high temperature. In the regime t < t

c

�xed and L large, we have

to examine the behaviour of G(z) for z small.

At d = 3:

G(z) = �2 ln z + const: :

Hence

1

m

2

/ �(L; t) / L

2

exp

�

4�L

N

�

1

t

�

1

t

c

��

: (4:100)

One �nds that �

L

remains �nite below t

c

for all non vanishing temperatures,

and has when the coupling constant t goes to zero or L ! 1 the exponential

behaviour characteristic of the dimension two.

For d = 4 the situation is di�erent because a transition is possible in dimension

d� 1 = 3. This is consistent with the existence of the quantity G(0) > 0 which

appears in the relation between coupling constant and temperature at the critical

point:

1

t

�

1

t

c

=

(N � 1)G(0)

(4�)

3=2

1

L

2

: (4:101)
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For a coupling constant t which corresponds to a phase of broken symmetry at

zero temperature (t < t

c

), one now �nds a transition temperature L

�1

/

p

t

c

� t.

Studying more generally the saddle point equations one can derive all other

properties of this system.

4.11 Other methods. General vector �eld theories

The large N limit can be obtained by several other algebraic methods. Without

being exhaustive, let us list a few. Schwinger{Dyson equations for N large lead

to a self-consistent equation for the two-point function. From the point of view of

stochastic quantization or critical dynamics the Langevin equation also becomes

linear and self-consistent for N large. One replaces �

2

(x; t) by




�

2

(x; t)

�

(h�i

means noise average) at leading order. Finally a version of the Hartree{Fock

approximation also yields the large N result.

General vector �eld theories. We now brie
y explain how the algebraic method

presented in section 4.1 can be generalized to actions which have a more compli-

cated dependence in one or several vector �elds. Again in a general O(N) sym-

metric �eld theory the composite �elds with small 
uctuations are the scalars

constructed from all vectors. The strategy is then to introduce pairs of �elds

and Lagrange multipliers for all independent O(N) invariant scalar products

constructed from the many-component �elds.

Let us �rst take the example of one �eld � and assume that the interaction is

an arbitrary function of the only invariant �

2

(x)

S(�) =

Z

d

d

x

n

1

2

[@

�

�(x)]

2

+ V

�

�

2

�

o

: (4:102)

We then introduce two �elds �(x) and �(x) and use the identity:

exp

�

�

Z

d

d

xV (�

2

)

�

/

Z

[d�(x) d�(x)] exp

�

�

Z

d

d

x

�

1

2

�

�

�

2

� �

�

+ V (�)

�

�

:

(4:103)

In the special case in which V (�) is a quadratic function, the integral over � can

be performed. In all cases, however, the identity (4:103) transforms the action

into a quadratic form in � and therefore the integration over � can be performed

and the dependence in N becomes explicit. This method will be applied in

section 7 to the study of multi-critical points and double scaling limit.

If the action is an O(N) invariant function of two �elds �

1

and �

2

the potential

depends on the three scalar products �

1

��

2

, �

2

1

and �

2

2

. Then three pairs of �elds

are required.
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5 Gross{Neveu and Gross{Neveu{Yukawa Models

To illustrate the techniques developed in sections 3, 4, we now discuss models

with fermions exhibiting the phenomenon of chiral phase transition. Again we

consider two di�erent �eld theory models with the same symmetries, the Gross{

Neveu (GN) and the Gross{Neveu{Yukawa (GNY) models. The GN model is

renormalizable in two dimensions, and describes in perturbation theory only one

phase, the symmetric phase. The GNY model is renormalizable in four dimen-

sions and instead allows a perturbative analysis of the chiral phase transition.

We now show that the physics of these models can indeed be studied by the

same techniques as ferromagnetic systems, that is RG equations near two and

four dimensions, and large N expansion.

5.1 The Gross{Neveu model

The GN model is described in terms of a U(N) symmetric action for a set of

N massless Dirac fermions f 

i

;

�

 

i

g:

S

�

�

 ; 

�

= �

Z

d

d

x

h

�

 �
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@ +
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�

 �  

�

2

i

:

The GN model has in even dimensions a discrete chiral symmetry:

 7! 


S

 ;

�

 7! �

�

 


S

; (5:1)

which prevents the addition of a fermion mass term while in odd dimensions a

mass term breaks space parity. Actually the two symmetry operations can be

written in a form

x = fx

1

; x

2

; : : : ; x

d

g 7!
~
x = f�x

1

; x

2

; : : : ; x

d

g;

�

 (x) 7! 


1

 (~x);

�

 (x) 7! �

�

 (~x)


1

;

valid in all dimensions.

This model illustrates the physics of spontaneous fermion mass generation

and, in even dimensions, chiral symmetry breaking. It is renormalizable and

asymptotically free in two dimensions. However, as in the case of the non-linear �

model, the perturbative GN model describes only one phase. The main di�erence

is that the role of the spontaneously broken and the explicitly symmetric phase

are interchanged. Indeed it is always the massless phase which is unstable in low

dimensions.

Since the symmetry breaking mechanism is non-perturbative it will eventually

be instructive to compare the GN model with a di�erent model with the same

symmetries: the Gross{Neveu{Yukawa model.

RG equations near and in two dimensions. The GN model is renormalizable

in two dimensions, and in perturbation theory describes only the massless sym-

metric phase. Perturbative calculations in two dimensions can be made with
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an IR cut-o� of the form of a mass term M

�

  , which breaks softly the chiral

symmetry. It is possible to use dimensional regularization in practical calcula-

tions. Note that in two dimensions the symmetry group is really O(2N), as one

veri�es after some relabelling of the �elds. Therefore the (

�

  )

2

interaction is

multiplicatively renormalized. It is convenient to introduce here a dimensionless

coupling constant

u = G�

2�d

: (5:2)

As a function of the cut-o� � the bare correlation functions satisfy the RG

equations:

�

�

@

@�

+ �(u)

@

@u

�

n

2

�

 

(u) � �

M

(u)M

@

@M

�

�

(n)

(p

i

;u;M;�) = 0 : (5:3)

A direct calculation of the �-function in d = 2 + " dimension yields:

�(u) = "u� (N

0

� 2)

u

2
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+ (N

0

� 2)

u

3

4�

2

+

(N

0

� 2)(N

0

� 7)

32�

3

u

4

+O

�

u

5

�

; (5:4)

Note that for d = 2 N

0

= 2N .

The special case N

0

= 2, for which the �-function vanishes identically in two

dimensions, corresponds to the Thirring model (because for N

0

= 2 (

�

 


�

 )

2

=

�2(

�

  )

2

). The latter model is to the equivalent the sine-Gordon or the O(2)

vector model.

Finally the �eld and mass RG functions are

�
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N
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� 1
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; (5:5)
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N
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� 1
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�

(2N

0

� 3)(N

0

� 1)

32�

3

u
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:

As in the case of the non-linear � model, the solution of the RG equations

(5:3) involves a length scale � of the type of a correlation length which is a RG

invariant

�

�1

(u) � �(u) / �exp

�

�

Z

u

du

0

�(u

0

)

�

: (5:6)

Two dimensions. For d = 2 the model is asymptotically free. In the chiral the-

ory (M = 0) the spectrum, then, is non-perturbative, and many arguments lead

to the conclusion that the chiral symmetry is always broken and a fermion mass

generated. From the statistical point of view this corresponds to the existence

of a gap in the spectrum of fermion excitation (as in a super
uid or supercon-

ductor). All masses are proportional to the mass parameter �(u) which is a RG

invariant. Its dependence in the coupling constant is given by equation (5:6):

�(u) / �u

1=(N

0

�2)

e

�2�=(N

0

�2)u

�

1 +O(u)

�

: (5:7)
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We see that the continuum limit, which is reached when the masses are small

compared to the cut-o�, corresponds to u! 0.

S-matrix considerations have then led to the conjecture that, for N �nite, the

spectrum is:

m

n

= �(u)

2(N � 1)

�

sin

�

n�

2(N � 1)

�

; n = 1; 2 : : : < N ; N > 2 ;

To each mass value corresponds a representation of the O(2N) group. The nature

of the representation leads to the conclusion that n odd corresponds to fermions

and n even to bosons.

This result is consistent with the spectrum for N large evaluated by semiclas-

sical methods. In particular the ratio of the masses of the fundamental fermion

and the lowest lying boson is:

m

�

m

 

= 2cos

�

�

2(N � 1)

�

= 2 +O(1=N

2

): (5:8)

The large N limit will be recovered in section 5.4.

Note that the two �rst values of N are special, the model N = 2 is conjectured

to be equivalent to two decoupled sine-Gordon models.

Dimension d = 2 + ". As in the case of the �-model, asymptotic freedom

implies the existence of a non-trivial UV �xed point u

c

, in 2 + " dimension

u

c

=

2�

N

0

� 2

"

�

1�

"

N

0

� 2

�

+O

�

"

3

�

:

u

c

is also the critical coupling constant for the transition between a phase in which

the chiral symmetry is spontaneously broken and a massless small u phase.

