
Note that the first singular contribution depends only on the coefficient of

σ4 in the expansion of B(σ) and on the asymptotic form of the propagator

(the Gaussian two-point function) at large distance or small momenta. The

short distance modification has only ensured large momentum convergence.

A systematic study then confirms that the most singular terms in each

order of the perturbative expansion can be reproduced, in the critical limit,

by a statistical field theory with an interaction of σ4 type, in continuum

Euclidean space.

Therefore, if the sum of the most divergent terms to all orders is the lead-

ing contribution, then the existence of a continuum limit and some universal

properties follow, since then the corresponding field theory depends only on

a small number of parameters.

Finally, the consistency of the analysis can again be verified by evaluating

the leading corrections.

Exercises moved to the end of next section.



From Gaussian models to Renormalization Group

We have studied Ising type models (but the study can be easily extended

to ferromagnetic models with O(N) symmetry) with short range interac-

tions and determined the behaviour of the thermodynamic functions near

a continuous phase transition, within the framework of the quasi-Gaussian

or mean field approximations.

We have shown that these approximations predict a set of universal proper-

ties, that is, properties independent of the detailed structure of interactions

or microscopic Hamiltonians, including dimension of space or symmetries.

However, many experimental observations as well as numerical and an-

alytical results coming from model systems show that such results cannot

be quantitatively correct, at least in dimensions 2 or 3. For example, the

exact solution of the Ising model in two dimensions yields exponents like

β = 1/8, η = 1/4 or ν = 1, clearly different from the predictions of the

quasi-Gaussian approximation.



By examining the leading corrections to the Gaussian approximation, we

have identified the origin of the difficulty. Above dimension 4 these correc-

tions do not affect universal quantities; by contrast, below four dimensions,

the corrections diverge at the critical temperature and, thus, invalidate the

assumptions that are at the basis of the quasi-Gaussian approximation.

The analysis also indicates that the coupling of degrees of freedom corre-

sponding to very different length scales plays an essential role: it is impos-

sible to consider only effective macroscopic degrees of freedom. One could

then fear that physics in dimension d ≤ 4, even at large distance, is sensi-

tive to the detailed microscopic structure of systems. However, surprisingly,

some universal properties survive, though different from those of the quasi-

Gaussian approximation. But these properties are less universal: statistical

systems that have the same properties in the quasi-Gaussian approximation,

divide into universality classes characterized by the dimension of space, sym-

metries and some other qualitative features.



To explain this somewhat paradoxical situation, a completely new tool, ini-

tially suggested by Kadanoff (1966), has been developed by Wilson (1971),

Wegner..., and then many other physicists, the Renormalization Group (RG)

(different in spirit and more general than the earlier RG of quantum field

theory). In this approach, the RG is generated by integrating successively

over the degrees of freedom corresponding to the shortest scales. One then

obtains a sequence of models which all describe the same large distance

physics but in which details of the short distance structure are gradually

eliminated. If this sequence has a limit, which implies that the RG trans-

formations admit fixed points, then universality properties are explained:

all statistical models which, after these repeated transformations, converge

toward the same fixed point, belong to the same universality class.

Stated in this general form, the general ideas of RG are extremely sug-

gestive but somewhat vague. The main issue becomes the implementation

and this is a non trivial issue.



First, one has to define precisely the way one integrates over short-distance

degrees of freedom. Then this general RG remains difficult to set-up because

it acts on the infinite dimensional space of possible statistical models. In the

simplest implementation, in the continuum, it leads to quadratic functional

equations.

Only Gaussian models can be discussed systematically. One can identify

the simplest fixed point, the Gaussian fixed point, which belongs to the class

of Gaussian models discussed previously.

Moreover, a complete local stability analysis of the fixed point is possible.

It allows classifying all perturbations as relevant, that is, which become

increasingly important at large distance, irrelevant in the opposite case and

marginal in the limiting situation.



More generally, in this framework, the RG of quantum field theory appears

as an asymptotic form of the general renormalization when one applies it

to the neighbourhood of a Gaussian fixed point.

In the specific context of quantum field theory, the assumptions at the

basis of the RG have been clarified. The analysis has confirmed the major

relation, initially recognized by Wilson, between the quantum field theory

describing the fundamental physics at the microscopic scale and the theory

of the macroscopic critical phenomena.

Quantum field theory techniques combined with RG could then be used

to discuss phase transitions and to calculate universal quantities, like critical

exponents.



The renormalization group: General idea

To construct a RG flow in continuum space, the basic idea is to integrate

in the field integral recursively over short distance degrees of freedom. This

procedure generates a sequence of effective Hamiltonians Hλ function of a

scale parameter λ > 0 (such that H1 = H), related by a transformation T
acting in the space of Hamiltonians such that

λ
d

dλ
Hλ = T [Hλ] , (40)

a flow equation called RG equation (RGE). The appearance of the derivative

λd/dλ = d/d lnλ reflects the multiplicative character of dilatations. The

RGE thus defines a dynamical process in the ‘time’ lnλ. The denomination

renormalization group (RG) refers to the property that lnλ belongs to the

additive group of real numbers.



