
Taking into account translation invariance, one also defines the Fourier

transforms

(2π)dδ(d)

(
n∑

i=1

pi

)
W̃ (n)(p1, . . . , pn)

=

∫
ddx1 . . . d

dxn W
(n)(x1, . . . , xn) exp

(
i

n∑

j=1

xjpj

)
,

where, in analogy with quantum mechanics, the Fourier variables pi are

called momenta.



Thermodynamic potential. One also introduces a generalized thermody-

namic potential Γ(M), Legendre transform of W(H) (cf. classical Hamilto-

nian and Lagrangian):

W(H) + Γ(M) =

∫
ddxH(x)M(x), M(x) =

δW(H)

δH(x)
,

where M(x) is the local magnetization. Its expansion in powers of M ,

Γ(M) =
∑

n

1

n!

∫
ddx1 . . .d

dxn M(x1) . . .M(xn)Γ
(n)(x1, . . . , xn),

defines vertex functions Γ(n). In Fourier representation, the relations be-

tween connected and vertex functions are algebraic. In particular, since∫
ddx′Γ(2)(x, x′)W (2)(x′, x′′) = δ(d)(x− x′′).

one finds

Γ̃(2)(p)W̃ (2)(p) = 1 .



The Gaussian field theory

In the spirit of the central limit theorem of probabilities, one could expect

that phase transitions on large scales can be described by Gaussian or weakly

perturbed Gaussian measures, since they result from an averaging over many

degrees of freedom.

However, the argument assumes that the degrees of freedom are indepen-

dent.

This is plausible in the infinite volume limit when the correlation length

is finite and the initial microscopic degrees of freedom can be replaced by

effective degrees of freedom, local averages over regions of a linear size of

the order of the correlation length.

The argument no longer applies at the critical temperature because the

correlation length then diverges, and the problem requires a more detailed

analysis.



The Gaussian field theory. Let σ(x) be a field in d-dimensional continuum

space R
d, representing an average local spin, and H(x) an arbitrary local

magnetic field.

We consider the Gaussian field integral, or functional integral,

Z(H) =

∫
[dσ(x)] exp

[
−HG(σ) +

∫
ddxσ(x)H(x)

]
, (13)

where HG(σ) is the quadratic Hamiltonian

HG(σ) =
1

2

∫
ddx

[(
∇xσ(x)

)2
+ rσ2(x)

]
, r ≥ 0 . (14)

Comparing with the Gaussian lattice model, one verifies that r ∝ T−Tc and

one notes that the Gaussian model can describe only the high temperature

phase T ≥ Tc.

In the case of a Gaussian measure, all correlation functions can be ex-

pressed in terms of the two-point function with the help of Wick’s theorem.



In the framework of quantum field theories that describe the fundamental

interactions at microscopic scale, the Gaussian case corresponds to a free

field theory. The form (14), quadratic in the fields, is then called Euclidean

action, or action in imaginary time, and the parameter

m =
√
r

is the mass of the quantum particle associated to the field σ.

As in lattice models, when this seems necessary, we define the infinite vol-

ume or thermodynamic limit as the limit of a cube with periodic boundary

conditions.



Maximum of the integrand and two-point function

The calculation of a Gaussian field integral is a simple generalization of the

calculation of the Gaussian path integral. One first looks for a maximum of

the integrand and thus the minimum of

HG(σ,H) = HG(σ)−
∫

ddxσ(x)H(x). (15)

One sets

σ(x) = σc(x) + ε(x) (16)

and expands in ε. The field σc(x) at the minimum, is determined by the

condition that the term linear in ε vanishes:

−
∫

ddx
[
∇xσc(x) · ∇xε(x) +m2σc(x)ε(x)

]
+

∫
ddx ε(x)H(x) = 0 .

One integrates the term linear in∇xε by parts. Then, because the integrated

terms cancel due to periodic boundary conditions,∫
ddx∇xσc(x) · ∇xε(x) = −

∫
ddx ε(x)∇2

xσc(x).



One finds the equation

(−∇2
x +m2)σc(x) = H(x),

where ∇2
x is the Laplacian in d dimensions. The solution can be written as

σc(x) =

∫
ddx∆(x− y)H(y),

where ∆ satisfies (δ(d) is the Dirac distribution in d dimensions)

(−∇2
x +m2)∆(x) = δ(d)(x),

as one verifies by acting with −∇2
x +m2 on σc.