At the �xed point one �nds the correlation length exponent �:

�

�1

= ��
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(u

c

) = "�

"

2

N

0

� 2

+O

�

"
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The fermion �eld dimension [ ] is:

2[ ] = d� 1 + �
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) = 1 + "+

N
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� 1

2(N
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The dimension of the composite �eld � =

�

  is given by

[�] = d� 1� �

M

(u

c

) = 1�

"

N

0

� 2

:

As for the �-model the existence of a non-trivial UV �xed point implies that large

momentumbehaviour is not given by perturbation theory above two dimensions,

and this explains why the perturbative result that the model cannot be de�ned

in higher dimensions cannot be trusted. However, to investigate whether the "

expansion makes sense beyond an in�nitesimal neighbourhood of dimension two

other methods are required, like the 1=N expansion which will be considered in

section 5.4.
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5.2 The Gross{Neveu{Yukawa model

The Gross{Neveu{Yukawa (GNY) model has the same chiral and U(N) sym-

metries as the GN model. The action is (" = 4� d):

S
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 ; ; �
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;

(5:11)

where � is an additional scalar �eld, � the momentum cut-o�, and g; � dimen-

sionless \bare" i.e. e�ective coupling constants at large momentum scale �.

The action still has a re
ection symmetry, � transforming into �� when the

fermions transform by (5:1). In contrast with the GN model, however, the chi-

ral transition can here be discussed by perturbative methods. An analogous

situation has already been encountered when comparing the (�

2

)

2

�eld theory

with the non-linear � model. Even more, the GN model is renormalizable in

dimension two and the GNY model in dimension four.

The phase transition. Examining the action (5:11) we see that in the tree

approximation whenm

2

is negative the chiral symmetry is spontaneously broken.

The � expectation value gives a mass to the fermions, a mechanism reminiscent

of the Standard Model of weak-electromagnetic interactions:

m

 

= g h�i ; (5:12)

while the � mass then is:
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3g

2
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: (5:13)

As a result of interactions the transition value m

2

c

of the parameter m

2

will be

modi�ed. In what follows we set

m

2

= m

2

c

+ t ; (5:14)

where the new parameter t, in the language of phase transitions, plays the role

of the deviation from the critical temperature.

To study the model beyond the tree approximation we now discuss RG equa-

tions near four dimensions.

5.3 RG equations near four dimensions

The model (5:11) is trivial above four dimensions, renormalizable in four di-

mensions and can thus be studied near dimension 4 by RG techniques. Five

renormalization constants are required, corresponding to the two �eld renormal-

izations, the � mass, and the two coupling constants. The RG equations thus

involve �ve RG functions. The 1PI correlation functions �

(l;n)

, for l  and n �

�elds, then satisfy
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= 0 : (5:15)
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Fig. 6 One-loop diagrams: fermions are represented by solid lines.

The RG functions. The RG functions at one-loop order involve the calculation

of the diagrams of �gure 6. One �nds:

�

�

= �"�+
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+ 4N�g
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; (5:16)
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4
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Note that in these expressions for convenience we have set in the algebra of 


matrices tr1 = 4 as in four dimensions. To extrapolate the results to other

dimensions one has to replace everywhere N by N

0

=4, where N

0

= N tr1 is the

total number of fermion degrees of freedom.

Dimension four. In four dimensions the origin � = g

2

= 0 is IR stable. Indeed

the second equation implies that g goes to zero, and the �rst then that � also

goes to zero. As a consequence if the bare coupling constants are generic, i.e. if

the e�ective couplings at cut-o� scale are of order 1, the e�ective couplings at

scale �� � go to zero and in a way asymptotically independent from the bare

couplings. One �nds

g

2

(�) �

8�

2

(2N + 3) ln(�=�)

; �(�) �
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where we have de�ned

~

�

�

=

48N

(2N + 3)

�

(2N � 3) +

p

4N

2

+ 132N + 9

� : (5:18)

This result allows to use renormalized perturbation theory to calculation physical

observables. For example we can evaluate the ratio between the masses of the

scalar and fermion �elds. It is then optimal to take for � a value of order h�i. A
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remarkable consequence follows: the ratio (5:13) of scalar and fermion masses is

�xed
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16N
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; (5:19)

while in the classical limit it seems arbitrary.

Of course if the bare couplings are \unnaturally" small the same will apply to

the renormalized couplings at scale � and the ratio will be modi�ed.

Dimension d = 4 � ". One then �nds a non-trivial IR �xed point (we recall

N
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= N tr 1):
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The matrix of derivatives of the �-functions has two eigenvalues !;!
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and thus the �xed point is IR stable. The �rst eigenvalue is always the smallest.

The �eld renormalization RG functions are at the same order:
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At the �xed point one �nds
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and thus the dimensions d

 

and d

�

of the �elds
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The RG function �

m

corresponding to the mass operator is at one-loop order:
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Finally we can evaluate the ratio of masses (5:13) at the �xed point:
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In d = 4 and d = 4�" the existence of an IR �xed point has the same consequence:

If we assume that the � expectation value is much smaller than the cut-o� and

that the coupling constants are generic at the cut-o� scale, then the ratio of

fermion and scalar masses is �xed.
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5.4 GNY and GN models in the large N limit

We now show that the GN model plays with respect to the GNY model

(5:11) the role the non-linear �-model plays with respect to the �

4

�eld the-

ory. For this purpose we start from the action (5:11) of the GNY model and

integrate over N � 1 fermion �elds. We also rescale for convenience �

(4�d)=2

g�

into �, and then get the large N action:
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To take the large N limit we assume � �nite and g

2

; � = O(1=N).

Let us call V (�) the action per unit volume for constant �eld �(x) and van-

ishing fermion �elds
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The expectation value of � for N large is given by a gap equation:
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It is also useful to calculate the second derivative to check stability of the extrema
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The solution � = 0 is stable provided
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g

2

> N

0

�

4�d

1

(2�)

d

Z

�

d

d

q

q

2

:

Instead the non-trivial solution to the gap equation exists only for

m

2

g

2

> N

0

�

4�d

1

(2�)

d

Z

�

d

d

q

q

2

;

but then it is stable. We conclude that the critical temperature or critical bare

mass is given by:

m

2

c

g

2

= N

0

�

4�d

1

(2�)

d

Z

�

d

d

q

q

2

; (5:29)
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which shows that the fermions favour the chiral transition. In particular when d

approaches 2 we observe that m

2

c

! +1 which implies that the chiral symmetry

is always broken in 2 dimensions. Using equation (5:29) and setting

t = �

d�4

(m

2

�m

2

c

)=g

2

; (5:30)

we can write the equation for the non-trivial solution

t+�

d�4

�

6g

4

�

2

+N

0

�

2

(2�)

d

Z

�

d

d

q

q

2

(q

2

+ �

2

)

= 0 :

We now expand the integral for � small (equation (4:16))

D

1

(�

2

) =

1

(2�)

d

Z

�

d

d

q

q

2

(q

2

+ �

2

)

= C(d)�

�"

� a(d)�

�"

+O

�

�

2�"

�

2

�

: (5:31)

Keeping only the leading terms for t ! 0 we obtain for d < 4 the scaling

behaviour

� � (�t=N

0

C)

1=(d�2)

: (5:32)

Since, at leading order, the fermion mass m

 

= �, it immediately follows that

the exponent � is also given by:

� � � � 1=(d� 2) ) �

�

= 4� d : (5:33)

At leading order, for N !1, � has the same value as in the non-linear �-model.

At leading order in the scaling limit the thermodynamical (or e�ective) poten-

tial V (�) then becomes

V (�) =

1

2

t�

2

+ (N

0

=d)C(d)j�j

d

: (5:34)

We note that, although in terms of the �-�eld the model has a simple Ising-like

symmetry, the scaling equation of state for large N is quite di�erent.

We read from the large N action that at this order �

 

= 0.

Finally from the large N action we can calculate the �-propagator at leading

order. Quite generally, using the saddle point equation, one �nds for the inverse

�-propagator in the massive phase:

�

�1

�

(p) = �

d�4

�

p

2

g

2

+

�

3g

4

�

2

�

+

N

0

2(2�)

d

�

p

2

+ 4�

2

�

Z

�

d

d

q

(q

2

+ �

2

) [(p+ q)

2

+ �

2

]

: (5:35)

We see that in the scaling limit p; � ! 0, the integral yields the leading contri-

bution. Neglecting corrections to scaling we �nd that the propagator vanishes
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for p

2

= �4�

2

which is just the

�

  threshold. Thus, in this limit, m

�

= 2m

 

in

all dimensions, a result consistent with d = 2 exact value.

At the transition the propagator reduces to

�

�

�

2

N

0

b(")p

d�2

; (5:36)

with (equation (4:38))

b (") = �

�

sin(�d=2)

�

2

(d=2)

�(d� 1)

N

d

: (5:37)

The result is consistent with the value of �

�

found above.

Let us �nally note that the behaviour of the propagator at the critical point,

�

�

(p) / p

2�d

, implies for the �eld � the canonical dimension [�] in the large N

expansion, for 2 � d � 4:

[�] = 1 : (5:38)

Corrections to scaling and the IR �xed point. The IR �xed point is determined

by demanding the cancellation of the leading corrections to scaling. Let us

thus consider the e�ective potential V (�). The leading correction to scaling is

proportional to

�

�

4!g

4

�

N

0

a(d)

4

�

�

4

;

(a (") � 1=8�

2

"). Demanding the cancellation of the coe�cient of �

2

, we obtain

a relation between � and g

2

g

4

�

=

�

�

6N

0

a(d)

=

4�

�

"�

2

3N

0

+O

�

"

2

�

;

a result consistent with the results of the "-expansion.