RG equation: General structure, fixed points

One looks for a RG flow that defines a stationary Markov process, that is,

T [Hλ] depends on Hλ but not on the trajectory that has led from Hλ=1 to

Hλ, and depends on λ only through Hλ.

Universality is then related to the existence of fixed points, solution of

T (H∗) = 0 .

One also assumes that the mapping T is differentiable so that, near a fixed

point, the RG flow can be linearized,

T (H∗ +∆Hλ) ∼ L∗∆Hλ ,

and is governed by the eigenvalues and eigenvectors of the linear operator

L∗. Formally, the local solution of the linearized equations can be written

as

Hλ = H∗ + λL∗

(Hλ=1 −H∗) .



Eigenvalues and local stability

Global stability cannot be studied in general, but local stability near the

fixed point can be studied by determining the spectrum of L∗. We consider

only the situation where the spectrum of L∗ is real, a property true for the

simple systems we consider here but not been proved in general.

In the example of the random walk, we have already introduced the RG

terminology:

(i) Positive eigenvalues correspond to directions of instability and the

corresponding eigenoperators are called relevant.

(ii) Vanishing eigenvalues correspond to marginal operators. Then, the

linearized flow is in general no longer sufficient to determine whether the

perturbation corresponds to a marginally stable or unstable situation. An

expansion of the RG flow to second order in the perturbation to the fixed

point is required and this leads in general to a logarithmic behaviour.



A special case of vanishing eigenvalues corresponds to redundant opera-

tors, which merely correspond to a simple change of parametrization.

(iii) Negative eigenvalues correspond to irrelevant operators and to direc-

tions of stability.

When only a small number of relevant operators are present, universal

properties can be proved.



The Gaussian fixed point

A RG can be constructed that has the Gaussian model as a fixed point. The

Hamiltonian flow can be implemented by the simple scaling

σ(x) 7→ λ(2−d)/2σ(x/λ). (41)

After the change of variables x′ = x/λ, one verifies that the Hamiltonian

H∗
G(σ) =

1

2

∫

ddx
(

∇xσ(x)
)2
, (42)

corresponding to the critical Gaussian model, is invariant. The RG has H∗
G

as a fixed point. The Hamiltonian flow (41) corresponds in fact to the linear

approximation of the general RG near the Gaussian fixed point.



The linearized RG flow

The transformation (41) generates the linearized RG flow at the Gaussian

fixed point. Z2 symmetric local eigenvectors of the flow are monomials in σ

of the form

On,k(σ) =

∫

ddxOn,k(σ, x) with On,k(θσ) = θ2nOn,k(σ),

On,k(σ, x) being a product of powers of the field and its derivatives at point

x with 2k powers of ∂µ.

One then defines the dimension of x as -1 of ∂µ thus as +1 and the

(Gaussian) dimension of the field as [σ] = (d− 2)/2. The dimension [On,k]

of On,k is

[On,k] = −d+ n(d− 2) + 2k . (43)

Its RG behaviour under the transformation (41) is then given by a simple

dimensional analysis. It can be verified that On,k scales like λ−[On,k], and

the corresponding eigenvalue of L∗ thus is ℓn,k = −[On,k].



Discussion

ℓ1,0 = 2: the corresponding eigenvector
∫

ddxσ2(x) is relevant: it induces a

deviation from the critical temperature and thus a finite correlation length.

ℓ1,1 = 0: the corresponding perturbation
∫

ddx [∇xσ(x)]
2 is simply a redun-

dant eigenvector since it changes only the normalization of σ(x).

ℓ2,0 = 4 − d. For d > 4, the corresponding eigenvector
∫

ddxσ4(x) is irrel-

evant and one verifies that no other perturbation is relevant: the Gaussian

fixed point is stable on the critical surface (ξ = ∞).

At d = 4, the eigenvector becomes marginal and below dimension 4 it

becomes relevant. In dimension d = 4 − ε, ε > 0 small (a notion we define

later), it is the only relevant eigenvector and we will study the RG properties

of a Gaussian theory to which this unique term is added.

ℓ3,0 = 6− 2d: the corresponding operator
∫

ddxσ6(x) becomes marginal in

d = 3 dimension.

Above dimension 2 all other eigenoperators are irrelevant.



To summarize, for systems with a Z2 or, more generally, with an O(N)

symmetry, one concludes that

(i) the Gaussian fixed point is stable above space dimension 4;

(ii) by expanding beyond the linearized local flow, one shows that it is

marginally stable in dimension 4;

(iii) it is unstable below dimension 4.

Finally, in dimension 3, if by adjusting some parameter the most relevant

operator
∫

ddxσ4(x) is suppressed, the flow is governed by the marginal

operator
∫

ddxσ6(x) and this then corresponds to a tricritical behaviour.



Rescaling and Gaussian renormalization

We now assume that the initial Hamiltonian is very close to the Hamilto-

nian of the Gaussian fixed point. The RG flow is then initially very close

to the local linear flow. Therefore, we first perform the corresponding RG

transformation. We introduce a parameter Λ ≫ 1 and substitute

σ(x) 7→ Λ(2−d)/2σ(x/Λ).

In quantum field theory, this could be called a Gaussian renormalization.