The equation can be solved by Fourier transformation. In the infinite volume

limit, one finds

∆(x) =

∫
ddk

(2π)d
e−ik·x

k2 +m2
,

as one verifies by acting with −∇2
x +m2 on ∆(x) since

∫
ddk e−ik·x = (2π)dδ(d)(x).

After an integration by parts, the Hamiltonian for σ = σc then becomes

HG(σc, H) =

∫
ddxσc(x)

[
− 1

2∇
2
x + 1

2m
2 −H(x)

]
σc(x)

= −1

2

∫
ddx ddy H(x)∆(x− y)H(y). (17)



Gaussian integration

One now performs the change of variables σ(x) 7→ ε(x) = σ(x)−σc(x). The

initial Hamiltonian becomes

HG(σ,H) = HG(σc, H) +HG(ε).

Thus,

Z(H) = e−HG(σc,H)

∫
[dε(x)] e−HG(ε) .

The remaining Gaussian integration over ε(x) yields a normalization,

Z(0) =

∫
[dε(x)] e−HG(ε),

independent of H, and that can be explicitly evaluated only by replacing

the continuum by a lattice.



The generating functional of connected correlation functions thus is

W(H) = lnZ(H) = W(0) +
1

2

∫
ddx ddy H(x)∆(x− y)H(y).

The two-point function is the only connected correlation function.

In a uniform field, the free energy density becomes

W (H) = (W(H)−W (0)) /volume

= 1
2H

2

∫
ddx∆(x) = 1

2H
2∆̃(0) = 1

2H
2/m2.

The equation of state, relation between magnetic field H, magnetization M

and temperature is given by

M =
∂W

∂H
=

H

r
∝ H

T − Tc
.

The magnetic susceptibility follows

χ =
∂M

∂H
=

1

r
∝ 1

T − Tc
.



In general, one defines an exponent γ that characterizes the divergence of

χ at Tc. Here γ = 1.

The thermodynamic potential density, Legendre transform of W (H) then

is

G(M) = 1
2m

2M2.

Differentiating W(H) twice with respect to H(x), one verifies that ∆(x−y)

is the Gaussian two-point function:

〈σ(x)σ(y)〉 ≡ W (2)(x, y) = ∆(x− y).

It has an Ornstein–Zernike or free field form.



Explicit calculation of the two-point function

First, at Tc,

W (2)(x) = ∆(x) =

∫
ddk

(2π)d
e−ik·x

k2
=

∫
ddk

(2π)d
e−ik·x

∫ ∞

0

dt e−tk2

.

Performing the Gaussian integral over k, one finds

∆(x) =
1

(4π)d/2

∫ ∞

0

dt

td/2
e−x2/4t .

After the change of variables u = x2/4t, the integration over u yields

∆(x) =
2d−2

(4π)d/2
Γ(d/2− 1)

1

xd−2
. (18)

At Tc, the two-point function is not defined for d = 2. For d > 2, , one finds

an algebraic decay of the two-point function at large distance.



In general one defines

W (2)(x) ∝
x→∞

1

xd−2+η
.

In the Gaussian model the exponent η, which cannot be negative, vanishes.

For the function 1/(k2 +m2) the strategy is the same. One then finds

∆(x) =
1

(4π)d/2

∫ ∞

0

dt

td/2
e−x2/4t−m2t =

2

(4π)d/2

(
2m

x

)d/2−1

K1−d/2(mx),

where Kν(z) is a Bessel function of third kind. For z → +∞, Kν(z) can be

evaluated by the steepest descent method. One infers

∆(x) ∼
x→∞

1

2m

(m

2π

)(d−1)/2 e−mx

x(d−1)/2
.

The correlation length, which diverges as ξ = 1/m ∝ (T −Tc)
−ν with expo-

nent ν = 1
2 , characterizes the exponential decay of the two-point function.



Class of fields contributing to the field integral. To get an idea of the class

of typical fields that contribute to the field integral, one can evaluate the

two-point function in the limit of coinciding points:

〈σ(x)σ(y)〉 ∼
|x−y|→0

∆(x− y,m = 0) =
2d−2

(4π)d/2
Γ(d/2− 1)

1

|x− y|d−2
.

