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The renormalization group has played a crucial role in 20th century physics

in two apparently unrelated domains: the theory of fundamental interac-

tions at the microscopic scale and the theory of continuous macroscopic

phase transitions.

In the former framework, it emerged as a consequence of the necessity of

renormalization to cancel infinities that appear in a straightforward inter-

pretation of quantum field theory, and of the freedom of then defining the

parameters of the renormalized theory at different momentum scales.

In the statistical physics of phase transitions, a more general renormal-

ization group, based on a recursive averaging over short distance degrees of

freedom, was later introduced to explain the universal properties of contin-

uous phase transitions.

The renormalization group of quantum field theory can now be under-

stood as the asymptotic form of the general renormalization group in some

neighbourhood of the Gaussian fixed point.



In these lectures, we first illustrate the notion of universality with the ele-

mentary example of random walk, directly linked to the central limit the-

orem of probabilities. We revisit the problem with renormalization group

(RG) inspired methods, introducing in this way the RG terminology. We

recover that the large scale behaviour is universal and defines a continuum

limit that can be described by a path integral.

Then, we argue that similarly large distance properties of statistical mod-

els near a continuous phase transition can be described by statistical field

theories. We explain the perturbative renormalization group. We review a

few important applications like the proof of scaling laws and the determi-

nation of singularities of thermodynamic functions at the transition.

We apply an RG analysis to a toy model of top quark-Higgs boson inter-

action. We introduce the RG equations relevant to critical dynamics.

Finally, if time is left, we briefly describe the application of RG ideas to

properties of random matrices in the large size limit.



For an elementary introduction to the renormalization group in the spirit

of these lectures, cf., for example,

J. Zinn-Justin, Phase transitions and renormalization group, Oxford Univ.

Press (Oxford 2007),

initially published in French Transitions de phase et groupe de renormal-

isation. EDP Sciences/CNRS Editions, Les Ulis 2005,

including the functional renormalization group in Chapter 16.

In www.scholarpedia.org, see

Jean Zinn-Justin (2010), Critical Phenomena: field theoretical approach,

Scholarpedia, 5(5):8346.

More advanced material can be found in

J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Claren-

don Press 1989 (Oxford 4th ed. 2002),

including critical dynamics in Chapter 36.



Universality and continuum limit: Elementary example

The universality of the large scale behaviour and, correspondingly, the ex-

istence of a macroscopic continuum limit, emerge as a collective property of

systems involving a large number of random variables, provided the proba-

bility of large deviations with respect to the average decreases fast enough.

These properties, as well as the importance of Gaussian distributions, are

illustrated here by the simple example of the random walk.

The renormalization group viewpoint. Inspired by renormalization group

(RG) ideas, we introduce transformations, acting on the transition proba-

bility, which decrease the number of random steps. We show that Gaussian

distributions are attractive fixed points for these transformations. Universal

scaling properties and a continuum limit follow.

The properties of the continuum limit can then be described by a path

integral.



Translation invariant local random walk

We consider a stochastic process, a random walk, in discrete times, first on

the real axis and then, briefly, on the lattice of points with integer coordi-

nates.

The random walk is specified by a probability distribution P0(q) (q being

a position) at initial time n = 0 and a density of transition probability

ρ(q, q′) ≥ 0 from the point q′ to the point q, which we assume independent

of the (integer) time n.

These conditions define a Markov chain, a Markovian process, in the sense

that the displacement at time n depends only on the position at time n,

but not on the positions at prior times, homogeneous or stationary, that is,

invariant under time translation, up to the boundary condition.



Walk in continuum space

The probability distribution Pn(q) for a walker to be at point q at time n

satisfies the evolution equation

Pn+1(q) =

∫

dq′ ρ(q, q′)Pn(q
′) .

Probability conservation implies
∫

dq ρ(q, q′) = 1 . (1)

To slightly simplify the analysis, we take as initial distribution

P0(q) = δ(q).

where δ is Dirac’s distribution.

An iteration of the flow equation yields

Pn(q) =

∫

dq′dq1 dq2 . . .dqn−1 ρ(q, qn−1) . . . ρ(q2, q1)ρ(q1, q
′)P0(q

′).



Translation symmetry. We have already assumed ρ independent of n

and, thus, the random walk transition probability is invariant under time

translation. In addition, we now assume that the transition probability is

also invariant under space translation and, thus,

ρ(q, q′) ≡ ρ(q − q′).

As a consequence, the evolution equation takes the form of the convolution

equation,

Pn+1(q) =

∫

dq′ ρ(q − q′)Pn(q
′),

which also appears in the discussion of the central limit theorem of proba-

bilities.