After the change of variables x′ = x/Λ, a monomial On,k(σ) is multiplied by

Λ−[On,k], where −[On,k] is the associated Gaussian eigenvalue. The Gaus-

sian renormalization can now be inferred from the dimensions given by Λ:

coordinates x have dimension Λ−1, derivatives and momenta dimension Λ

and the field dimension Λ(d−2)/2. The Hamiltonian is dimensionless.

In the context of quantum field theory, since the regularization has then

the effect, in the Fourier representation, to suppress field contributions with

momenta |p| ≫ Λ in the perturbative expansion, Λ is also called the cut-off.



Statistical field theory: Perturbative expansion

The Gaussian model in the critical domain

After rescaling, the Hamiltonian of the Gaussian model takes the form

HG(σ) =
1

2

∫

ddx

[

(

∇xσ(x)
)2

+ α0Λ
2σ2(x) +

∑

k=2

αkΛ
2−2kσ(x)∇2k

x σ(x)

]

,

where α0 is the amplitude of the only relevant term. For α0 = 0, except

for the two-point function at coinciding points, one can take the Λ → ∞
limit. However, for α0 6= 0, to obtain a non-trivial universal large distance

behaviour, it is also necessary to compensate the effect of the RG flow by

choosing α0 infinitesimal, that is, by taking the Λ → ∞ limit at r = α0Λ
2

fixed (a Gaussian mass renormalization in quantum field theory language).

This defines the critical domain.



The weakly perturbed or quasi-Gaussian model

To allow for spontaneous Z2 symmetry breaking and, thus, to be able to

describe physics below Tc, terms have necessarily to be added to the Gaus-

sian Hamiltonian to generate a double-well potential for constant fields. The

minimal addition, and the leading term near the Gaussian fixed point from

the RG viewpoint, is

HG 7→ H(σ) = HG(σ) +
g

4!
Λ4−d

∫

ddxσ4(x), g ≥ 0 .

The σ4 term generates a shift of the critical temperature. To recover a

critical theory (T = Tc), it is necessary to adjust the coefficient of the σ2

term: α0 = (α0)c(g), a mass renormalization in the quantum field theory

terminology, and this defines the critical Hamiltonian Hc.



Dimensions d > 4

For d > 4, the σ4 term, as we have shown, is an irrelevant perturbation,

as the power of Λ4−d confirms, which does not invalidate the universal

predictions of the Gaussian model. Leading corrections to the Gaussian

model are obtained by expanding in powers of the coefficient g of the σ4

term.

In terms of u = gΛ4−d, the partition function, for example, is given by

Z =
∞
∑

k=0

(−u)k

(4!)kk!

〈

(
∫

ddxσ4(x)

)k
〉

G

.

The Gaussian expectations values 〈•〉G can then be evaluated in terms of

the Gaussian two-point function with the help of Wick’s theorem (Feynman

graph expansion).



Dimensions d < 4

By contrast, for any d < 4, the σ4 contribution is relevant: the Gaussian

fixed point is unstable and no longer governs the large distance behaviour.

This reflects in the behaviour of the perturbative expansion of the critical

theory (T = Tc) in powers of u: it contains so-called infra-red, that is, long

distance, or zero momentum in the Fourier representation, divergences.

Renormalization group in dimension d = 4− ε

For d < 4 fixed, the determination of the large distance behaviour of correla-

tion functions requires the construction of a general renormalization group:

this leads to functional equations (Wegner, Wilson) that we do not describe

here, but which, in general, unfortunately cannot be solved analytically.

However, a trick has been discovered to extend the definition of all terms

of the perturbative expansion to arbitrary complex values of the dimension

d in the form of meromorphic functions.



This allows s allows studying the neighbourhood of dimension 4, replacing,

in dimension d = 4−ε and in the framework of a double series expansion in

g and ε, the general renormalization group by a much simpler asymptotic

form, valid when a non-trivial fixed point is close to the Gaussian fixed

point, and studying the model analytically. (Though a numerical method

has been developed, based on the field theory RG in the form of Callan–

Symanzik equations, that circumvents the problem of the ε-expansion but

requires the additional, non-perturbative, assumption that the hierarchy of

eigenoperators has not changed.)



Dimensional continuation and regularization

Dimensional continuation. To define dimensional continuation, one intro-

duces the Fourier representation of the two-point function (or propagator)

∆(x), corresponding to the Hamiltonian of the Gaussian model,

∆(x) ≡ 〈σ(x)σ(0)〉G =
1

(2π)d

∫

ddp e−ipx∆̃(p).

A representation of ∆̃(p) useful for dimensional continuation then is the

Laplace representation (here written for the critical propagator)

∆̃(p) =

∫ ∞

0

ds ρ(sΛ2)e−sp2

, (44)

where ρ(s) → 1 when s → ∞. Moreover, to reduce the field integration to

continuous fields and, thus, to render the perturbative expansion finite, one

needs for s → 0 at least ρ(s) = O(sq) with q > (d− 2)/2.



If, in addition, one wants the expectation values of all local polynomials

to be defined, one must impose to ρ(s) to converge to zero faster than any

power for s → 0.