One notices that the fields σ(x) contributing to the field integrals are so

singular that the expectation value of σ2(x) diverges for d > 1, and with

a rate that increases with the dimension of space d. This singularity of the

Gaussian measure is the source of new difficulties.

For d = 2, the short distance behaviour takes the form

〈σ(x)σ(y)〉 ∼
|x−y|→0

− 1

2π
ln(m|x− y|).



Quasi-Gaussian or classical approximation

Below the transition point, the Gaussian model is clearly no longer valid

since the quadratic form in the Hamiltonian is not positive and thus the

Gaussian integral is not defined.

However, even in the framework of the central limit theorem, the Gaussian

distribution is only asymptotic. The analysis of the Gaussian model shows

that below the transition point, corrections to the Gaussian distribution,

that is, terms of higher degree in the effective field distribution, even if

their amplitude is small, can no longer be neglected.

Quasi-Gaussian approximation. Since the field integral then is no longer

Gaussian, it cannot be calculated exactly. But since the Hamiltonian re-

mains formally analytic, the integral over the fields can be evaluated by the

steepest descent method.



Moreover, if one assumes that the fluctuations around the saddle point

vary slowly in H, one can neglect the contributions coming from integrat-

ing out the fluctuations around the saddle point and approximate the free

energy by value of the Hamiltonian at the saddle point, an approximation

which one can call quasi-Gaussian or classical.

Such an assumption implies, in particular, that the fields σ(x) are the

sum of an average value M(x) and a weakly correlated fluctuating part.

This assumption goes beyond an idea of central limit theorem in the sense

that the average value M(x) is no longer related only to the distribution in

each site but also results from the interactions.

One can show that the quasi-Gaussian approximation reproduces, at lead-

ing order, the universal results of the lattice model in infinite dimension.

However, unlike the model in infinite dimension, it allows also studying the

behaviour of correlation functions at the transition.



Effective model. To go beyond the Gaussian model, we thus consider a

more general one-site local distribution. In the continuum limit, this cor-

responds to adding to the Hamiltonian HG a local function of the form

∫
ddxB

(
σ(x)

)

where we choose a function B(σ) having the form of the thermodynamic

potential of the one-site model and thus convex. Moreover, with our general

assumptions, such a function is analytic and we parametrize its expansion

at σ = 0 in the form

B(σ) =
∑

p=1

b2p
2p!

σ2p , b2 > 0 . (19)

We also assume b4 > 0 since we want to study continuous transitions.



The generating function of correlation functions can then be written as

Z(H) =

∫
[dσ(x)] exp

[
−H(σ) +

∫
ddxH(x)σ(x)

]
, (20)

where the Hamiltonian H(σ) takes the form

H(σ) =

∫
ddx

[
1
2

(
∇xσ(x)

)2
+ 1

2rσ
2(x) +B

(
σ(x)

)]
. (21)



Steepest descent method. The maximum of the integrand in the integral

(20) is given by a solution of the saddle point equation

δH
δσ(x)

= H(x) (22)

and, at leading order,

W(H) = −H(σ) +

∫
ddxσ(x)H(x),

where σ is a function of H through (22).

Together, these equations show that W(H) is the Legendre transform

of H(σ). As a consequence, the thermodynamic potential Γ(M), Legendre

transform of W(H), is simply

Γ(M) = H(M). (23)



In the case of the models invariant under space translations that we study,

the magnetization in a uniform field is uniform. The thermodynamic poten-

tial density is then

G(M) = Ω−1Γ(M) = 1
2rM

2 +B(M). (24)

The equation of state follows:

H =
∂G
∂M

= rM + B′(M) = M(r + b2) +
1
6b4M

3 +O(M5). (25)

In zero field, the magnetization is solution of rM + B′(M) = 0. The mini-

mum of the thermodynamic potential corresponds to the symmetric solution

M = 0 for r > rc = −b2 and a non-vanishing value, the spontaneous mag-

netization

M ∼ ±
√
6(rc − r)/b4 (26)

for 0 < rc−r ≪ 1. If one defines in general M ∝ (Tc−T )β , one finds β = 1
2 .



Γ(M) T > Tc

T = Tc

T < Tc

T < Tc

M

Fig. 2 Thermodynamic potential: second order phase transition.



