
The situation before the Higgs discovery at LHC: An RG upper-

bound on the Higgs mass

In the Standard Model, the Higgs field through its various couplings gives

masses to all fields. The observed masses determine the corresponding cou-

plings. Before the LHC discovery, only the Higgs mass and thus the Higgs

self-coupling were unknown parameters. However, it was likely that the

renormalized (φ2)2 self-coupling g would be small enough so that perturba-

tion theory remained at least semi-quantitatively applicable. Otherwise, the

successes of the Standard Model would have been difficult to understand.

In the perturbative regime, the Higgs mass increases with g. To obtain an

upper-bound on the Higgs mass one has to examine what happens when g

increases. For g large enough, the Higgs mass is mostly determined by the

Higgs self-coupling. In the pure (φ2)2 field theory and in the perturbative

regime, simple RG arguments are applicable.



Any quantum field theory requires eventually a cut-off to cure the un-

avoidable problem of infinities. Here, the cut-off Λ corresponds to the onset

of some new physics beyond the Standard Model.

The renormalized coupling constant g is the effective coupling constant

g0(µ/Λ) at the renormalization scale µ, µ≪ Λ. Then,

g ∼ g0(µ/Λ),

∫ g0(µ/Λ)

g0

dg′

β(g′)
= ln(µ/Λ).

For g0 small, the perturbative expansion of the β-function is

β(g0) = β2g
2
0 + β3g

3
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(

g40
)

, 8π2β2 = 2 , β3/β
2
2 = −13/24 .

For g small, one infers

ln(Λ/µ) =
1

β2g
+
β3
β2
2

ln g +K(g0) +O(g),

where K(g0) = O(1) can only be determined by non-perturbative methods.



For g small, perturbation theory to relate the Higgs field expectation value,

which is known from the Z mass (〈H〉 ∼ 250GeV), and the Higgs mass. At

leading order, one finds

m2
H = 1

3g 〈H〉2 +O
(

g2
)

.

To minimize higher order corrections, one chooses for g the renormalized

coupling constant at scale 〈φ〉. One can then eliminate g and finds
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)

=
1

3β2

〈H〉
2

m2
H

+
2β3
β2
2

ln

(

mH

〈H〉

)

+ K̃(g0) +O(g) .

If one can neglect in the r.h.s. all terms but the two first ones, one obtains a

relation between the two ratios Λ/ 〈φ〉 and mH/ 〈φ〉. Moreover, if the Higgs

is really associated to a physical particle, its mass must be smaller than the

cut-off. Taking for the two coefficients of the β-function the values for O(4),

8π2β2 = 2, β3/β
2
2 = −13/24, one obtains the upper-bound

mH < 2.6 〈φ〉 ⇒ mH < 640 GeV .



The value could be compared with computer simulation values, which vary

in the range 670–700GeV. Moreover, the corresponding value of g is such

that perturbation theory at leading order should still be semi-quantitatively

correct.

Conversely, from the value physical coupling constant at scale µ, one

can infer from the equation an upper-bound on the cut-off or scale of new

physics. Clearly, this bound is very sensitive to small corrections since the

equation determines ln(Λ/µ). Moreover, for smaller values of mH the cou-

pling to the quark top and vector bosons should be taken into account.

The conclusion at the time where the construction of a new collider had

to be decided was that by exploring physics in the TeV range one would

either find the Higgs particle or discover some new physics, or both.

Later, the study of radiative corrections at LEP, even though they varied

only like lnmH , actually suggested that the Higgs mass should be expected

to lie between 114 and 200 GeV.



The Gross–Neveu–Yukawa model (GNY): a toy Higgs-top model

Since indications were that the Higgs would not be on the high side, it be-

came necessary to include the couplings to the top quark and vector bosons.

Neglecting vector bosons, a semi-quantitative picture can be obtained from

a model that represents only the Higgs–top physics, the GNY model.

The model is renormalizable in four dimensions with a simple fermion-

boson interaction. In the GNY model, particles still receive masses by spon-

taneous chiral symmetry breaking. No Goldstone boson is generated because

the chiral symmetry is discrete.

In the model, the ratio of fermion and boson masses can then be predicted

as a simple consequence of IR freedom and the natural assumption that

coupling constants have generic values at the cut-off scale.

More generally, the renormalization group flow can be studied as a func-

tion of the physical masses when the physical ratio differs from the predic-

tion.