A contribution to perturbation theory (represented graphically by a Feyn-

man diagram) takes, in Fourier representation, the form of a product of

propagators integrated over a subset of momenta. With the Laplace rep-

resentation, all momentum integrations become Gaussian and can be per-

formed, resulting in explicit analytic meromorphic functions of the dimen-

sion parameter d. This can be illustrated by two simple but useful examples.



Ωd Bd

Fig. 4 Two one-loop diagrams.

The contribution of order g to the two-point function (Fig. 4) is propor-

tional to

Ωd =
1

(2π)d

∫

ddk ∆̃(k) =
1

(2π)d

∫

ddk

∫ ∞

0

ds ρ(sΛ2)e−sk2

=
1

(4π)d/2

∫ ∞

0

ds s−d/2ρ(sΛ2),

which, in the latter form, is holomorphic for 2 < Re d < 2(1 + q).



In the same way, the contribution of order g2 to the four-point function

(Fig. 4), is proportional to

Bd(p) =
1

(2π)d

∫

ddk ∆̃(k)∆̃(p− k)

=
1

(2π)d

∫

ddk

∫ ∞

0

ds1 ds2 ρ(s1Λ
2)ρ(s2Λ

2)e−s1k
2−s2(p−k)2

=
1

(4π)d/2

∫ ∞

0

ds1 ds2
(s1 + s2)d/2

ρ(s1Λ
2)ρ(s2Λ

2) e−p2s1s2/(s1+s2),

which, in the latter form, is holomorphic for 2 < Re d < 4(1 + q).

For the theory of critical phenomena, dimensional continuation is suf-

ficient since it allows exploring the neighbourhood of dimension four, de-

termining fixed points and calculating universal quantities as ε = (4 − d)-

expansions.



Dimensional regularization

However, for practical calculations, but then restricted to the leading large

distance behaviour, an additional step is extremely useful. It can be veri-

fied that if one decreases Re d enough, so that by naive power counting all

momentum integrals are convergent, one can, after explicit dimensional con-

tinuation, take the infinite Λ limit. The resulting perturbative contributions

become meromorphic functions with poles at dimensions at which large mo-

mentum, and low momentum in the critical theory, divergences appear. This

method of regularizing large momentum divergences is called dimensional

regularization and is extensively used in quantum field theory. In the theory

of critical phenomena, it has also been used to calculate universal quantities

like critical exponents, as ε-expansions. For example,

Bd(p) = − 2πΓ(d/2)

(4π)d/2 sin(πd/2)Γ(d− 1)
pd−4 =

1

8π2ε
(1− ε ln p) +O(ε).



Perturbative renormalization group: The critical theory

The perturbative renormalization group, as it has been developed in the

framework of the perturbative expansion of quantum field theory, relies on

the so-called renormalization theory. For the σ4 field theory it has been

first formulated in space dimension d = 4. For critical phenomena, a minor

extension is required that involves an additional expansion in powers of

ε = 4− d, after dimensional continuation.

We first consider the critical theory (T = Tc) corresponding to the Hamil-

tonian Hc(σ).

To formulate the renormalization theorem, one introduces a momentum

scale µ ≪ Λ, called the renormalization scale, and a parameter gr character-

izing the effective σ4 coefficient at scale µ, called the renormalized coupling

constant.



The renormalization theorem

One can find two dimensionless functions Z(Λ/µ, g) and Zg(Λ/µ, g) that

satisfy (g and Λ/µ are the only two dimensionless combinations)

Λ4−dg = µ4−dZg(Λ/µ, g)gr = µ4−dgr +O(g2), Z(Λ/µ, g) = 1 +O(g),

calculable order by order in a double series expansion in powers of g and ε,

such that all connected correlations functions

W̃ (n)
r (pi; gr, µ,Λ) = Z−n/2(g,Λ/µ)W̃ (n)(pi; g,Λ),

called renormalized functions, have, order by order in gr (and ε), finite limits

W̃
(n)
r (pi; gr, µ) when Λ → ∞ at pi, µ, gr fixed.

The renormalization constant Z1/2(Λ/µ, g) is the ratio between the full

field renormalization in presence of the σ4 interaction and the Gaussian field

renormalization Λ(d−2)/2.



Universality: a first essential step

There is some arbitrariness in the choice of the renormalization constants

Z and Zg since they can be multiplied by arbitrary functions of gr. The

renormalization constants can be completely determined by imposing two

renormalization conditions to the renormalized correlation functions, which

are then independent of the specific form of the short distance regularization.

This leads to a first very important result: since initial and renormalized

correlation functions are proportional, they have the same large distance

behaviour. This behaviour is thus to a large extent universal since it can

depend at most on only one parameter, the σ4 coefficient g.

Perturbative limit

In addition to the limit W̃
(n)
r (pi; gr, µ), one defines asymptotic functions

W̃
(n)
as. (pi; g,Λ) and Zas.(g,Λ/µ) by expanding the perturbative contributions

to the functions W̃ (n)(pi; g,Λ) and Z(g,Λ/µ), respectively, for Λ → ∞ and

keeping, order by order in g and ε, only the terms that do not go to zero.