Quasi-Gaussian approximation: The two-point function

Divergence of the correlation length and continuous transition. A continuous

transition is characterized by the property

∂2G
(∂M)2

∣∣∣∣
M=0

= 0 (27)

and, thus, by the divergence of the magnetic susceptibility χ = ∂2W/(∂H)2

in zero field. Moreover,

∂W (H)

∂H
=

δW
δH(x)

∣∣∣∣
H(x)=H

.

The second derivative is, thus, related to the connected two-point function:

∂2W (H)

(∂H)2
=

∫
ddy

δ2W
δH(x)δH(y)

∣∣∣∣
H(x)=H

=

∫
ddyW (2)(x, y).



Translation invariance in a uniform field implies

W (2)(x, y) = W (2)(x− y).

Thus,
∂2W (H)

(∂H)2
=

∫
ddxW (2)(x).

We now introduce the Fourier transforms of the connected and vertex func-

tions

W̃ (2)(k) =

∫
ddx eik·x W (2)(x),

Γ̃(2)(k) =

∫
ddx eik·x Γ(2)(x).

Then,

∂2W (H)

(∂H)2
=

∫
ddxW (2)(x) = W̃ (2)(k = 0) = 1/Γ̃(2)(k = 0).



The integral
∫
ddxW (2)(x) diverges only if the correlation length diverges.

The condition of continuous transition thus implies the divergence of the

correlation length for vanishing magnetization.

Other universal properties

Two-point function at fixed magnetization. More generally, from Γ(M) =

H(M) one infers the relation between local magnetic field and magnetization

H(x) =
δΓ

δM(x)
= −∇2

xM(x) + rM(x) +B′
(
M(x)

)
. (28)

By differentiating again, one obtains the two-point vertex function at fixed

magnetization

Γ(2)(x− y) ≡ δ2Γ

δM(x)δM(x)

∣∣∣∣
M(x)=M

= [−∇2
x + r +B′′(M)]δ(d)(x− y).

Its Fourier transform is given by

Γ̃(2)(k) = k2 + r +B′′(M). (29)



The Fourier transform of the connected two-point function follows:

W̃ (2)(k) = 1/Γ̃(2)(k) =
(
k2 + r +B′′(M)

)−1
.

In zero field, above Tc, the magnetization vanishes and one recovers the

form of the Gaussian model

W̃ (2)(k) =
(
r − rc + k2

)−1
,

where rc = −b2. If the transition is second order, the expression remains

valid up to r = rc (T = Tc) where the correlation length diverges. In

particular, one recovers the Gaussian or classical values of the exponents

η = 0, ν = 1/2.

The correlation length above and below Tc. More generally, for |r − rc|,
|k|, M ≪ 1 (which also implies a weak magnetic field) one finds

W̃ (2)(k) ∼
(
r − rc +

1
2b4M

2 + k2
)−1

. (30)



The correlation function keeps an Ornstein–Zernike or free field form. The

correlation length for M 6= 0 follows:

ξ−2 = r − rc +
1
2b4M

2. (31)

In zero magnetic field, using below Tc the expression (26) of the spontaneous

magnetization, one finds

ξ−2
+ = r − rc for T > Tc , ξ−2

− = 2 (rc − r) for T < Tc . (32)

Introducing also quite generally a correlation length exponent ν′ for T →
Tc−, and defining the critical amplitudes f± for |T − Tc| → 0 by

ξ+ ∼ f+ (T − Tc)
−ν , ξ− ∼ f− (Tc − T )−ν′

,

one infers the quasi-Gaussian value of the exponent ν′ = 1
2 and the universal

amplitude ratio

f+ /f− =
√
2 .



Notice that sometimes the correlation length is defined in terms of the sec-

ond moment ξ21 of W (2)(x) which is proportional to ξ2, and thus has the

same universal properties

Γ̃(2)(k) =
[
W̃ (2)(k)

]−1

∼ Γ̃(2)(0)
(
1 + k2ξ21 +O(k4)

)
. (33)

Another universal amplitude. If for r = rc, H → 0, one sets

χ ∼ Cc/H2/3, ⇒ 3Cc = (6/b4)
1/3

and, in zero field,

M ∼ M0(r − rc)
1/2 ⇒ M2

0 = 12/b4 .

Then, the combination

Rχ = C+M2
0 (3C

c)−3 = 1 ,

is universal.