In the same way it is possible to calculate the leading correction to the �-

propagator (5:35). Demanding the cancellation of the leading correction we

obtain

p

2

g

2

�

+

�

�

3g

4

�

�

2

�

1

2

N

0

�

p

2

+ 4�

2

�

a(d) = 0 :

The coe�cient of �

2

cancels from the previous relation and the cancellation the

coe�cient of p

2

yields

g

2

�

=

2

N

0

a(d)

=

16�

2

"

N

0

+O

�

"

2

�

;

in agreement with the "-expansion for N large.
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The relation to the GN model for dimensions 2 � d � 4. We have seen that

the terms (@

�

�)

2

and �

4

of the large N action which have a canonical dimension

4, are irrelevant in the IR critical region for d � 4. We recognize a situation

already encountered in the (�

2

)

2

�eld theory in the large N limit. In the scaling

region it is possible to omit them and one then �nds the action:

S

N

�

�

 ; ; �

�

=

Z

d

d

x

�

�

�

 � (

6

@ + �) +�

d�4

m

2

2g

2

�

2

�

: (5:39)

The integral over the � �eld can explicitly be performed and yields the action of

the GN model:

S

N

�

�

 ; 

�

= �

Z

d

d

x

�

�

 �

6

@ +

�

4�d

2m

2

g

2

�

�

 �  

�

2

�

:

The GN and GNY models are thus equivalent for the large distance physics. In

the GN model, in the large N limit, the � particle appears as a

�

  boundstate

at threshold.

Conversely, it would seem that the GN model depends on a smaller number

of parameters than its renormalizable extension. Again this problem is only

interesting in four dimensions where corrections to scaling, i.e. to free �eld theory,

are important. However, if we examine the divergences of the term tr ln (

6

@ + �) in

the e�ective action (5:26) relevant for the large N limit, we �nd a local polynomial

in � of the form:

Z

d

4

x

h

A�

2

(x) +B (@

�

�)

2

+ C�

4

(x)

i

:

Therefore the value of the determinant can be modi�ed by a local polynomial of

this form by changing the way the cut-o� is implemented: additional parameters,

as in the case of the non-linear �-model, are hidden in the cut-o� procedure. Near

two dimensions these operators can be identi�ed with (

�

  )

2

; [@

�

(

�

  )]

2

; (

�

  )

4

. It

is clear that by changing the cut-o� procedure we change the amplitude of higher

dimension operators. These bare operators in the IR limit have a component on

all lower dimensional renormalized operators.

Note �nally that we could have added to the GNY model an explicit breaking

term linear in the � �eld, which becomes a fermion mass term in the GN model,

and which would have played the role of the magnetic �eld of the ferromagnets.

5.5 The large N expansion

Using the large N dimension of �elds and power counting arguments one can

then prove that the 1=N expansion is renormalizable with arguments quite similar

to those presented in section 4.6.

Alternative theory. To prove that the large N expansion is renormalizable one

proceeds as in the case of the scalar theory in section 4.6. One starts from a
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critical action with an additional term quadratic in � which generates the large

N �-propagator already in perturbation theory

S( ;

�

 ; �) =

Z

d

d

x

�

�

�

 (

6

@ + �) +

1

2v

2

�(�@

2

)

d=2�1

�

�

: (5:40)

The initial theory is recovered in the limit v ! 1. One then rescales � in v�.

The model is renormalizable without � �eld renormalization because divergences

generate only local counter-terms

S

r

( ;

�

 ; �) =

Z

d

d

x

�

�Z

 

�

 (

6

@ + v

r

Z

v

�) +

1

2

�(�@

2

)

d=2�1

�

�

: (5:41)

RG equations follow

�

�

@

@�

+ �

v

2
(v)

@

@v

2

�

n

2

�

 

(v)

�

�

(l;n)

= 0 : (5:42)

Again the large N expansion is obtained by �rst summing the bubble contribu-

tions to the �-propagator. We de�ne

D(v) =

2

b(")

+N

0

v

2

:

Then the large N � propagator reads

h��i =

2

b(")D(v)p

d�2

: (5:43)

The solution to the RG equations can be written:

�

(l;n)

(�p; v;�) = Z

�n=2

(� )�

d�l�n(d�2)=2

�

(l;n)

(p; v(� );�); (5:44)

with the usual de�nitions

�

dv

2

d�

= �(v(� )) ; �

d lnZ

d�

= �

 

(v(� )) :

We are interested in the neighbourhood of the �xed point v

2

= 1. Then the

RG function �(v) approaches the exponent �. The 
ow equation for the coupling

constant becomes:

�

dv

2

d�

= �v

2

; ) v

2

(� ) � �

�

:

We again note that a correlation function with l � �elds becomes proportional

to v

l

. Therefore

�

(l;n)

(�p; v;�) / �

d�(1��=2)l�n(d�2+�

 

)=2

: (5:45)
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We conclude

d

�

=

1

2

(d � 2 + �

�

) = 1�

1

2

� , �

�

= 4� d� � : (5:46)

RG functions at order 1=N . A new generic integral is useful here

1
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6
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:

(5:47)

We �rst calculate the 1=N contribution to the fermion two-point function at the

critical point (from a diagram similar to diagram 3)

�

(2)

�

  

(p) = i

6

p +

2iv

2

b(")D(v)(2�)

d

Z

�

d

d

q(

6
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6

q)

q

d�2

(p + q)

2

:

We need the coe�cient of

6

p ln �=p. Since we work only at one-loop order we

again replace the � propagator 1=q

d�2

by 1=q

2�

, and send the cut-o� to in�nity.

The residue of the pole at 2� = d� 2 gives the coe�cient of the term

6

p ln � and

the �nite part the

6

p ln p contribution. We �nd

�

(2)

�

  

(p) = i

6

p +

2iv

2

b(")D(v)

N

d

�

d� 2

d

�

6

p ln(�=p) ; (5:48)

where N

d

is the loop factor (4:17a). Expressing that the




�

  

�

function satis�es

RG equations we immediately obtain the RG function �

 

(v)

�

 

(v) =

v

2

D(v)

(d � 2)

d

X

1

; (5:49)

where X

1

is given by equation (4:79). We then calculate the function




�

�

  

�

at

order 1=N

�
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�
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(p) = v +A

1
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�1

(v)v

3

ln � ;

with

A

1

= �

2

b(")

N

d

= �X

1

;

whereA

1

corresponds to the diagram of �gure 4. The diagram of �gure 5 vanishes

because the � 3-point function vanishes for symmetry reasons.

The �-function follows

�

v

2
(v) =

4(d� 1)v

4

d

X

1

D

�1

(v); (5:50)
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and thus

� =

8(d� 1)N

d
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X

1

:

The exponents �

 

and �

�

at order 1=N , and thus the corresponding dimensions

of �elds d

 

; d

�

follow
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=
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: (5:51)

2d

 

= d� 1�
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X

1

N

0

: (5:52)

For d = 4 � " we �nd �

 

� "=N

0

, result consistent with (5:23) for N large. For

d = 2 + " instead one �nds �

 

� "

2

=2N

0

, consistent with (5:10). The dimension

d

�

of the �eld � is
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): (5:53)

A similar evaluation of the




�

2

��

�

function allows to determine the exponent

� to order 1=N

1

�

= d� 2�

2(d � 1)(d� 2)

dN

0

X

1

: (5:54)

Actually all exponents are known to order 1=N

2

except �

 

which is known to

order 1=N

3

.

6 Other models with chiral fermions

Let us for completeness shortly examine two other models with chiral fermions, in

which large N techniques can be applied, massless QED and the U(N) massless

Thirring model.

6.1 Massless electrodynamics

Let us give another example with a structure di�erent from a Yukawa-type

theory. We now consider a model of N charged massless fermion �elds  ;

�

 ,

coupled through an abelian gauge �eld A

�

(massless QED):

S
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Z
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d
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4e
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F
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��

(x) �

�

 (x) � (

6

@ + i

6

A)  (x)

�

: (6:1)

This model possesses, in addition to the U(1) gauge invariance, a chiral U(N)�

U(N) symmetry because the fermions are massless. Again the interesting ques-

tion is whether the model exhibits in some dimension 2 � d � 4 a spontaneous

breaking of the chiral symmetry.
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Dimension d = 4� ". In terms of the standard coupling constant �:

� �

e

2

4�

; (6:2)

the RG � function reads (taking tr 1 = 4 in the space of 
 matrices):
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�

: (6:3)

The model is free at low momentum in four dimensions. Therefore no phase tran-

sition is expected, at least for e

2

small enough. A hypothetical phase transition

would rely on the existence on non-trivial �xed points outside of the perturbative

regime.