The Gross–Neveu–Yukawa model

The GNY model involves a set of N massless fermions {ψi, ψ̄i} and a scalar

field H.

It has a discrete chiral Z2 symmetry under which the fields transform like

ψ 7→ γ5ψ, ψ̄ 7→ −ψ̄γ5, H 7→ −H , (47)

which prevents the addition of a fermion mass term to the action.

The U(N) symmetry is implemented by the transformation

ψ 7→ Uψ , ψ̄ 7→ U†ψ̄ .

The model illustrates the physics of spontaneous chiral symmetry breaking

and fermion mass generation.

A renormalizable action then reads (a cut-off Λ, consistent with the sym-

metries, is implied)

S
(

ψ̄,ψ, H
)

=

∫

d4x

[

−ψ̄ · (6∂ + g0H)ψ + 1
2 (∇xH)2 + 1

2m
2
0H

2 +
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4!
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]

.



The renormalized action. Calling µ the renormalization scale and g, λ the

renormalized couplings, one can write the renormalized action as

Sr(H,ψ, ψ̄) =

∫

d4x
{

−Zψ

[

ψ̄(x) ·
(

6∂ + gZgZ
1/2
H H(x)

)

ψ(x)
]

+
1

2
ZH

[
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2(x)
]

+ Zλ
λ

4!
Z2
HH
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}

. (48)

where Zψ, Zg, ZH , ZmZλ are renormalization constants. In what follows we

set

ZHm
2
0 = ZHm

2
0c + Zmτ ,

where m2
0c is defined by the property that for m2

0 = m2
0c the physical masses

of ψ and H vanish. Then, Zm is a renormalization constant and the new

parameter τ , in the language of phase transitions, plays the role of the

deviation from the critical temperature.



The phase transition in the tree approximation. In the tree approximation,

Stree

(

ψ̄,ψ, H
)

=

∫

d4x
[

−ψ̄ · 6∂ψ− g Hψ̄ ·ψ+ 1
2 (∇xH)2+ 1

2τH
2+

λ

4!
H4

]

,

a phase transition occurs, for τ = 0, between a fermion massless symmetric

phase for τ > 0 and a phase for τ < 0 where the chiral symmetry is sponta-

neously broken and a fermion mass is generated. The H expectation value

〈H〉 = ±
√

−6τ/λ ,

gives a mass to the fermions by a mechanism reminiscent of the Standard

Model of weak-electromagnetic interactions. The fermion and boson masses

are then

mψ = g 〈H〉 , mH =

√

λ

3
〈H〉 ⇒

mH

mψ
=

1

g

√

λ

3
.



RG equations: β-functions

Beyond the tree approximation, the model can be discussed, like the (φ2)2

theory, by RG techniques. For |τ | ≪ Λ2 (this is the usual fine tuning prob-

lem), the corresponding renormalized (1PI) vertex functions of l fermion

fields and n H-fields satisfy the RG equations

[

µ
∂

∂µ
+ βg2

∂

∂g2
+ βλ

∂

∂λ
− 1

2 lηψ − 1
2nηH − ηmτ

∂

∂τ

]

Γ(l,n) = 0 . (49)

At one-loop order, the RG β-functions have the form

βλ =
1

8π2

(

aλ2 + bλg2 + cg4
)

, βg2 =
d

8π2
g4

with

a = 3
2 , b = 4N, c = −24N, d = 2N + 3 .



Fig. 6 Boson two-point function: contribution from the fermion loop (the fermions

and bosons correspond to continuous and dotted lines, respectively).

Fig. 7 Fermion two-point function at one-loop.

IR freedom and mass ratio

One easily verifies that the origin λ = g2 = 0 is IR stable. The model GNY

is thus trivial or IR free, that is, Gaussian up to logarithmic corrections

vanishing for large cut-off.



Fig. 8 Three and four-point functions: other divergent one-loop diagrams.

We assume that the dimensionless couplings λ(Λ) and g(Λ) are generic (i.e.,

of order 1, numerically 8π2, which is the loop factor) at the cut-off scale Λ.

Solving the RG equations, one infers that the coupling constants at a scale

µ≪ Λ decrease like

g2(µ) ∼
8π2

(2N + 3) ln(Λ/µ)
, λ(µ) ∼

8π2R∗(N)

(2N + 3) ln(Λ/µ)

with

R∗(N) = 1
3

[

−(2N − 3) +
√

4N2 + 132N + 9
]

.