Quasi-Gaussian approximation and Landau’s theory

The universal results that we have obtained within the framework of the

quasi-Gaussian approximation also follow from Landau’s theory, which we

recall here. Landau’s theory is based on general assumptions concerning the

properties of systems with short range interactions, of which we have used

some to justify the quasi-Gaussian approximation.

We suppose that in zero field the physical system is invariant under space

translations. Landau’s theory then takes the form of several regularity con-

ditions of the thermodynamic potential as a function of temperature and

local magnetization (more generally of a local order parameter):

(i) The thermodynamic potential Γ(M), function of the local magnetiza-

tion M(x) (generated by an inhomogeneous magnetic field), which is also

the generating function of vertex functions, is expandable in powers of M

at M = 0.



(ii) Introducing the Fourier representation of the magnetization field,

M(x) =

∫
ddk eik·x M̃(k),

we expand the thermodynamic potential Γ(M) in powers of M̃(k):

Γ(M) =

∫
ddxn

1

n!

∫
ddk1 . . . d

dkn M̃(k1) . . . M̃(kn)

× (2π)dδ(d)
(∫

ddxiki

)
Γ̃(n)(k1, . . . ,kn),

where the Dirac δ(d) functions are the direct consequence of translation

invariance which implies that the sum of Fourier variables must vanish.

Then, the vertex functions Γ̃(n), that appear in this expansion, are regular

at ki = 0.

(iii) The coefficients of the expansion are regular functions of the temper-

ature for T near Tc, the temperature at which the coefficient of Γ̃(2)(k = 0)

vanishes.



Finally, the positivity of Γ̃(4)(0, 0, 0, 0) is a necessary condition for the

transition to be second order.

These conditions are motivated by some general assumptions: the effective

spins are microscopic averages of weakly coupled variables whose fluctua-

tions can be treated perturbatively. They rely also on a decoupling of the

various scales of physics, and leads to the conclusion that critical phenomena

can be described, at leading order, in terms of a finite number of effective

macroscopic variables, as in the mean field approximation.

These remarks render even more puzzling the empirical observation that

the universal results of the quasi-Gaussian or mean field approximations are

in quantitative disagreement (and sometimes even qualitative) with exper-

imental results and with results, exact or numerical, coming from lattice

models. An examination of the leading corrections to the Gaussian theory

indicates the origin of this difficulty.



Corrections to the quasi-Gaussian approximation

To describe the low temperature phase, it is necessary to go beyond the

Gaussian model. But the quasi-Gaussian approximation is justified only if

the steepest descent method is justified. Formally, this condition seems to

be satisfied if all the coefficients b2p of the expansion of B(σ), except the

coefficient b2 of the quadratic term, are in some sense small.

However, it is also necessary that the unavoidable corrections to the lead-

ing order result change only the coefficients of the expansion of the thermo-

dynamic potential, without affecting its regularity properties.

This can be verified by calculating the first correction to the second deriva-

tive of the thermodynamic potential density, G′′(0) = χ−1, in the disordered

phase above Tc (r > rc) and in zero field for r → rc.

The calculation involves two steps: first a determination of the value of r

for which G′′(0) vanishes, which yields a non-universal correction to rc and

thus Tc, then a calculation of the leading contribution to G′′(0) for r → rc.



Perturbative expansion and regularization

To describe physics in the ordered phase below Tc, one needs to perturbe

the quadratic Hamiltonian by adding higher power terms to the quadratic

potential. Near the transition, the expectation value of the field is small and

thus we can make a small field expansion:

H(σ) = HG(σ) +
1
2b2

∫
ddxσ2(x) +

b4
4!

∫
ddxσ4(x) + · · · .

Thermodynamic quantities can then be calculated by expanding in powers

of b4, b6 . . ..

However, the Gaussian two-point function generated by the Hamiltonian

HG leads to a first unphysical problem: for d > 1 too singular, in particular

nowhere continuous, fields contribute to the field integral in such a way that

correlation functions at coinciding points are not defined. For example,
〈
σ2(x)

〉
= W (2)(0, 0) =

1

(2π)d

∫
ddp

p2 + r
, diverges for large momenta (re-

flecting a short distance singularity) in all space dimensions d ≥ 2.