In the perturbative framework the model provides an example of the famous

triviality problem. For a generic e�ective coupling constant at cut-o� scale

(i.e. bare coupling), the e�ective coupling constant at scale � � � is given

by

�(�) �

e

2

(�)

4�

�

3�

2N ln(�=�)

:

This result can be used to bound N .

In 4�" dimension, one instead �nds a non-trivial IR �xed point corresponding

to a coupling constant:

e

2

�

= 24�

2

"�

"

=N

0

;

(N

0

= N tr1) and correlation functions have a scaling behaviour at long distance.

As we have discussed in the case of the �

4

�eld theory, the e�ective coupling

constant at large distance becomes close to the IR �xed point, except when the

initial coupling constant is very small.

The RG function associated with the �eld renormalization is also known at

order �

3

but this is a non-physical quantity since gauge dependent

�

 

= �
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4N + 3

16�
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+

40N
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+ 54N + 27

576�
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�
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+O

�

�

4

�

;

where the gauge is speci�ed by a term (@

�

A

�

)

2

=2�.

6.2 The large N limit

To evaluate correlation functions for N large, one �rst integrates over the

fermion �elds and one obtains the e�ective action:

S

�

�

 ; ;A

�

�

=

Z

d

d

x

�

1
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2
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(x) �N tr ln (
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�

: (6:4)
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The large N limit is taken with e

2

N �xed. Therefore, at leading order, only

S

2

(A

�

), the quadratic term in A

�

in the expansion of the fermion determinant,

contributes. A short calculation yields

S
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0

Z

d
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�
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2
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A

�
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b(")k

d�4
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�2
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;

(6:5)

where a(d) is a regularization-dependent constant.

For d < 4 the leading term in the IR region comes from the integral. The

behaviour at small momentum of the vector �eld is modi�ed, which con�rms the

existence of a non-trivial IR �xed point. The �xed point is found by demand-

ing cancellation of the leading corrections to scaling coming from F

2

��

and the

divergent part of the loop integral,

e

2

�

=

2(d� 1)

(d� 2)a(d)

�

4�d

N

0

:

However there is still no indication of chiral symmetry breaking. Power counting

within the 1=N expansion con�rms that the IR singularities have been eliminated,

because the large N vector propagator is less singular than in perturbation the-

ory. Of course this result is valid only for N large. Since the long range forces

generated by the gauge coupling have not been totally eliminated the problem

remains open for d not close to four, or for e

2

not very small and N �nite. Some

numerical simulations indeed suggest a chiral phase transition for d = 4 and

d = 3, N � N

c

� 3.

The exponents corresponding to the IR �xed point have been calculated up to

order 1=N

2

. At order 1=N (X

1

is de�ned by equation (4:79))
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:

Finally note that in the d = 2 limit, the integral generates a contribution

Ne

2

=�k

2

times the propagator of the free gauge �eld

N

0

K(k) �

d!2

N

2�

1

k

2

:

As a direct analysis of the d = 2 case con�rms, this corresponds to a massive

bound state, of mass squared Ne

2

=�. However, for generic values of the cou-

pling constant, this mass is of the order of the cut-o� �. Only when e is small
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with respect to the microscopic scale, as one assumes in conventional renormal-

ized perturbation theory, does this mass correspond in the continuum limit to a

propagating particle.

Two dimensions. As stated above we now assume that the dimensional quan-

tity e

2

is small in the microscopic scale. The model is then a simple extension of

the Schwinger model and can be exactly solved in the same way. For N = 1 the

model exhibits the simplest example of a chiral anomaly, illustrates the prop-

erty of con�nement and spontaneous chiral symmetry breaking. For N > 1 the

situation is more subtle. The neutral

�

  two-point function decays algebraically




�

 (x) �  (x)

�

 (0) �  (0)

�

/ x

2=N�2

;

indicating the presence of a massless mode and




�

  

�

= 0. Instead if we calculate

the two-point function of the composite operator O

N

(x)

O
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(x) =

N

Y

i=1

�

 

i

(x) 

i

(x);

we �nd

hO

N

(x)O

N

(0)i / const: :

We have thus identi�ed an operator which has a non-zero expectation value.

As a consequence of the fermion antisymmetry, if we perform a transformation

under the group U(N) � U(N) corresponding to matrices U

+

; U

�

, the operator

is multiplied by detU

+

=detU

�

. The operator thus is invariant under the group

SU(N) � SU(N) � U(1). Its non-vanishing expectation value is the sign of the

spontaneous breaking of the remaining U(1) chiral group.

6.3 The U(N) Thirring model

We now consider the model

S(
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; (6:6)

where

J

�

=

�

 


�

�  : (6:7)

The special case N = 1 corresponds to the simple Thirring model. In two

dimensions it is then equivalent to a free massless boson �eld theory (with mass

term for fermions one obtains the sine{Gordon model). Both to bozonize the

model in d = 2 and to study that large N properties one introduces a abelian

gauge �eld A

�

coupled to the current J

�

1

2

gJ

�

J

�

7�! A

2

�

=2g + iA

�

J

�

: (6:8)
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One then �nds massive QED without the F

2

��

term

S(A

�

;

�

 ; ) = �

Z

d

2

x

�

�

 (

6

@ + i

6

A +m

0

) �A

2

�

=2g

�

: (6:9)

If we integrate over the fermions, the fermion determinant generates a kinetic

term for the gauge �eld. For m

0

= 0 we are thus in situation very similar to

massless QED, except that the gauge �eld is massive.
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7 The O(N) vector model in the large N limit: multi-critical points

and double scaling limit

We now discuss the large N limit of the general N-vector models with one scalar

�eld. To illustrate the method we study multi-critical points. Of particular

interest are the subtleties involved in the stability of the phase structure at

critical dimensions.

Another issue involves the so-called double scaling limit. Statistical mechan-

ical properties of random surfaces as well as randomly branched polymers can

be analyzed within the framework of large N expansion. In the same manner

in which matrix models in their double scaling limit provide representations of

dynamically triangulated random surfaces summed on di�erent topologies, O(N)

symmetric vector models represent discretized branched polymers in this limit,

where N ! 1 and the coupling constant g ! g

c

in a correlated manner. The

surfaces in the case of matrix models, and the randomly branched polymers in

the case of vector models are classi�ed by the di�erent topologies of their Feyn-

man graphs and thus by powers of 1=N . Though matrix theories attract most

attention, a detailed understanding of these theories exists only for dimensions

d � 1. On the other hand, in many cases, the O(N) vector models can be suc-

cessfully studied also in dimensions d > 1, and thus, provide us with intuition for

the search for a possible description of quantum �eld theory in terms of extended

objects in four dimensions, which is a long lasting problem in elementary particle

theory.

The double scaling limit in O(N) vector quantum �eld theories reveals an

interesting phase structure beyond N ! 1 limit. In particular, though the

N ! 1 multicritical structure of these models is generaly well understood,

there are certain cases where it is still unclear which of the features survives at

�nite N , and to what extent. One such problem is the multicritical behavior

of O(N) models at critical dimensions. Here, one �nds that in the N ! 1

limit, there exists a non-trivial UV �xed point, scale invariance is spontaneously

broken, and the one parameter family of ground states contains a massive vector

and a massless bound state, a Goldstone boson-dilaton. However, since it is

unclear whether this structure is likely to survive for �nite N one would like to

know whether it is possible to construct a local �eld theory of a massless dilaton

via the double scaling limit, where all orders in 1=N contribute. The double

scaling limit is viewed as the limit at which the attraction between the O(N)

vector quanta reaches a value at g ! g

c

, at which a massless bound state is

formed in the N !1 limit, while the mass of the vector particle stays �nite. In

this limit, powers of 1=N are compensated by IR singularities and thus all orders

in 1=N contribute.

In section 7.1 the double scaling limit for simple integrals and quantum me-

chanics is explained, introducing a formalism which will be useful for �eld theory

examples.
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In section 7.2 the special case of �eld theory in dimension two is discussed.

In higher dimensions a new phenomenon arises: the possibility of a sponta-

neous breaking of the O(N) symmetry of the model, associated to the Goldstone

phenomenon.

Before discussing a possible double scaling limit, the critical and multicritical

points of the O(N) vector model are examined in section 7.3. In particular,

a certain sign ambiguity that appears in the expansion of the gap equation is

noted, and related to the existence of the IR �xed point in dimensions 2 < d < 4

discussed in section 4.3. In section 7.4 we discuss the subtleties and conditions

for the existence of an O(N) singlet massless bound state along with a small

mass O(N) vector particle excitation. It is pointed out that the correct massless

e�ective �eld theory is obtained after the massive O(N) scalar is integrated out.

Section 7.5 is devoted to the double scaling limit with a particular emphasis

on this limit in theories at their critical dimensions. In section 7.6 the main

conclusions are summarized.

7.1 Double scaling limit: simple integrals and quantum mechanics

We �rst discuss d = 0 and d = 1 dimensions, dimensions in which the matrix

models has equally been solved. We however introduce a general method, not

required here, but useful in the general �eld theory examples.