Critical RG equations

From the relation between initial and renormalized functions and the exis-

tence of a limit Λ → ∞, a new equation follows, obtained by differentiating

the equation with respect to Λ at µ, gr fixed:

Λ
∂

∂Λ

∣

∣

∣

∣

gr,µ fixed

Z−n/2(g,Λ/µ)W̃ (n)(pi; g,Λ) = Λ
∂

∂Λ

∣

∣

∣

∣

gr,µ fixed

W̃ (n)
r (pi; gr, µ,Λ) → 0 .

Then, introducing the asymptotic functions,

Λ
∂

∂Λ

∣

∣

∣

∣

gr,µ fixed

Z−n/2
as. (g,Λ/µ)W̃ (n)

as. (pi; g,Λ) = 0 .

Using the chain rule, one infers

[

Λ
∂

∂Λ
+ β(g,Λ/µ)

∂

∂g
+

n

2
η(g,Λ/µ)

]

W̃ (n)
as. (pi; g,Λ) = 0 .



The functions β and η are defined by

β(g,Λ/µ) = Λ
∂

∂Λ

∣

∣

∣

∣

gr,µ

g , η(g,Λ/µ) = −Λ
∂

∂Λ

∣

∣

∣

∣

gr,µ

lnZas.(g,Λ/µ).

Since the functions W̃
(n)
as. do not depend on µ, the functions β and η can-

not depend on Λ/µ, and one finally obtains the RG equations (Zinn-Justin

1973):
(

Λ
∂

∂Λ
+ β(g)

∂

∂g
+

n

2
η(g)

)

W̃ (n)
as. (pi; g,Λ) = 0 . (45)

From the relation between g and gr, one immediately infers that β(g) =

−εg +O(g2).



RG equations in the critical domain above Tc

Correlation functions also exhibit universal properties near Tc when the

correlation length ξ is large in the microscopic scale, here, ξΛ ≫ 1. To

describe universal properties in the critical domain above Tc, one adds to

the critical Hamiltonian the σ2 relevant term:

Hτ (σ) = Hc(σ) +
τ

2

∫

ddxσ2(x),

where τ ∝ T−Tc ≪ Λ2 characterizes the deviation from the critical temper-

ature. The extended renormalization theorem involves a new renormaliza-

tion factor Z2(Λ/µ, g), ratio between the full renormalization of
∫

ddxσ2(x)

and the Gaussian renormalization. One then derives a more general RGE

of the form (Zinn-Justin 1973)
[

Λ
∂

∂Λ
+ β(g)

∂

∂g
+

n

2
η(g)− η2(g)τ

∂

∂τ

]

W̃ (n)
as. (pi; τ, g,Λ) = 0 ,

where a new RG function η2(g), related to Z2(Λ/µ, g), appears.



These equations can be further generalized to deal with an external field (a

magnetic field for magnetic systems) and the corresponding induced field

expectation value (magnetization for magnetic systems).

Renormalized RG equations

For d = 4− ε, if one is only interested in the leading scaling behaviour (and

the first correction), it is technically simpler to use dimensional regular-

ization and the renormalized theory in the so-called minimal (or modified

minimal) subtraction scheme. The relation between initial and renormalized

correlation functions is asymptotically symmetric. One thus derives also (for

the critical theory)
(

µ
∂

∂µ
+ β̃(gr)

∂

∂gr
+

n

2
η̃(gr)

)

W̃ (n)
r (pi, gr, µ) = 0

with the definitions

β̃(gr) = µ
∂

∂µ

∣

∣

∣

∣

g

gr , η̃(gr) = µ
∂

∂µ

∣

∣

∣

∣

g

lnZ(gr, ε) .



In this scheme, the renormalization constants are obtained by continuation

to low dimensions where the infinite Λ limit, at gr fixed, can be taken. For

example,

lim
Λ→∞

Z(Λ/µ, g)|gr fixed = Z(gr, ε).

Then, order by order in powers of gr, they have a Laurent expansion in

powers of ε. In the minimal subtraction scheme, the freedom in the choice

of renormalization constants is used to reduce the Laurent expansion to the

singular terms. For example, Z(gr, ε) takes the form

Z(gr, ε) = 1 +
∞
∑

n=1

σn(gr)

εn
with σn(gr) = O(gn+1

r ).

A remarkable consequence is that the RG functions η̃(gr), and η̃2(gr) when

a σ2 term is added, become independent of ε and β̃(gr) has the simple

dependence β̃(gr) = −εgr+β̃2(gr), where β̃2(gr) = O(g2r ) is also independent

of ε.



Solution of the RG equations: The epsilon-expansion

RG equations can be solved by the method of characteristics. In the simplest

example of the critical theory, one introduces a scale parameter λ and two

functions of g(λ) and ζ(λ) defined by

λ
d

dλ
g(λ) = −β

(

g(λ)
)

, g(1) = g , λ
d

dλ
ln ζ(λ) = −η

(

g(λ)
)

, ζ(1) = 1 .

The function g(λ) is the effective amplitude of the σ4 term at the scale λ.

One verifies that the differential RG equation then implies

λ
d

dλ

[

ζn/2(λ)W̃ (n)
as.

(

pi; g(λ),Λ/λ
)

]

= 0 ,

from which one infers (Λ 7→ λΛ)

W̃ (n)
as.