Regularization. The problem of ‘UV’ divergences is absent in lattice mod-

els due to the lattice structure, as it is absent as well for other statistical

systems due to their intrinsic short distance structure. It appears here be-

cause we insist on making no reference to a microscopic scale.

Therefore, it is necessary to introduce an artificial short distance struc-

ture in the continuum field integral by modifying the Gaussian measure

to restrict the field integration to more regular fields, continuous to de-

fine expectation values of powers of the field at the same point, satisfying

differentiability conditions to define expectation values of the field and its

derivatives taken at the same point. This procedure is called regularization.

After Fourier transformation, this modification has the effect of decreasing

the contribution of field components corresponding to momenta |p| ≫ 1.

This impossibility to construct a model describing the long distance prop-

erties without reference to the short distance structure, is a first evidence

of non scale-decoupling.



Regularization can be achieved by adding toHG(σ) enough terms with more

derivatives (this preserves locality):

HG(σ) =
1

2

∫
ddx

[
∇xσ(x)

)2
+ rσ2(x)

]
+
1

2

ℓmax∑

ℓ=2

αℓ

∫
ddxσ(x)

(
−∇2

x

)ℓ
σ(x).

For example, simple continuity requires 2ℓmax > d.

The two-point function is then given by

∆(x) =

∫
ddp

(2π)d
e−ipx ∆̃(p)

with (taking into account the leading term in the expansion of B(σ))

∆̃−1(p) = r + b2 +K(p2) and K(p2) = p2 + p4
ℓmax∑

ℓ=2

αℓp
2ℓ−4.

Renormalization group arguments will then be required to prove regulariza-

tion independence in non-Gaussian theories.



Calculation of the leading correction

In the disordered phase r > rc, in zero field, the magnetization M = 〈σ〉
vanishes and the leading saddle point is simply σ = 0. The first correction to

the steepest descent method then is also the first correction to the Gaussian

model.

The corrections to the Gaussian result are obtained by expanding ex-

pression (20), separating in the Hamiltonian H(σ) a quadratic part from a

remainder called perturbation:

H(σ) = HG(σ) +

∫
ddxB

(
σ(x)

)
= H0(σ) +

∫
ddx

(
B(σ(x))− 1

2b2σ
2(x)

)

with

H0(σ) = HG(σ) +
1
2b2

∫
ddxσ2(x) .

The second derivative of the thermodynamic potential is also the inverse

of the Fourier transform of the connected two-point function, at vanishing

argument.



The first correction to the Gaussian form of the two-point function is then

given by the contribution of order b4 (Fig. 3) generated by the quartic term

in B(σ):

B(σ)− 1
2b2σ

2 =
1

4!
b4σ

4 +O(σ6).

.

Fig. 3 One-loop contribution to the two-point function.

Moreover, since the magnetization vanishes, the connected two-point func-

tion is equal to the complete two-point function. One obtains

W (2)(x−y) = 〈σ(x)σ(y)〉 = ∆(x−y)−b4
2

∫
ddz∆(x−z)∆(0)∆(z−y)+O(b24).



The inverse of the connected two-point function (in the sense of kernels) is

the vertex function Γ(2)(x− y). Here, one finds

Γ(2)(x− y) =
[
K(−∇2

x) + r + b2 +
1
2b4∆(0)

]
δ(d)(x− y) +O(b24).

In the Fourier representation,

∆(x = 0) =

∫
ddp

(2π)d
∆̃(p)

with

∆̃−1(p) = r + b2 +K(p2).

The Fourier transform of Γ(2)(x− y) is then given by

Γ̃(2)(k) = K(k2) + r + b2 +
1
2b4

∫
ddp

(2π)d
∆̃(p) +O(b24) . (34)



We recall that the coefficient of M2 in the expansion of the thermodynamic

potential density G(M), which is also the inverse of the magnetic suscepti-

bility in zero field, is given by

χ−1(M = 0) =
∂2G

(∂M)2

∣∣∣∣
M=0

=

∫
ddxΓ(2)(x− y) = Γ̃(2)(k = 0).