The zero dimensional example. Let us �rst consider the zero dimensional

example. The partition function Z is given by

e

Z

=

Z

d

N

� exp

�

�NV

�

�

2

��

:

The simplest method for discussing the large N limit is of course to integrate

over angular variables. Instead we introduce two new variables �; � and use the

identity

exp

�

�NV (�

2

)

�

/

Z

d�d� exp

�

�N

�

1

2

�

�

�

2

� �

�

+ V (�)

�	

: (7:1)

The integral over � is really a Fourier representation of a �-function and thus

the contour of integration runs parallel to the imaginary axis. The identity (7:1)

transforms the action into a quadratic form in �. Hence the integration over �

can be performed and the dependence in N becomes explicit

e

Z

/

Z

d�d� exp

�

�N

�

�

1

2

��+ V (�) +

1

2

ln�

�	

:

The large N limit is obtained by steepest descent. The saddle point is given by

V

0

(�) =

1

2

� ; � = 1=� :
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The leading contribution to Z is proportional to N and obtained by replacing

�; � by the saddle point value. The leading correction is obtained by expanding

�; � around the saddle point and performing the gaussian integration. It involves

the determinant D of the matrix M of second derivatives

M =

�

�

1

2

�

�2

�

1

2

�

1

2

V

00

(�)

�

; D = detM = �

1

2

�

V

00

(�)=�

2

+

1

2

�

:

In the generic situation the resulting contribution to Z is �

1

2

lnD. However if the

determinant D vanishes the leading order integral is no longer gaussian, at least

for the degree of freedom which corresponds to the eigenvector with vanishing

eigenvalue. The condition of vanishing of the determinant also implies that two

solutions of the saddle point equation coincide and thus corresponds to a surface

in the space of the coe�cients of the potential V where the partition function is

singular.

To examine the corrections to the leading large N behaviour it remains how-

ever possible to integrate over one of the variables by steepest descent. At leading

order this corresponds to solving the saddle point equation for one of the vari-

ables, the other being �xed. Here it is convenient to eliminate � by the equation

� = 1=�. One �nds

e

Z

/

Z

d� exp

�

�N

�

V (�) �

1

2

ln �

�

+O(1)

�

:

In the leading term we obviously recover the result of the angular integration

with � = �

2

. For N large the leading contribution arises from the leading term

in the expansion of W (�) = V (�)�

1

2

ln � near the saddle point:

W (�)�W (�

s

) �

1

n!

W

(n)

(�

s

)(�� �

s

)

n

:

The integer n characterizes the nature of the critical point. Adding relevant

perturbations �

k

V of parameters v

k

to the critical potential

�

k

V = v

k

(�� �

s

)

k

; 1 � k � n� 2

(the term k = n�1 can always be eliminated by a shift of �) we �nd the partition

function at leading order for N large in the scaling region:

e

Z(fu

k

g)

/

Z

dz exp

 

�z

n

�

n�2

X

k=1

u

k

z

k

!

;

where z / N

1=n

(� � �

s

) and

u

k

/ N

1�k=n

v

k
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is held �xed

Quantum mechanics. The method we have used above immediately generalizes

to quantum mechanics, although a simpler method involves solving the radial

Schr�odinger equation. We consider the euclidean action

S(�) = N

Z

dt

h

1

2

�

d

t

�(t)

�

2

+ V (�

2

)

i

: (7:2)

Note the unusual �eld normalization, the factor N in front of the action simpli-

fying all expressions in the large N limit.

To explore the large N limit one has to take the scalar function �

2

, which

self-averages, as a dynamical variable. At each time t we thus perform the

transformation (7:1). One introduces two paths �(t); �(t) and writes

exp

�

�N

Z

dt V (�

2

)

�

/

Z

[d�(t) d�(t)] exp

�

�N

Z

dt

�

1

2

�

�

�

2

� �

�

+ V (�)

�

�

: (7:3)

The integral over the path �(t) is then gaussian and can be performed. One �nds

e

Z

=

Z

[d�(t)d�(t)] exp [�S

N

(�; �)] (7:4)

with

S

N

= N

Z

dt

�

�

1

2

��+ V (�)

�

+

1

2

tr ln

�

�d

2

t

+ �(�)

�

: (7:5)

Again, in the large N limit the path integral can be calculated by steepest

descent. The saddle points are constant paths solution of

V

0

(�) =

1

2

� ; � =

1

2�

Z

d!

!

2

+ �

=

1

2

p

�

; (7:6)

where ! is the Fourier energy variable conjugated to t. Again a critical point is

de�ned by the property that at least two solutions to the saddle point equations

coalesce. This happens when the determinant of the matrix of �rst derivatives

of the equations vanishes:

det

�

V

00

(�) �

1

2

�

1

2

�

1

8�

3=2

�

= �

1

8�

3=2

V

00

(�)�

1

4

= 0 : (7:7)

The leading correction to the saddle point contribution is given by a gaussian

integration. The result involves the determinant of the operator second derivative
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of S

N

. By Fourier transforming time the operator becomes a tensor product of

2� 2 matrices with determinant D(!)

D(!) = det

�

V

00

(�) �

1

2

�

1

2

�

1

2

B(!)

�

with B(!) =

1

2�

Z

d!

0

(!

02

+ �)[(! � !

0

)

2

+ �]

:

Thus, the criticality condition is equivalent to D(0) = 0. When the criticality

condition is satis�ed, the leading correction is no longer given by steepest descent.

Again, since at most one mode can be critical, we can integrate over one of the

path by steepest descent, which means solving the saddle point equation for one

function, the other being �xed. While the � equation remains local, the � is now

non-local, involving the diagonal matrix element of the inverse of the di�erential

operator �d

2

t

+ �(t). We shall see in next section how this problem can be

overcome in general. A special feature of quantum mechanics, however, is that

the determinant can be calculated, after a simple change of variables. We set

�(t) = _s(t) + s

2

(t); (7:8)

in such a way that the second order di�erential operator factorizes

�d

2

t

+ �(t) = �

�

d

t

+ s(t)

��

d

t

� s(t)

�

: (7:9)

The determinant of a �rst order di�erential operator can be calculated by expand-

ing formally in s. Only the �rst term survives but the coe�cient is ambiguous

tr ln

�

1� d

�1

t

s(�)

�

= ��(0)

Z

dt s(t):

A more re�ned analysis, which involves boundary conditions, is required to de-

termine the ambiguous value �(0) of step function. Here one �nds

ln det

�

�d

2

t

+ �(�)

�

= tr ln

�

�d

2

t

+ �(�)

�

=

Z

dt s(t): (7:10)

The jacobian of the transformation (7:8) contributes at higher order in 1=N and

can be neglected. Therefore the large N action becomes

S

N

= N

Z

dt

�

�

1

2

( _s + s

2

)�+ V (�) +

1

2

s

�

= N

Z

dt

�

�

1

2

�s

2

+

1

2

s( _� + 1) + V (�)

�

:

We can now replace s by the solution of a local saddle point equation (or perform

the gaussian integration, but neglect the determinant which is of higher order):

�S

N

�s(t)

= 0 , �s�+

1

2

( _� + 1) = 0 ;
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and �nd

S

N

= N

Z

dt

�

_�

2

8�

+

1

8�

+ V (�)

�

: (7:11)

We recognize the action for the large N potential at zero angular momentum in

the radial coordinate �(t) = �

2

(t). Critical points then are characterized by the

behaviour of the potential W (�)

W (�) = V (�) +

1

8�

;

near the saddle point �

s

W (�) �W (�

s

) �W

(n)

(�

s

)

(�� �

s

)

n

n!

:

At critical points the ground state energy, after subtraction of the classical term

which is linear in N , has a non-analytic contribution. To eliminate N from the

action we set

t 7! tN

(n�2)=(n+2)

; �(t) � �

s

7! N

�2=(n+2)

z(t):

We conclude that the leading correction to the energy levels is proportional to

N

�(n�2)=(n+2)

. Note also that the scaling of time implies that higher order time

derivatives would be irrelevant, an observation which can be used more directly

to expand the determinant in local terms, and will be important in next section.

If we add relevant corrections to the potential

�

k

V = v

k

(�� �

s

)

k

; 1 � k � n� 2 ;

the coe�cients v

k

must scale like

v

k

/ N

2(k�n)=(n+2)

:

7.2 The 2D V (�

2

) �eld theory in the double scaling limit

In the �rst part we study the O(N) symmetric V (�

2

) �eld theory, where � is N-

component �eld, in the large N limit in dimension two because phase transitions

occur in higher dimensions, a problem which has to be considered separately.

The action is:

S(�) = N

Z

d

2

x

n

1

2

[@

�

�(x)]

2

+ V

�

�

2

�

o

; (7:12)

where an implicit cut-o� � is always assumed below. Whenever the explicit

dependence in the cut-o� will be relevant we shall assume a Pauli{Villars's type

regularization, i.e. the replacement in action (7:12) of ��@

2

� by

��@

2

D(�@

2

=�

2

)� ; (7:13)
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where D(z) is a positive non-vanishing polynomial with D(0) = 1.

As before one introduces two �elds �(x) and �(x) and uses the identity (7:3).