In particular, choosing µ ∼ 〈H〉 and if the mass scale 〈H〉 ≪ Λ, one con-

cludes that the ratio of H and fermion masses goes to the limit

m2
H

m2
ψ

=
λ(〈H〉)

3g2(〈H〉)
= 1

3R∗(N) =
1

9

(

−(2N − 3) +
√

4N2 + 132N + 9
)

.

As a function of N , when N varies from 1 to ∞, the ratio mH/mψ varies

from about 1.20 to 2, which correspond to the ψ̄ψ threshold and the large

N limit.

IR freedom of the theory and the assumption that the couplings are

generic at the cut-off scale imply a fixed ratio between the masses of the

top and Higgs particles.



The general renormalization group flow at one-loop

Identifying the boson with the Higgs field and the fermion with the top

field, we can put numbers on the vacuum expectation value and couplings:

〈H〉 = 246.Gev , mψ = 173.2Gev ,mH = 125.Gev .

Then, λ = 0.775 , g2 = 0.496. The main neglected contributions corre-

spond to Higgs couplings to vector bosons and, therefore, the picture we

find can only be semi-quantitative but the analysis is here much simplified

and, thus, more transparent.

We now analyse the general RG flow. Two-dimensional flows can be easily

studied because, quite generally, RG trajectories can only meet at fixed

points, here g = λ = 0.

One verifies immediately that the lines g = 0 and λ = R∗g
2 are fixed

trajectories and thus cannot be crossed. By contrast, the line λ = 0 can be

formally crossed and the RG trajectories then enter an unphysical region.



g2

λ

Fig. 9 RG flow: the dotted line on the left is an unphysical fixed line.

First, the coupling constants at physical scale (or renormalized) are small.

This justifies using perturbation theory and indicates that IR freedom is

relevant since it predicts small renormalized couplings when the initial cou-

plings at a large momentum cut-off scale are of order 1.



By contrast, the ratio R = λ
3g2 ≈ 0.52 is smaller than what is predicted

by the model. However, more realistic calculations, including vector bosons,

have been performed and seem to indicate that the physical Higgs mass is

very close to a fixed line.

Depending on the precise top mass, deviations appear but at a very high

energy scale, at least 1010 GeV.

This RG result is puzzling since it points toward the possibility that

the Standard Model could be valid up to such a high scale. However, then

the problem of the fine-tuning of the Higgs mass, which is of the order of

(Λ/mH)
2 (Λ is the scale of new physics), which we have disregarded up to

now, becomes extremely severe.



Exercises

Note that in these lectures we use a Euclidean (or imaginary time) nota-

tion, in particular for fermions, 6∂ = γµ∂µ, (1 is the unit element)

γµγν + γνγµ = 2 δµν1 ,

γ5 = −γ1γ2γ3γ4 ⇒ γ25 = 1 .

The modified minimal subtraction scheme (MS). In the calculation of low

order Feynman diagrams, a factor

Nd =
area of the sphere Sd−1

(2π)d
=

2

(4π)d/2Γ(d/2)
, (50)

L being the number of loops of the diagram, is generated naturally. To avoid

expanding Nd in ε = 4 − d, it is convenient to rescale the loop expansion

parameter to suppress this factor, for instance, by multiplying each Feynman

diagram by a factor (N4/Nd)
L, where L is the number of loops.



Exercise 9

Calculation of RG β-functions of the GNY model. Determine the RG func-

tions of the GNY model, in particular, verifying the expressions for the

two β-functions, using dimensional regularization and working in the MS

scheme. This involves a determination of the divergent part at one-loop of

various two, three and four point functions.

We give below some elements of the calculation of the divergent parts.

The boson diagrams: One-loop divergences

Figure 4 displays the two one-loop divergent diagrams generated by the

σ4 interaction.

In the massless theory, the contribution (a) to the σ two-point function,

Ω0 =
1

(2π)d

∫

ddq

q2
,

vanishes in dimensional regularization.



The diagram (b) contributes to the σ four-point function. In the massless

limit,

Bd(p) =
1

(2π)d

∫

ddq

q2(p− q)2

= −
π

sin(πd/2)

Γ2(d/2)

Γ(d− 1)
Nd p

4−d ≡ Nd b(d)p
−ε (51)

with

b(d) = −
π

sin(πd/2)

Γ2(d/2)

Γ(d− 1)
=

1

ε

(

1 + 1
2ε+O

(

ε2
))

.