The critical behaviour

We infer the expansion

G′′(0) = r + b2 +
1
2b4

∫
ddp

(2π)d
∆̃(p) +O(b24). (35)

The criticality condition is now

G′′(0) = r + b2 +
1
2b4

∫
ddp

(2π)d
∆̃(p) +O(b24) = 0 . (36)



The first effect of the correction is to modify the critical value rc and, thus,

the critical temperature. In the term of order b4, one can replace rc by −b2,

its leading order value, and the equation for rc becomes

0 = rc + b2 +
b4

2(2π)d

∫
ddp

K(p2)
+O(b24),

Since K(p2) ∼ p2 for p → 0, one verifies again the pathological character

of the model in dimension d = 2 where the integral diverges at p = 0:

continuous phase transitions in dimension 2 cannot be described by the

Gaussian model and, thus, a perturbed Gaussian model.

We then differentiate G′′(0) with respect to r. At this order we can sub-

stitute b2 = −rc. Thus,

∂G′′(0)

∂r
= 1− b4

2(2π)d

∫
ddp

[K(p2) + r − rc)]2
+O(b24) . (37)



If the integral has a finite limit when r → rc, the derivative exists at r = rc

and the correction to G′′(0), beyond the Gaussian contribution, remains

proportional to r − rc ∝ T − Tc:

G′′(0) ∼
r→rc

(r − rc)
∂G′′(0)

∂r

∣∣∣∣
r=rc

.

Then, G′′(0) vanishes linearly at the critical point like T−Tc, as in the quasi-

Gaussian theory, and only the non-universal coefficient is weakly modified.

One finds

∂G′′(0)

∂r

∣∣∣∣
r=rc

= 1− b4
2(2π)d

∫
ddp

K2(p2)
+O(b24) , (38)

where, independently of the regularization,

K2(p2) ∼
p→0

p4.



The role of dimension 4. Since K2(p2) for p → 0 behaves like p4, the

integral converges only for d > 4. We conclude:

For d > 4, the perturbation to the Gaussian theory is small, and modifies

only non-universal quantities. The magnetic susceptibility still diverges like

1/(T − Tc) and the critical exponent γ keeps its Gaussian value: γ = 1.

For 2 < d ≤ 4, on the contrary, the integral diverges when r → rc. Thus,

however small the amplitude b4 of the first correction to the Gaussian distri-

bution is, for d ≤ 4 when the correlation length ξ diverges the contribution

of order b4 eventually becomes larger than the Gaussian term.

For d ≤ 4, the perturbative expansion is not valid close to Tc, and the

universal predictions of the Gaussian model and the perturbed Gaussian

model are inconsistent.



It is instructive to evaluate more precisely the behaviour of the integral

when |r − rc| ≪ 1 for d < 4:

∂G′′(0)

∂r
∼ 1− b4

2(2π)d

∫
ddp

[r − rc +K(p2)]2
+O(b24) .

For d < 4, the integral converges at infinity. Replacing K(p2) by p2 modifies

the result only by a negligible constant for r → rc. After the change of

variables p = p′
√
r − rc, the integral becomes

1

(2π)d

∫
ddp

(r − rc + p2)2
= (r − rc)

d/2−2 1

(2π)d

∫
ddp

(1 + p2)2

=
Γ(2− d/2)

(4π)d/2
(r − rc)

d/2−2.



Integrating over r and introducing the Gaussian correlation length ξ =

1/
√
r − rc, one infers

G′′(0) = χ−1 =
ξ≫1

(r − rc)

[
1 +

b4
2

Γ(1− d/2)

(4π)d/2
ξ4−d

]
+O(b24). (39)

(Here, the correlation is measured in units of the microscopic scale.) For d =

4, the correction has a logarithmic divergence that requires a regularization,

but the leading logarithmic term does not depend on the regularization

parameter:

G′′(0) = χ−1 =
ξ≫1

(r − rc)

(
1− b4

16π2
ln ξ

)
+O(b24).

These expressions relate explicitly the failure of the quasi-Gaussian approx-

imation to the divergence of the correlation length.



To summarize:

i) For dimensions d > 4, the correction does not modify the universal

predictions of the quasi-Gaussian approximation. One finds some singular

corrections but they yield sub-leading contributions.

(ii) For dimensions d ≤ 4, singularities, also called ‘infra-red’(IR) a de-

nomination borrowed from quantum field theory, consequences of the large

distance behaviour of the Gaussian two-point function, or at vanishing ar-

gument of its Fourier transform, imply that the Gaussian predictions cannot

be correct in general.