Locality. We consider only transition functions piecewise differentiable

and with bounded variation, and satisfying a property of locality in the form

of an exponential decay: qualitatively, large displacements have a very small

probability. More precisely, we assume that the transition probabilities ρ(q)

satisfy a bound of the exponential type,

ρ(q) ≤ M e−A|q|, M,A > 0 .

Fourier representation

The evolution equation is an equation that simplifies after Fourier transfor-

mation. We thus introduce

P̃n(k) =

∫

dq e−ikq Pn(q) ,

which is a generating function of the moments of the distribution Pn(q).



The reality of Pn(q) and the normalization of the total probability imply

P̃ ∗
n(k) = P̃n(−k), P̃n(k = 0) = 1 .

Similarly, we introduce

ρ̃(k) =

∫

dq e−ikq ρ(q),

which is a generating function of the moments of the distribution ρ(q).

Finally, the exponential decay condition implies that the function ρ̃(k) is a

function analytic in the strip | Im k| < A.

The evolution equation then becomes

P̃n+1(k) = ρ̃(k)P̃n(k)

and since with our choice of initial conditions P̃0(k) = 1,

P̃n(k) = ρ̃n(k).



Generating function of cumulants

We also introduce the function

w(k) = ln ρ̃(k) ⇒ w∗(k) = w(−k), w(0) = 0 , (2)

a generating function of the cumulants of ρ(q). The regularity of ρ̃(k) and

the condition ρ̃(0) = 1 imply that w(k) has a regular expansion at k = 0 of

the form

w(k) = −iw1k − 1

2
w2k

2 +
∑

r=3

(−i)r

r!
wrk

r , w2 > 0 ,

where wr is the rth cumulant. Then,

P̃n(k) = enw(k) .



Random walk: Asymptotic behaviour from a direct calculation

With the hypotheses satisfied by P0 and ρ, the determination of the asymp-

totic behaviour for n → ∞ follows from arguments identical to those leading

to the central limit theorem of probabilities. One finds the asymptotic be-

haviour

Pn(q) ∼
1√

2πnw2

e−(q−nw1)
2/2nw2 .

At q fixed, the probability converges exponentially to zero for all w1 6= 0.

By contrast, the random variable s = q/n has the asymptotic distribution

Rn(s) = nPn(ns) ∼
n→∞

√

n

2πw2
e−n(s−w1)

2/2w2 . (3)

The average value s is thus a random variable that converges with proba-

bility 1 toward the expectation value 〈s〉 = w1 (the mean velocity).



Finally, the random variable that characterizes the deviation with respect

to the mean trajectory,

X = (s− w1)
√
n =

q√
n
− w1

√
n , (4)

and thus 〈X〉 = 0, has, as limiting distribution, the universal Gaussian

distribution

Ln(X) =
√
nPn(nw1 +X

√
n) ∼ 1√

2πw2

e−X2/2w2 .

The neglected terms are of two types, multiplicative corrections of order

1/
√
n and additive corrections decreasing exponentially with n.

The result implies that the mean deviation from the mean trajectory in-

creases as the square root of time, a characteristic property of the Brownian

motion.



Continuum time limit

The asymptotic Gaussian distribution of the deviation q̄ = q − nw1 from

the mean trajectory is

Pn(q̄) ∼
1√

2πnw2

e−q̄2/2nw2 .

By changing the time scale and by a continuous interpolation, one can define

a diffusion process or Brownian motion in continuous time.

Let t and ε be two real positive numbers and n the integer part of t/ε:

n = [t/ε] . (5)

One then takes the limit ε → 0 at t fixed and thus n → ∞.

If the time t is measured with a finite precision ∆t, as soon as ∆t ≫ ε, time

can be considered as a continuous variable for what concerns all expectation

values continuous functions of time.



One then performs the change of distance scale

q̄ = x/
√
ε.

Since the Gaussian function is continuous, the limiting distribution takes

the form

Pn(q)/
√
ε ∼
ε→0

Π(t, x) =
1√

2πtw2

e−x2/2tw2 . (6)

(The change of variables q 7→ x implies a change of normalization of the

distribution.) This distribution is a solution of a diffusion or heat equation:

∂

∂t
Π(t,x) = 1

2w2
∂2

(∂x)2
Π(t, x).

In the limit n → ∞ and in suitable macroscopic variables, one thus obtains

a diffusion process that can entirely be described in continuum time and

space.