The large N action is then:

S

N

= N

Z

d

2

x

�

V (�)�

1

2

��

�

+

1

2

N tr ln(��+ �): (7:14)

Again for N large we evaluate the integral by steepest descent. Since the saddle

point value � is the �-�eld mass squared, we set in general � = m

2

. With this

notation the two equations for the saddle point m

2

; �

s

= h�

2

i are:

V

0

(�

s

) =

1

2

m

2

; (7:15a)

�

s

=

1

(2�)

2

Z

�

d

2

k

k

2

+m

2

; (7:15b)

where we have used a short-cut notation

1

(2�)

2

Z

�

d

2

k

k

2

+m

2

�

1

(2�)

2

Z

d

2

k

D(k

2

=�

2

)k

2

+m

2

� B

1

(m

2

): (7:16)

For m� � one �nds

B

1

(m

2

) =

1

2�

ln(�=m) +

1

4�

ln(8�K) +O(m

2

=�

2

);

where K is a regularization dependent constant.

As we have discussed in the case of quantum mechanics a critical point is

characterized by the vanishing at zero momentum of the determinant of second

derivatives of the action at the saddle point. The mass-matrix has then a zero

eigenvalue which, in �eld theory, corresponds to the appearance of a new massless

excitation other than �. In order to obtain the e�ective action for this scalar

massless mode we must integrate over one of the �elds. In the �eld theory

case the resulting e�ective action can no longer be written in local form. To

discuss the order of the critical point, however, we only need the action for space

independent �elds, and thus for example we can eliminate � using the � saddle

point equation.

The e�ective � potential W (�) then reads

W (�) = V (�) �

1

2

Z

�(�)

d�

0

�

0

@

@�

0

B

1

(�

0

); (7:17)

where at leading order for � large

�(�) = 8�K�

2

e

�4��

:
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The expression for the e�ective action in equation (7:17) is correct for any d and

will be used also in section 7.5. Here we have:

W (�) = V (�) +K�

2

e

�4��

= V (�) +

1

8�

m

2

e

�4�(���

s

)

:

A multicritical point is de�ned by the condition

W (�) �W (�

s

) = O ((�� �

s

)

n

) (7:18):

This yields the conditions:

V

(k)

(�

s

) =

1

2

(�4�)

k�1

m

2

for 1 � k � n� 1 :

Note that the coe�cients V

(k)

(�

s

) are the coupling constants renormalized at

leading order for N large. If V (�) is a polynomial of degree n� 1 (the minimal

polynomial model) the multicritical condition in equation (7:18) determines the

critical values of renormalized coupling constants as well as �

s

When the �elds are space-dependent it is simpler to eliminate � instead, be-

cause the corresponding �eld equation:

V

0

�

�(x)

�

=

1

2

�(x): (7:19)

is local. This equation can be solved by expanding �(x)� �

s

in a power series in

�(x) �m

2

:

�(x) � �

s

=

1

2V

00

(�

s

)

�

�(x) �m

2

�

+O

�

(��m

2

)

2

�

: (7:20)

The resulting action for the �eld �(x) remains non-local but because, as we shall

see, adding powers of � as well as adding derivatives make terms less relevant,

only the few �rst terms of a local expansion of the e�ective action will be impor-

tant.

If in the local expansion of the determinant we keep only the two �rst terms

we obtain an action containing at leading order a kinetic term proportional to

(@

�

�)

2

and the interaction (�(x) �m

2

)

n

:

S

N

(�) � N

Z

d

2

x

�

1

96�m

4

(@

�

�)

2

+

1

n!

S

n

�

�(x) �m

2

)

n

�

;

where the neglected terms are of order (� �m

2

)

n+1

, �@

4

�, and �

2

@

2

� and

S

n

=W

(n)

(�

s

)[2V

00

(�

s

)]

�n

=W

(n)

(�

s

)(�4�m

2

)

�n

:

Moreover we note that together with the cut-o� �, m now also acts as a cut-o�

in the local expansion.
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To eliminate the N dependence in the action we have, as in the example of

quantum mechanics, to rescale both the �eld ��m

2

and space:

�(x) �m

2

=

p

48�m

2

N

�1=2

'(x) ; x 7! N

(n�2)=4

x : (7:21)

We �nd

S

N

(') �

Z

d

2

x

�

1

2

(@

�

')

2

+

1

n!

g

n

'

n

�

:

In the minimal model, where the polynomial V (�) has exactly degree n� 1, we

�nd g

n

= 6(48�)

(n�2)=2

m

2

.

As anticipated we observe that derivatives and powers of ' are a�ected by

negative powers of N , justifying a local expansion. However we also note that

the cut-o�s (� or the mass m) are now also multiplied by N

(n�2)=4

. Therefore

the large N limit also becomes a large cut-o� limit.

Double scaling limit. The existence of a double scaling limit relies on the

existence of IR singularities due to the massless or small mass bound state which

can compensate the 1=N factors appearing in the large N perturbation theory.

We now add to the action relevant perturbations:

�

k

V = v

k

(�(x) � �

s

)

k

; 1 � k � n� 2:

proportional to

R

d

2

x(� �m

2

)

k

:

�

k

S

N

(�) = NS

k

Z

d

2

x (� �m

2

)

k

;

where the coe�cients S

k

are functions of the coe�cients v

k

. After the rescaling

(7:21)

�

k

S

N

(') =

1

k!

g

k

N

(n�k)=2

Z

d

2

x'

k

(x) 1 � k � n� 2

However, unlike quantum mechanics, it is not su�cient to scale the coe�cients

g

k

with the power N

(k�n)=2

to obtain a �nite scaling limit. Indeed perturbation

theory is a�ected by UV divergences, and we have just noticed that the cut-o�

diverges with N . In two dimensions the nature of divergences is very simple:

it is entirely due to the self-contractions of the interactions terms and only one

divergent integral appears:




'

2

(x)

�

=

1

4�

2

Z

d

2

q

q

2

+ �

2

;

where � is the small mass of the bound state, required as an IR cut-o� to de�ne

perturbatively the double scaling limit. We can then extract the N dependence




'

2

(x)

�

=

1

8�

(n � 2) lnN +O(1):
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Therefore the coe�cients S

k

have also to cancel these UV divergences, and thus

have a logarithmic dependence in N superposed to the natural power obtained

from power counting arguments. In general for any potential U(')

U(') =: U(') : +

"

X

k=1

1

2

k

k!




'

2

�

k

�

@

@'

�

2k

#

: U(') : ;

where : U(') : is the potential from which self-contractions have been subtracted

(it has been normal-ordered). For example for n = 3

'

3

(x) =: '

3

(x) : +3




'

2

�

'(x);

and thus the double scaling limit is obtained with the behaviour

Ng

1

+

1

16�

lnNg

3

�xed :

For the example n = 4

g

1

N

3=2

and Ng

2

+

g

4

8�

lnN �xed :

7.3 The V (�

2

) in the large N limit: phase transitions

In higher dimensions something new happens: the possibility of phase transi-

tions associated with spontaneous breaking the O(N) symmetry. In the �rst part

we thus study the O(N) symmetric V (�

2

) �eld theory, in the large N limit to ex-

plore the possible phase transitions and identify the corresponding multicritical

points. The action is:

S(�) = N

Z

d

d

x

n

1

2

[@

�

�(x)]

2

+ V

�

�

2

�

o

; (7:22)

where, as above (equations (7:12,7:13)), an implicit cut-o� � is always assumed

below.

The identity (7:3) transforms the action into a quadratic form in � and there-

fore the integration over � can be performed. It is convenient however here to

integrate only over N � 1 components, to keep a component of the vector �eld,

which we denote �, in the action. The large N action is then:

S

N

= N

Z

d

d

x

h

1

2

(@

�

�)

2

+ V (�) +

1

2

�

�

�

2

� �

�

i

+

1

2

(N � 1) tr ln(��+ �):

(7:23)

The saddle point equations: the O(N) critical point. Let us then write the

saddle point equations for a general potential V . At high temperature � = 0
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and � is the �-�eld mass squared. We thus set in general � = m

2

. With this

notation the three saddle point equations are:

m

2

� = 0 ; (7:24a)

V

0

(�) =

1

2

m

2

; (7:24b)

�

2

= ��

1

(2�)

d

Z

�

d

d

k

k

2

+m

2

: (7:24c)

In the ordered phase � 6= 0 and thusm vanishes. Equation (7:24c) has a solution

only for � > �

c

,

�

c

=

1

(2�)

d

Z

�

d

d

k

k

2

; ) � =

p

�� �

c

:

Equation (7:24b) which reduces to V

0

(�) = 0 then yields the critical temperature.

Setting V (�) = U(�) +

1

2

r�, we �nd

r

c

= �2U

0

(�

c

):

To �nd the magnetization critical exponent � we need the relation between the

r and � near the critical point.