Then,

〈σ1σ2σ3σ4〉1PI|g=0 = λ− 1
2λ

2 [Bd(p12) +Bd(p13) +Bd(p14)] +O(λ3),

where σi ≡ σ(pi) and pij ≡ pi + pj . Expanding for ε → 0, one finds the

divergent contribution

〈σ1σ2σ3σ4〉1PI,div.

∣

∣

∣

g=0
= −

3Nd
2ε

λ2. (52)



Diagrams involving fermion propagators: One-loop divergences

We evaluate below only the one-loop divergent parts of the additional

diagrams involving fermion propagators.

Boson two-point function.The diagram of figure 6 has a factor Ng2, the

sign coming from the Legendre transformation cancelling the sign coming

from the fermion loop. It is then multiplied by

1

(2π)d

∫

ddq
tr i6qi (6q + 6p)

q2(p+ q)2
= 2p2Bd(p) = Nd

2

ε

(

1 + 1
2ε+O

(

ε2
))

p2−ε,

(53)

where we have used the identity

2(q2 + p · q) = (p+ q)2 + q2 − p2.

The contributions of the two first terms then vanishes in dimensional regu-

larization. Therefore, the divergent part is

〈σσ〉1PI,1 loop, div. = Nd
2N

ε
g2.



Fermion two-point function. Taking into account the sign coming from

the Legendre transformation, the diagram of figure 7 has a factor −g2.

Moreover, the diagram is proportional to 6p:

1

(2π)d

∫

ddq

(p− q)2
i6q

q2
= i6pX(p)

and thus multiplying both sides with 6p and taking the trace, one infers

1

(2π)d

∫

ddq

(p− q)2
i6q

q2
=
i6p

p2
1

(2π)d

∫

ddq p · q

(p− q)2q2
= 1

2 i6pBd(p) , (54)

where the identity 2p · q = p2 + q2 − (p− q)2 has been used. The divergent

part is
〈

ψ̄ψ
〉

1PI,1 loop, div.
= −g2Nd

i6p

2ε
.



The 〈ψ̄ψσ〉 vertex function. Figure 8 displays the remaining two Feynman

diagrams. The diagram on the left has a factor −g2 multiplied by

1

(2π)d

∫

ddq

(p1 − q)2
i6qi (6q − 6p1 − 6p2)

q2(q − p1 − p2)2
.

Evaluated at p1 = −p2 = p (zero boson momentum), the diagram reduces

to

1

(2π)d

∫

ddq(i6q)2

q4(p− q)2
= −Bd(p) = −

Nd
ε

(

1 + 1
2ε+O

(

ε2
))

p−ε. (55)

Its divergent part is

〈

ψ̄ψσ
〉

1PI,1 loop, div.
= g3

Nd
ε
.

The 〈σσσσ〉 vertex function. The diagram in the right of figure 8 has a

factor Ng4, the sign of the Legendre transformation cancelling the sign of



the fermion loop. It is multiplied by

SQ(p1, p2, p3, p4) =
1

(2π)d

∫

ddq
tr [i6qi (6q + 6p1) i (6q + 6p1 + 6p2) i (6q − 6p4)]

q2(q + p1)2(q + p1 + p2)2(q − p4)2

to which five diagrams corresponding to permutations of {p2, p3, p4} have

to be added.

Evaluating the diagram for vanishing opposite momenta, for instance for

p2 = p4 = 0, p1 = −p3 = p, one simply finds the contribution

SQ(p, 0,−p, 0) =
1

(2π)d
tr

∫

ddq

(

i6q

q2

)2 (
i(6q + 6p)

(p+ q)2

)2

= 4Bd(p) =
4Nd
ε

(

1 + 1
2ε+O

(

ε2
))

p−ε. (56)



The total one-loop divergence coming from the six diagrams, to which

the contribution (52) has to be added, is then

〈σσσσ〉1PI,1 loop, div. =
(

− 3
2λ

2 + 24Ng4
) Nd
ε
.

Exercise 10

RG equations. Determine the RG flow for the GNY model explicitly by

solving the RG equations at one-loop order and discuss the solution. It will

be convenient to parametrize the scale parameter as et.