The limiting distribution Π(t, x) implies a scaling property characteristic

of the Brownian motion. The moments of the distribution satisfy

〈

x2m
〉

=

∫

dxx2mΠ(t, x) ∝ tm. (7)

The variable x/
√
t has time-independent moments. As the change q̄ = x/

√
ε

also indicates, one can thus assign to the position x a dimension 1/2 in

time unit (this also corresponds to assign a Hausdorff dimension two to a

Brownian trajectory in higher dimensions).



Corrections to continuum limit

One can also study how perturbations to the limiting Gaussian distribution

decrease with ε.

We can express the distribution of q in terms of w(k) = ln ρ̃(k). Corre-

spondingly, we introduce w̄(k) the equivalent quantity for q̄ = q− nw1. We

then obtain the relation
∫

dk eikq̄+iknw1 enw(k) =

∫

dk eikq̄+nw̄(k)

with

w̄(k) = w(k) + ikw1 .

With our assumptions, the expansion of the regular function w̄(k) in powers

of k reads

w̄(k) = −1

2
w2k

2 +
∑

r=3

(−i)r

r!
wrk

r .



After the introduction of macroscopic variables, which for the Fourier vari-

ables corresponds to k = κ
√
ε, one finds

nw̄(k) = tω(κ) with ω(κ) = −w2

2!
κ2 +

∑

r=3

εr/2−1 (−i)r

r!
wrκ

r .

One observes that, when ε = t/n goes to zero, each additional power of κ

goes with an additional power of
√
ε.

In the continuum limit, the distribution becomes

Π(t, x) =
1

2π

∫

dκ e−iκx etw(κ) .

Differentiating with respect to the time t, one obtains

∂

∂t
Π(t, x) =

1

2π

∫

dκw(κ) e−iκx etw(κ)

and in w(κ), κ can then be replaced by the differential operator i∂/∂x.



One thus finds that Π(t, x) satisfies the linear ‘partial differential equation’

∂

∂t
Π(t, x) =

[

w2

2!

(

∂

∂x

)2

+
∑

r=3

εr/2−1 1

r!
wr

(

∂

∂x

)r
]

Π(t, x).

In the expansion, each additional derivative implies an additional factor
√
ε

and, thus, the contributions that contain more derivatives decrease faster

to zero.



Universality and fixed points of transformations

We now explain the universality property, that is, the existence of a limiting

Gaussian distribution that is independent of the initial distribution, and its

scaling properties by a quite different method, that is, without calculating

the asymptotic distribution explicitly.

For simplicity, we assume that initially the number of time steps is of the

form n = 2m.

The idea then is to recursively combine the time steps two by two, de-

creasing the number of steps by a factor two at each iteration. This provides

a very simple application of RG ideas to the derivation of universality prop-

erties.

At each iteration one thus replaces ρ(q − q′) by

[T ρ](q − q′) ≡
∫

dq′′ρ(q − q′′)ρ(q′′ − q′).



The transformation of the distribution ρ(q) is non-linear but applied to

the function w(k), it becomes the linear transformation

[T w](k) ≡ 2w(k).

This transformation has an important property: it is independent of m or

n. In the language of dynamical systems, its repeated application generates

a stationary, or invariant under time translation, Markovian dynamics.

We now study the properties of the iterated transformation T m for m →
∞. A limiting distribution necessarily is a fixed point of the transformation.

Thus, it corresponds to a function w∗(k) (where the notation ∗ is not related

to complex conjugation) that satisfies

[T w∗](k) ≡ 2w∗(k) = w∗(k).

Expanding in powers of k, one verifies that such a transformation has, with

our assumptions, only the trivial fixed point w∗(k) ≡ 0.



But a larger class of fixed points becomes available if the transformation is

combined with a renormalization of the distance scale, q 7→ λq, with λ > 0.

We thus consider the transformation

[Tλw](k) ≡ 2w(k/λ) .

The transformation Tλ provides a simple example of a RG transformation,

a concept that we describe in more detail in the framework of phase tran-

sitions.

Generic situation

The fixed point equation then becomes

[Tλw∗](k) ≡ 2w∗(k/λ) = w∗(k).

For the class of fast decreasing distributions, the functions w(k) are regular

at k = 0.



Thus, w∗(k) has an expansion in powers of k of the form (w(0) = 0)

w∗(k) = −iw1k − 1
2w2k

2 +
∑

ℓ=3

(−i)ℓ

ℓ!
wℓk

ℓ , w2 > 0 .

In the generic situation w1 6= 0. Expanding the equation, at order k one

finds

2w1/λ = w1 ⇒ λ = 2 .

Then, identifying the terms of higher degree, one obtains

21−ℓwℓ = wℓ ⇒ wℓ = 0 for ℓ > 1 .

Therefore,

w∗(k) = −iw1k .