In the disordered phase, � = 0, equation (7:24c) relates � to the �-�eld mass

m. For m� �, � approaches �

c

, and the relation becomes (equation (4:16)):

�� �

c

= �C(d)m

d�2

+ a(d)m

2

�

d�4

+O

�

m

d

�

�2

�

+O

�

m

4

�

d�6

�

: (7:25)

For 2 < d < 4 (the situation we shall assume below except when stated otherwise)

the O

�

m

d

�

�2

�

from the non-analytic part dominates the corrections to the

leading part of this expression. For d = 4 instead

�� �

c

=

1

8�

2

m

2

(lnm=�+ const:) ;

and for d > 4 the analytic contribution dominates and

�� �

c

� a(d)m

2

�

d�4

:

The constant C(d) is universal (equation (4:17b)). The constant a(d), which

also appears in equation (4:16), instead depends on the cut-o� procedure, and is

given by

a(d) =

1

(2�)

d

Z

d

d

k

k

4

�

1�

1

D

2

(k

2

)

�

: (7:26)

Critical point. In a generic situation V

00

(�

c

) = U

00

(�

c

) does not vanish. We

thus �nd in the low temperature phase

t = r � r

c

� �2U

00

(�

c

)(�� �

c

) ) � =

1

2

: (7:27)
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This is the case of an ordinary critical point. Stability implies V

00

(�

c

) > 0 so

that t < 0.

At high temperature, in the disordered phase, the �-�eld mass m is given by

2U

0

(�) + r = m

2

and thus, using (7:25), at leading order

t � 2U

00

(�

c

)C(d)m

d�2

;

in agreement with the result of the normal critical point. Of course the simplest

realization of this situation is to take V (�) quadratic, and we recover the (�

2

)

2

�eld theory.

The sign of the constant a(d). A comment concerning the non-universal con-

stant a(d) de�ned in (7:25) is here in order because, while its absolute value is

irrelevant, its sign plays a role in the discussion of multicritical points. Actu-

ally the relevance of this sign to the RG properties of the large N limit of the

simple (�

2

)

2

�eld theories has already mentioned (section 4.3). For the simplest

Pauli{Villars's type regularization we have D(z) > 1 and thus a(d) is �nite and

positive in dimensions 2 < d < 4, but this clearly is not a universal feature.

A new situation arises if we can adjust a parameter of the potential in such

a way that U

00

(�

c

) = 0. This can be achieved only if the potential V is at

least cubic. We then expect a tricritical behavior. Higher critical points can

be obtained when more derivatives vanish. We shall examine the general case

though, from the point of view of real phase transitions, higher order critical

points are not interesting because d > 2 for continuous symmetries and mean-

�eld behavior is then obtained for d � 3. The analysis will however be useful in

the study of double scaling limit.

Assuming that the �rst non-vanishing derivative is U

(n)

(�

c

), we expand further

equation (7:24b). In the ordered low temperature phase we now �nd

t = �

2

(n � 1)!

U

(n)

(�

c

)(�� �

c

)

n�1

; ) � / (�t)

�

; � =

1

2(n� 1)

; (7:28)

which leads to the exponent � expected in the mean �eld approximation for such

a multicritical point. We have in addition the condition U

(n)

(�

c

) > 0.

In the high temperature phase instead

m

2

= t+ (�1)

n�1

2

(n� 1)!

U

(n)

(�

c

)C

n�1

(d)m

(n�1)(d�2)

: (7:29)

For d > 2n=(n � 1) we �nd a simple mean �eld behavior, as expected since we

are above the upper-critical dimension .

For d < 2n=(n � 1) we �nd a peculiar phenomenon, the term in the r.h.s. is

always dominant, but depending on the parity of n the equation has solutions

for t > 0 or t < 0. For n even, t is positive and we �nd

m / t

�

; � =

1

(n� 1)(d � 2)

; (7:30)
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which is a non mean-�eld behavior below the critical dimension. However for

n odd (this includes the tricritical point) t must be negative, in such a way

that we have now two competing solutions at low temperature. We have to

�nd out which one is stable. We shall verify below that only the ordered phase

is stable, so that the correlation length of the �-�eld in the high temperature

phase remains always �nite. Although these dimensions do not correspond to

physical situations because d < 3 the result is peculiar and inconsistent with the

"-expansion.

For d = 2n=(n� 1) we �nd a mean �eld behavior without logarithmic correc-

tions, provided one condition is met:

2

(n� 1)!

U

(n)

(�

c

)C

n�1

(2n=(n� 1)) < 1 ; C(3) = 1=(4�): (7:31)

We examine, as an example, in more details the tricritical point below. We will

see that the special point

2

(n � 1)!

U

(n)

(�

c

)C

n�1

(2n=(n� 1)) = 1 ; (7:32)

has several peculiarities. In what follows we call 


c

this special value of U

(n)

(�

c

).

Discussion. In the mean �eld approximation the function U(�) / �

n

is not

bounded from below for n odd, however � = 0 is the minimum because by

de�nition � � 0. Here instead we are in the situation where U(�) � (� � �

c

)

n

but �

c

is positive. Thus this extremum of the potential is likely to be unstable

for n odd. To check the global stability requires further work. The question is

whether such multicritical points can be studied by the large N limit method.

Another point to notice concerns renormalization group: The n = 2 example

is peculiar in the sense that the large N limit exhibits a non-trivial IR �xed

point. For higher values of n no coupling renormalization arises in the large N

limit and the IR �xed point remains pseudo-gaussian. We are in a situation

quite similar to usual perturbation theory, the � function can only be calculated

perturbatively in 1=N and the IR �xed point is outside the perturbative regime.

Local stability and the mass matrix. The matrix of the general second partial

derivatives of the e�ective action is:

N

0

@

p

2

+m

2

0 �

0 V

00

(�) �

1

2

� �

1

2

�

1

2

B

�

(p;m)

1

A

; (7:33)

where B

�

(p;m) is de�ned in (4:34).

We are in position to study the local stability of the critical points. Since

the integration contour for � = m

2

should be parallel to the imaginary axis, a

necessary condition for stability is that the determinant remains negative.
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The disordered phase. Then � = 0 and thus we have only to study the 2� 2

matrix M of the �;m

2

subspace. Its determinant must remain negative which

implies

detM < 0 , 2V

00

(�)B

�

(p;m) + 1 > 0 : (7:34)

For Pauli{Villars's type regularization the function B

�

(p;m) is decreasing so

that this condition is implied by the condition at zero momentum

detM < 0 ( 2V

00

(�)B

�

(0;m) + 1 > 0 :

For m small we use equation (4:36) and at leading order the condition becomes:

C(d)(d� 2)m

d�4

V

00

(�) + 1 > 0 :

This condition is satis�ed by a normal critical point since V

00

(�

c

) > 0. For a

multicritical point, and taking into account equation (7:25) we �nd:

(�1)

n

d� 2

(n� 2)!

C

n�1

(d)m

n(d�2)�d

V

(n)

(�

c

) + 1 > 0 : (7:35)

We obtain a result consistent with our previous analysis: For n even it is al-

ways satis�ed. For n odd it is always satis�ed above the critical dimension and

never below. At the upper-critical dimension we �nd a condition on the value

of V

(n)

(�

c

) which we recognize to be identical to condition (7:31) because then

2=(n� 1) = d� 2.

The ordered phase. Now m

2

= 0 and the determinant � of the complete

matrix is:

�� > 0 , 2V

00

(�)B

�

(p; 0)p

2

+ p

2

+ 4V

00

(�)�

2

> 0 : (7:36)

We recognize a sum of positive quantities, and the condition is always satis�ed.

Therefore in the case where there is a competition with a disordered saddle point

only the ordered one can be stable.

7.4 The scalar bound state

In this section we study the limit of stability in the disordered phase (� = 0).

This is a problem which only arises when n is odd, the �rst case being provided

by the tricritical point.

The mass-matrix has then a zero eigenvalue which corresponds to the appear-

ance of a new massless excitation other than �. Let us denote by M the �;m

2

2� 2 submatrix. Then

detM = 0 , 2V

00

(�)B

�

(0;m) + 1 = 0 :
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In the two-space the corresponding eigenvector has components (

1

2

; V

00

(�)).

The small mass m region. In the small m limit the equation can be rewritten

in terms of the constant C(d) de�ned in (4:16):

C(d)(d� 2)m

d�4

V

00

(�) + 1 = 0 : (7:37)

Equation (7:37) tells us that V

00

(�) must be small. We are thus close to a

multicritical point. Using the result of the stability analysis we obtain

(�1)

n�1

d� 2

(n� 2)!

C

n�1

(d)m

n(d�2)�d

V

(n)

(�

c

) = 1 : (7:38)

We immediately notice that this equation has solutions only for n(d�2) = d, i.e.

at the critical dimension. The compatibility then �xes the value of V

(n)

(�

c

). We

again �nd the point (7:32), V

(n)

(�

c

) = 


c

. If we take into account the leading

correction to the small m behavior we �nd instead:

V

(n)

(�

c

)


�1

c

� 1 � (2n� 3)

a(d)

C(d)

�

m

�

�

4�d

: (7:39)

This means that when a(d) > 0 there exists a small region V

(n)

(�

c

) > 


c

where

the vector �eld is massive with a small mass m and the bound-state massless.

The value 


c

is a �xed point value.

The scalar �eld at small mass. We want to extend the analysis to a situation

where the scalar �eld has a small but non-vanishing massM andm is still small.

The goal is in particular to explore the neighbourhood of the special point (7:32).