(

pi; g, λΛ
)

= ζn/2(λ)W̃ (n)
as.

(

pi; g(λ),Λ
)

.



From its definition, one verifies that W̃
(n)
as. has dimension (d− (d+ 2)n/2).

Therefore,

W̃ (n)
as.

(

pi/λ; g,Λ
)

= λ(d+2)n/2−dW̃ (n)
as.

(

pi; g, λΛ
)

= λ(d+2)n/2−dζn/2(λ)W̃ (n)
as.

(

pi; g(λ),Λ
)

.

These equations show that the general Hamiltonian flow reduces here to the

flow of g(λ) and, thus, the zeros of the function β(g) determine the fixed

points that govern the large distance behaviour.

Since

β(g) = −εg +O(g2),

when λ → ∞, if g > 0 is initially very small, g(λ) moves away from the

unstable Gaussian fixed point, in agreement with the general RG analysis

of the Gaussian fixed point.



If one assumes the existence of another zero g∗ > 0 with then β′(g∗) > 0,

g(λ) will converge toward g∗. If η(g∗) ≡ η is finite, one finds the universal

behaviour

W̃ (n)
as.

(

pi/λ; g,Λ
)

∝
λ→∞

λ(d+2−η)n/2−dW̃ (n)
as.

(

pi; g
∗,Λ

)

.

For the connected correlation functions in position space, this result trans-

lates into

W (n)
as.

(

λxi; g,Λ
)

∝
λ→∞

λ−n(d−2+η)/2W (n)
as.

(

xi; g
∗,Λ

)

,

for all xi distinct.

The exponent dσ = (d− 2+ η)/2 is the dimension of the field σ, from the

point of view of large distance properties.



Explicit calculations: the RG functions at one-loop

The inverse or vertex two-point function. At one-loop order,

Γ̃(2)(p) = p2 + r + 1
2gΩd +O(g2),

where Ωd is a constant given by the first diagram of Fig. 4. The critical

theory is defined by Γ̃(2)(0) = 0 and this determines the critical value of the

parameter r at order g:

r = rc(g) ≡ − 1
2gΩd +O(g2) ⇒ Γ̃(2)(p) = p2 +O(g2).

Since β is of order g and Γ̃(2) satisfies the RG equation

(

Λ
∂

∂Λ
+ β(g)

∂

∂g
− η(g)

)

Γ̃(2)(p; g,Λ) = 0 ⇒ η(g) = O(g2) .



The four-point vertex (or 1PI) function. At one-loop order,

Γ̃(4)(p1, p2, p3, p4) = Λεg − 1
2g

2Λ2ε [Bd(p1 + p2) +Bd(p1 + p3)]

+Bd(p1 + p4) +O(g3),

where Bd is the second diagram of Fig. 4:

Bd(p) =
1

(2π)d

∫

ddq ∆̃(q)∆̃(p− q) ∼
Λ→∞

1

(2π)d

∫

1<|q|<Λ

ddq

q4

∼
Λ→∞

1

8π2
[ln Λ +O(1)] +O(ε).

Thus, Γ̃(4) = g + gε ln Λ− 3g2

16π2
ln Λ +O(g2)× 1 +O(g3, g2ε).

The four-point vertex satisfies

(

Λ
∂

∂Λ
+ β(g)

∂

∂g
− 2η(g)

)

Γ̃(4)(pi; g,Λ) = 0 ⇒ β = −εg +
3

16π2
g2 + · · · .



The RG β-function and the IR fixed point. Using the perturbative calcu-

lation of the two- and four-point functions at one-loop order, one has thus

derived

β(g) = −εg +
3

16π2
g2 +O(g3, εg2).

In the sense of an ε-expansion, β(g) has a zero g∗ with a positive slope

(Wilson–Fisher 1972),

g∗ =
16π2ε

3
+O(ε2), ω = β′(g∗) = ε+O(ε2),

which governs the large momentum behaviour of correlation functions. More-

over, the exponent ω governs the leading correction to the critical behaviour.

Inserting the expansion of g∗(ε) in the perturbative expansions of other

RG functions, one infers the ε-expansion of other critical exponents or uni-

versal functions.



β(g)

g∗ g

Fig. 5 The RG β-function and RG flow in the (σ2)2 field theory for d < 4.



The critical domain. Calculating with a small deviation from criticality,

r = rc + τ , one finds

Γ̃(2)(p = 0) = τ +
gΛε

2(2π)d

∫

ddk
[

∆̃(k, τ )− ∆̃(k, 0)
]

+O(g2).

Thus,

∂

∂τ
Γ̃(2)(p = 0) = 1− gΛε

2(2π)d

∫

ddk ∆̃2(k, τ ) +O(g2)

= 1− g

16π2
[ln(Λ/

√
τ ) +O(1)] +O(g2, gε).

Using an RG equation in the critical domain, which at leading order reduces

to
[

Λ
∂

∂Λ
− η2(g)τ

∂

∂τ
− η2(g)

]

∂

∂τ
Γ̃(2)(p = 0) = O(g2, gε) ,

we conclude

η2(g) = − g

16π2
+O(g2).