An inspection of higher order corrections confirms these results. For d ≤ 4,

the corrections are increasingly singular when the order increases, whereas

for d > 4 they are less and less singular, which confirms the validity of the

first order analysis.



The perturbative terms responsible for this difficulty involve the ratio ξ

between the correlation length and the microscopic scale. This gives some

indication about the mechanism responsible for the failure of the quasi-

Gaussian approximation: physics at the microscopic scale does not decouple

from physics at large distance.

Indeed, for d > 4, the contribution from arguments |p| ≤ ξ−1 is negligible

when ξ diverges, which means that in direct space the degrees of freedom

corresponding to distances of the order of the correlation length or larger

play a negligible role. On the contrary, for d ≤ 4, at Tc, all scales con-

tribute. This property invalidates ideas based on the central limit theorem,

namely that a small number of degrees of freedom with a quasi-Gaussian

distribution can replace the infinite number of initial microscopic degrees of

freedom.

To solve this problem of coupling between all scales, a new tool has been

invented, the renormalization group.



Note that the first singular contribution depends only on the coefficient of

σ4 in the expansion of B(σ) and of the asymptotic form of Ornstein–Zernike

type of the propagator (the Gaussian two-point function) at large distance

or small momenta. The effect of the short distance modification has been

limited to ensure large momentum convergence.

A systematic study then confirms that the most singular terms in each

order of the perturbative expansion can be reproduced, in the critical limit,

by a statistical field theory with an interaction of σ4 type, in continuum

Euclidean space.

As a consequence, if the sum of the most divergent terms to all orders

is the leading contribution, then the existence of a continuum limit and

some universal properties follow, since then the corresponding field theory

depends only on a small number of parameters.

Finally, the consistency of this analysis can again be verified by evaluating

the leading corrections.



Exercises

Critical phenomena in the large N limit. One considers a model involving

an N -component field φ and an O(N) symmetric Hamiltonian of the form

S(φ, λ) =
∫

ddx

{
1
2

[
(∇xφ(x)]

2 + λ(x)φ2(x)
]
− 3N

g
(λ(x)− r)

2

}
, (40)

where λ(x) is an auxiliary scalar field, r and g > 0 parameters.

Eventually, the action has to be regularized by introducing a momentum

cut-off.

Exercise 5

λ-integration. Eliminate the auxiliary field λ, by performing explicitly the

Gaussian integration over the λ, and determine the corresponding φ field

action.



Exercise 6

φ-integration. Alternatively, integrate over the N -component field φ and

show that the corresponding effective action has the form (using the identity

ln det = tr ln)

S(λ) = N

{
1
2 tr ln

[
−∇2

x + λ(x)
]
− 3

g

∫
ddx (λ(x)− r)2

}
.

Exercise 7

The steepest descent method for large N . In the latter form, it is clear that,

for N → ∞, the partition function can be calculated by the steepest de-

scent method. It can be justified that the saddle value of the field λ(x) is a

constant λ̄ = 〈λ〉 = m2, where m from the action (40) is the φ-field mass.

To determine λ̄, one only needs the action density for constant field.



Justify the expression

S(λ̄)
N × volume

=
1

2(2π)d

∫
ddp ln(p2 + λ̄)− 3

g
(λ̄− r)2.

Differentiate with respect to λ̄ to obtain the gap equation, which determines

the φ-field mass or, correspondingly, the correlation length ξ = 1/m. Note

that the momentum integral has to be regularized by replacing p2 by a

polynomial K(p2).

Discuss the solution as a function of the parameter r and the space di-

mension d.



From Gaussian models to Renormalization Group

We have studied Ising type models (but the study can be easily extended

to ferromagnetic models with O(N) symmetry) with short range interac-

tions and determined the behaviour of the thermodynamic functions near

a continuous phase transition, within the framework of the quasi-Gaussian

or mean field approximations.

We have shown that these approximations predict a set of universal proper-

ties, that is, properties independent of the detailed structure of interactions

or microscopic Hamiltonians, including dimension of space or symmetries.

However, many experimental observations as well as numerical and an-

alytical results coming from model systems show that such results cannot

be quantitatively correct, at least in dimensions 2 or 3. For example, the

exact solution of the Ising model in two dimensions yields exponents like

β = 1/8, η = 1/4 or ν = 1, clearly different from the predictions of the

quasi-Gaussian approximation.