Then the vanishing of the determinant of M implies

1 + 2V

00

(�)B

�

(iM;m) = 0 : (7:40)

Because M and m are small, this equation still implies that � is close to a point

�

c

where V

00

(�) vanishes. Since reality imposesM < 2m, it is easy to verify that

this equation has also solutions for only the critical dimension. Then

V

(n)

(�

c

)f(m=M) = 


c

; (7:41)

where we have set:

f(z) =

Z

1

0

dx

�

1 + (x

2

� 1)=(4z

2

)

�

d=2�2

;

1

2

< z : (7:42)

In three dimensions it reduces to:

f(z) = z ln

�

2z + 1

2z � 1

�

:
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f(z) is a decreasing function which diverges for z =

1

2

because d � 3. Thus we

�nd solutions in the whole region 0 < V

(n)

(�

c

) < 


c

, i.e. when the multicritical

point is locally stable.

Let us calculate the propagator near the pole. We �nd the matrix �

� =

2

G

2

"

N

dB

�

(p;m)

dp

2

�

�

�

�

p
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=�M

2

#

�1

1

p
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+M

2

�

1 G

G G

2

�

; (7:43)

where we have set

G =

2(�C)

n�2

W

(n)

(n � 2)!

m

4�d

:

For m=M �xed the residue goes to zero with m as m

d�2

because the derivative

of B is of the order of m

d�6

. Thus the bound-state decouples on the multicritical

line.

The scalar massless excitation: general situation. Up to now we have explored

only the case where both the scalar �eld and the vector �eld propagate. Let us

now relax the latter condition, and examine what happens when m is no longer

small. The condition M = 0 then reads

2V

00

(�

s

)B

�

(0;m) + 1 = 0

together with

m

2

= 2V

0

(�

s

); �
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=
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(2�)

d
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d
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k

k

2

+m

2

: (7:44)

An obvious remark is: there exist solutions only for V

00

(�

s

) < 0, and therefore

the ordinary critical line can never be approached. In terms of the function F (z)

�

d�2
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(7:45)

and thus

F (z) = N

d

Z

0

k

d�1

dk

k

2

D(k

2

) + z

; (7:46)

the equations can be rewritten

�

s

= �

d�2

F (z); z = 2V

0

(�

s

)�

�2

; 2�

d�4

V

00

(�

s

)F

0

(z) = 1 :

The function F (z) in Pauli{Villars's regularization is a decreasing function. In

the same way �F

0

(z) is a positive decreasing function.

The third equation is the condition for the two curves corresponding to the

two �rst ones become tangent. For any value of z we can �nd potentials and thus

solutions. Let us call z

s

such a value and specialize to cubic potentials. Then

�

s

= �

d�2

F (z

s

) ;

V (�) = V
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) +
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+
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3

; (7:47)

which yields a two parameter family of solutions. For z small we see that for

d < 4 the potential becomes proportional to (� � �

c

)

3

.



96

7.5 Stability and double scaling limit

In order to discuss in more details the stability issue and the double scaling limit

we now construct the e�ective action for the scalar bound state. We consider

�rst only the massless case. We only need the action in the IR limit, and in this

limit we can integrate out the vector �eld and the second massive eigenmode.

Integration over the massive modes. As we have already explained in section

7.2 we can integrate over one of the �elds, the second being �xed, and we need

only the result at leading order. Therefore we replace in the functional integral

e

Z

=

Z

[d�d�] exp

�

�

N

2

tr ln(�@

2

+ �) +N

Z

d

d

x

�

�V (�) +

1

2

��

�

�

; (7:48)

one of the �elds by the solution of the �eld equation. It is useful to �rst discuss

the e�ective potential of the massless mode. This requires calculating the action

only for constant �elds. It is then simpler to eliminate �. We assume in this

section that m is small (the vector propagates). For �� � the �-equation reads

(d < 4)

�� �

c

= �C(d)�

(d�2)=2

: (7:49)

It follows that the resulting potential W (�), obtained from equation (7:17) is

W (�) = V (�) +

d� 2

2d(C(d))

2=(d�2)

(�

c

� �)

d=(d�2)

: (7:50)

In the sense of the double scaling limit the criticality conditions are

W (�) = O

�

(� � �

s

)

n

�

:

It follows

V

(k)

(�

s

) = �

1

2

C

1�k

(d)

�

�

k � d=(d� 2)

�

�

�

�2=(d� 2)

�

m

d�k(d�2)

1 � k � n� 1 :

For the potential V of minimal degree we �nd

W (�) �

1

2n!

C

1�n

(d)

�

�

n� d=(d� 2)

�

�

�

�2=(d� 2)

�

m

d�n(d�2)

(�� �

s

)

n

:

The double scaling limit. We recall here that quite generally one veri�es that

a non-trivial double scaling limit may exist only if the resulting �eld theory of

the massless mode is super-renormalizable, i.e. below its upper-critical dimension

d = 2n=(n�2), because perturbation theory has to be IR divergent. Equivalently,

to eliminate N from the critical theory, one has to rescale

�� �

s

/ N

�2�

' ; x 7! xN

(n�2)�

with 1=� = 2n� d(n � 2);
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where � has to be positive.

We now specialize to dimension three, since d < 3 has already been examined,

and the expressions above are valid only for d < 4. The normal critical point

(n = 3), which leads to a '

3

�eld theory, and can be obtained for a quadratic

potential V (�) (the (�

2

)

2

) has been discussed elsewhere. We thus concentrate

on the next critical point n = 4 where the minimal potential has degree three.

The d = 3 tricritical point. The potential W (�) then becomes

W (�) = V (�) +

8�

2

3

(�

c

� �)

3

: (7:51)

If the potential V (�) has degree larger than three, we obtain after a local expan-

sion and a rescaling of �elds,

�� �

s

= (

�1

32�

2

�

c

)(� �m

2

) / '=N ; x 7! Nx ; (7:52)

a simple super-renormalizable '

4

(x) �eld theory. If we insist instead that the

initial theory should be renormalizable, then we remain with only one candi-

date, the renormalizable (�

2

)

3

�eld theory, also relevant for the tricritical phase

transition with O(N) symmetry breaking. Inspection of the potential W (�) im-

mediately shows a remarkable feature: Because the term added to V (�) is itself

a polynomial of degree three, the critical conditions lead to a potential W (')

which vanishes identically. This result re
ects the property that the two saddle

point equation (@S=@� = 0 ; @S=@� = 0 in equations (7:24)) are proportional

and thus have a continuous one-parameter family of solutions. This results in a


at e�ective potential for '(x). The e�ective action for ' depends only on the

derivatives of ', like in the O(2) non-linear � model.

We conclude that no non-trivial double scaling limit can be obtained in this

way. In three dimensions with a (�

2

)

3

interaction we can generate at most a

normal critical point n = 3, but then a simple (�

2

)

2

�eld theory su�ces.

The ambiguity of the sign of a(d) discussed in section 7.3 has an interest-

ing appearance in d = 3 in the small m

2

region. If one keeps the extra term

proportional to a(d) in equation (7:50) we have

W (�) = V (�) +

8�

2

3

(�

c

� �)

3

+

a(3)

�

4�

2

(�

c

� �)

4

:

Using now equation (7:49) and, as mentioned in section 7.4, the fact that in the

small m

2

region the potential is proportional to (� � �

c

)

3

we can solve for m

2

.

Since m

2

> 0 the appearance of a phase with small mass depends on the sign of

a(d). Clearly this shows a non-commutativity of the limits of m

2

=�

2

! 0 and

N !1. The small m

2

phase can be reached by a special tuning and cannot be

reached with an improper sign of a(d). Calculated in this way, m

2

can be made

proportional to the deviation of the coe�cient of �

3

in V (�) from its critical

value 16�

2

.
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7.6 Conclusions

This is a study of several subtleties in the phase structure of O(N) vector

models around multicritical points of odd and even orders. One of the main

topics is the understanding of the multicritical behavior of these models at their

critical dimensions and the e�ective �eld theory of the O(N)-singlet bound state

obtained in the N ! 1, g ! g

c

correlated limit. It is pointed out that the

integration over massive O(N) singlet modes is essential in order to extract the

correct e�ective �eld theory of the small mass scalar excitation. After performing

this integration, it has been established here that the double scaling limit of (�

2

)

K

vector model in its critical dimension d = 2K=(K�1) results in a theory of a free

massless O(N) singlet bound state. This fact is a consequence of the existence of


at directions at the scale invariant multicritical point in the e�ective action. In

contrast to the case d < 2K=(K�1) where IR singularities compensate powers of

1=N in the double scaling limit, at d = 2K=(K�1) there is no such compensation

and only a noninteracting e�ective �eld theory of the massless bound state is left.

Another interesting issue in this study is the ambiguity of the sign of a(d).

The coe�cient of m

2

�

d�4

denoted by a(d) in the expansion of the gap equation

in equations (7:24c) and (7:25) seems to have a surprisingly important role in

the approach to the continuum limit (�

2

� m

2

). The existence of an IR �xed

point at g � O(N

�1

); as seen in the � function for the unrenormalized coupling

constant (section 4.3), depends on the sign of a(d). Moreover, the existence of

a phase with a small mass m for the O(N) vector quanta and a massless O(N)

scalar depends also on the sign of a(d). It may very well be that the importance

of the sign of a(d) is a mere re
ection of the limited coupling constant space

used to described the model. This is left here as an open question that deserves

a detailed renormalization group or lattice simulation study in the future.
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