Generalization: O(N) symmetric models

The results obtained for models with a Z2 reflection symmetry can easily

be generalized to N -vector models with O(N) orthogonal symmetry, but,

in contrast with the Gaussian model prediction, different values of N cor-

respond to different universality classes.

Their universal properties can then be derived from a field theory with an

N -component field σ(x) and an O(N) symmetric Hamiltonian of the form

H(σ) =

∫

ddx
[

1
2

(

∇xσ(x)
)2

+ 1
2rσ

2(x) +
g

4!

(

σ2(x)
)2
]

+ higher derivatives.

The RG β-function becomes

β(g) = −εg +
N + 8

48π2
g2 +O(g3, εg2) ⇒ g∗ =

48π2

N + 8
ε+O(ε2).

Moreover, one finds

η(g) = O(g2), η2(g) = − (N + 2)g

48π2
+O(g2).



Finally, correlation functions of the O(N) model can be evaluated in the

large N limit explicitly and the general predictions of the ε-expansion can

then be verified in this limit for all dimensions.

Further generalizations involve theories withN -component fields but with

symmetry groups subgroup of O(N), such that only one quadratic invariant

but several independent quartic σ4 terms are allowed. The structure of fixed

points may then be more complicate as the discussion in a later section

illustrates.



Epsilon-expansion: A few general results

First, from the mere existence of a fixed point and of the corresponding ε-

expansion, universal properties of an important class of critical phenomena

can be proved to all orders in ε: this includes relations between critical expo-

nents (only two are independent), scaling behaviour of correlation functions

or of the equation of state.

The scaling equation of state

The scaling properties of the equation of state of magnetic systems, that is,

the relation between applied magnetic field H, magnetization M and tem-

perature T , provide an example of the general results that can be obtained.

In the relevant limit |H| ≪ 1, |T −Tc| ≪ 1, using RG arguments, one proves

Widom’s conjectured scaling form

H = Mδf
(

(T − Tc)/M
1/β

)

,

where f(z) is a universal function (up to z and f normalizations).



Moreover, the exponents satisfy the relations (η = η(g∗))

δ =
d+ 2− η

d− 2 + η
, β = 1

2ν(d− 2 + η) = νdσ ,

where ν, the correlation length exponent, given by ν = 1/
(

η2(g
∗) + 2

)

,

characterizes the divergence ξ of the correlation length at Tc:

ξ ∝ |T − Tc|−ν .

Other relations can be derived, involving the magnetic susceptibility expo-

nent γ characterizing the divergence of the two-point correlation function

at zero momentum at Tc, or the exponent α characterizing the behaviour

of the specific heat:

γ = ν(2− η), α = 2− νd .

Note that the relations involving the dimension d explicitly are not valid for

the Gaussian fixed point.



Critical exponents as ε-expansions

Universal quantities can be calculated as ε-expansions. As an illustration,

we give here two terms of the expansion of the exponents η, γ and ω for

the O(N) symmetric (σ2)2 theory, although the RG functions of the field

theory are known to five-loop order and, thus, critical exponents are known

up to order ε5.

In terms of the variable v = Ndg where Nd = 2/(4π)d/2Γ(d/2) is the

usual loop factor, the RG functions β(v) and η2(v) at two-loop order, η(v)

at three-loop order, are

β(v) = −εv +
(N + 8)

6
v2 − (3N + 14)

12
v3 +O(v4),

η(v) =
(N + 2)

72
v2

(

1− (N + 8)

24
v

)

+O(v4),

η2(v) = − (N + 2)

6
v

(

1− 5

12
v

)

+O(v3).



The fixed point value solution of β(v∗) = 0 is then

v∗(ε) =
6ε

(N + 8)

[

1 +
3(3N + 14)

(N + 8)2
ε

]

+O(ε3).

The values of the critical exponents

η = η(v∗), γ =
2− η

2 + η2(v∗)
, ω = β′(v∗),

follow

η =
ε2(N + 2)

2(N + 8)2

[

1 +
(−N2 + 56N + 272)

4(N + 8)2
ε

]

+O(ε4),

γ = 1 +
(N + 2)

2(N + 8)
ε+

(N + 2)

4(N + 8)3
(

N2 + 22N + 52
)

ε2 +O(ε3),

ω = ε− 3(3N + 14)

(N + 8)2
ε2 +O(ε3).



Though this may not be obvious on these few terms, the ε-expansion is

divergent for any ε > 0, as estimates of the large order behaviour of pertur-

bation series based on instanton calculus have demonstrated. For example,

adding simply the known successive terms for ε = 1 and N = 1 yields

γ = 1.000 . . . , 1.1666 . . . , 1.2438 . . . , 1.1948 . . . , 1.3384 . . . , 0.8918 . . . ,

the best estimate being provided by summing only up to order ε2 since the

best field theory estimate is γ = 1.2396± 0.0013.

Divergent series do not define a unique analytic function in general. Ex-

tracting more precise estimates from the known terms of the series thus

requires an assumption concerning its Borel summability and a practical

summation method.



Numerical estimates of exponents from a summation of the

ε-expansion

We display below (Table 1) the results for the critical exponents γ, ν, η, β and

the correction exponent ω of the O(N) model obtained from a Borel sum-

mation of the ε-expansion (Guida and Zinn-Justin 1998), assuming Borel

summability. Due to scaling relations like γ = ν(2 − η), γ + 2β = νd, only

two among the first four are independent, but the series have been summed

independently to check consistency and precision.

We recall that N = 0 corresponds to statistical properties of polymers

(mathematically the self-avoiding random walk), N = 1 to the Ising uni-

versality class, which includes liquid-vapour, binary mixtures or anisotropic

magnet phase transitions. N = 2 describes the superfluid Helium transition,

while N = 3 corresponds to isotropic ferromagnets.



Table 1

Critical exponents of the O(N) model for d = 3, obtained from the ε-expansion.

N 0 1 2 3

γ 1.1571± 0.0030 1.2355± 0.0050 1.3110± 0.0070 1.3820± 0.0090

ν 0.5878± 0.0011 0.6290± 0.0025 0.6680± 0.0035 0.7045± 0.0055

η 0.0315± 0.0035 0.0360± 0.0050 0.0380± 0.0050 0.0375± 0.0045

β 0.3032± 0.0014 0.3265± 0.0015 0.3465± 0.0035 0.3655± 0.0035

ω 0.828± 0.023 0.814± 0.018 0.802± 0.018 0.794± 0.018



As a comparison, we also display (Table 2) the best available field theory

results obtained from a Borel summation of d = 3 renormalized perturba-

tive series (Le Guillou and Zinn-Justin 1980, Guida and Zinn-Justin 1998)

based on the Callan–Symanzik (CS) formalism, following an initial sugges-

tion of Parisi (Borel summability has been proven). In the CS formalism,

the renormalized vertex functions are defined by the conditions

Γ̃(2)
r (p) = m2 + p2 +O(p4),

Γ̃(4)
r (0, 0, 0, 0) = m4−dgr .

The IR stable zero g∗r of the β-function of the renormalized theory then

corresponds to the limit gΛ4−d → ∞ in the initial theory. Beyond the ε-

expansion, at d fixed, the zero has to be determined numerically.



Table 2

Critical exponents of the O(N) model for d = 3, obtained from the (σ2)23 field theory.

N 0 1 2 3

g∗r 26.63± 0.11 23.64± 0.07 21.16± 0.05 19.06± 0.05
γ 1.1596± 0.0020 1.2396± 0.0013 1.3169± 0.0020 1.3895± 0.0050

ν 0.5882± 0.0011 0.6304± 0.0013 0.6703± 0.0015 0.7073± 0.0035

η 0.0284± 0.0025 0.0335± 0.0025 0.0354± 0.0025 0.0355± 0.0025

β 0.3024± 0.0008 0.3258± 0.0014 0.3470± 0.0016 0.3662± 0.0025

ω 0.812± 0.016 0.799± 0.011 0.789± 0.011 0.782± 0.0013



Exercises

Critical phenomena in the large N limit. One considers a model involving

an N -component field φ and an O(N) symmetric Hamiltonian of the form

S(φ, λ) =
∫

ddx

{

1
2

[

(∇xφ(x)]
2 + λ(x)φ2(x)

]

− 3N

2g
(λ(x)− r)

2

}

, (46)

where λ(x) is an auxiliary scalar field and the integration runs along the

imaginary axis, r and g > 0 are parameters.

Eventually, the action has to be regularized by introducing a momentum

cut-off.

Exercise 5

λ-integration. Eliminate the auxiliary field λ, by performing explicitly the

Gaussian integration over the λ, and determine the corresponding φ-field

action.



Exercise 6

φ-integration. Alternatively, integrate over the N -component field φ and

show that the corresponding effective action has the form (using the general

identity ln det = tr ln)

S(λ) = N

{

1
2 tr ln

[

−∇2
x + λ(x)

]

− 3

2g

∫

ddx (λ(x)− r)2
}

.

Exercise 7

The steepest descent method for large N . In the latter form, it is clear that,

for N → ∞, the partition function can be calculated by the steepest de-

scent method. It can be justified that the saddle value of the field λ(x) is a

constant λ̄ = 〈λ〉 = m2, where m from the action (46) is the φ-field mass.

To determine λ̄, one only needs the action density for constant field.



Justify the expression

S(λ̄)
N × volume

=
1

2(2π)d

∫

ddp ln(p2 + λ̄)− 3

2g
(λ̄− r)2.

Differentiate with respect to λ̄ to obtain the gap equation, which determines

the φ-field mass or, correspondingly, the correlation length ξ = 1/m. Note

that the momentum integral has to be regularized by replacing p2 by a

polynomial Λ2K(p2/Λ2) = p2 +O(p4).

Discuss the solution as a function of the parameter r and the space di-

mension d. First, identify the transition temperature rc. Verify that the

solutions of the saddle point equations describe only the domain T ≥ Tc.

Exercise 8

Partial integration. Repeat the exercise by integrating only over (N − 1)

components of the field φ. First verify that indeed above Tc, λ̄ = m2 where

m is the physical mass of the N field components.



Below Tc, the remaining field component has a non-zero expectation value.

Derive the saddle point equations obtained now by varying both λ̄ and

the expectation value of φ. Calculate the different φ two-point functions.

Discuss.