The fixed points form a one-parameter family, but the parameter w1 can be

absorbed into a normalization of the random variable q.



Since

ρ∗(q) =
1

2π

∫

dk eikq−iw1k = δ(q − w1),

fixed points correspond to the certain distribution q = 〈q〉 = w1. Since space

and time are rescaled by the same factor 2, the fixed point corresponds to

q(t) = w1t, the equation of the mean path.

Convergence and fixed point stability. For a non-linear transformation,

a global stability analysis is often impossible. One can only linearize the

transformation near the fixed point and perform a local study.

Here, this is not necessary since the transformation for w(k) is linear.

Setting

w(k) = w∗(k) + δw(k),

then,

[T2δw](k) = 2δw(k/2) .



The function δw is regular and, thus, can be expanded in a Taylor series of

the form

δw(k) =
∑

ℓ=1

(−i)ℓ

ℓ!
δwℓk

ℓ .

Then,

[T2δw](k) = 2δw(k/2) = 2
∑

ℓ=1

(−ik)ℓ

ℓ!
2−ℓδwℓ .

The expression shows that the functions kℓ with ℓ > 0, are the eigenvectors

of the transformation T2 and the corresponding eigenvalues are

τℓ = 21−ℓ.

Since at each iteration the number of variables is divided by two, one can

relate the eigenvalues to the behaviour as a function of the initial number

n of variables. One defines an associated exponent

αℓ = ln τℓ/ ln 2 = 1− ℓ .



After m iterations, the component δwℓ is multiplied by nαℓ since

T m
2 kℓ = 2m(1−ℓ)kℓ = nαℓkℓ.

The behaviour, for n → ∞, of a component of δw on the eigenvectors thus

depends on the sign of αℓ.

We now adopt the RG language to discuss eigenvalues and eigenvectors.

We examine the various values of ℓ:

(i) ℓ = 1 ⇒ τ1 = 1, α1 = 0. If one adds a term δw proportional to the

eigenvector k to w∗(k), δw(k) = −iδw1k, then

w1 7→ w1 + δw1,

which correspond to a new fixed point. This change has also the interpre-

tation of a linear transformation on k or on the random variable q.

An eigen-perturbation corresponding to the eigenvalue 1 and, thus to an

exponent α1 = 0, is called marginal.



Quite generally, the existence of a one-parameter family of fixed points

implies the existence of an eigenvalue τ = 1 and, thus, an exponent α = 0.

Indeed, let us assume the existence of one-parameter family of fixed points

w∗(s),

T w∗(s) = w∗(s) ,

where w∗(s) is a differentiable function of the parameter s. Then,

T ∂w∗
∂s

=
∂w∗
∂s

.

(ii) ℓ > 1 ⇒ τℓ = 21−ℓ < 1, αℓ < 0. The components of δw on such

eigenvectors converge to zero for n or m → ∞.

In the RG terminology, the eigen-pertubations that correspond to eigen-

values smaller in modulus than 1 and, thus, to negative exponents (more

generally with a negative real part), are called irrelevant.

Universality, in the RG formulation, is a consequence of the property that

all eigenvectors, but a finite number, are irrelevant.



Dimension of a random variable. To the random variable that has a

limiting distribution, one can attach a dimension dq defined by

dq = lnλ/ ln 2 . (8)

This corresponds to dividing the sum by ndq . One here finds dq = 1, which

is consistent with q(t) ∝ t.

Centred distribution

For a centred distribution, w1 = 0, one has to expand to order k2. One

finds the equation

w2 = 2w2/λ
2.

Since the variance w2 is strictly positive, except for a certain distribution,

a case that we now exclude, the equation implies λ =
√
2.

Again, the coefficients wℓ vanish for ℓ > 2 and the fixed points have the

form

w∗(k) = − 1
2w2k

2.



Therefore, one finds the Gaussian distribution

ρ∗(q) =
1

2π

∫

dk eikq−w2k
2/2 =

1√
2πw2

e−q2/2w2 .

Since, in the transformation T , the number n of time steps is divided by

two, this value of the renormalization factor λ corresponds to dividing space

by a factor
√
2. This is consistent with the scaling dimension of the space

variable in time unit x ∝
√
t of the Brownian motion:

dq = lnλ/ ln 2 = 1
2 .

The two essential asymptotic properties of the random walk, convergence

toward a Gaussian distribution and scaling property are thus reproduced

by the RG type analysis.



Fixed point stability. One can now study the stability of the fixed point

corresponding to the transformation T√2. One sets

w(k) = w∗(k) + δw(k),

and looks for the eigenvectors and eigenvalues of the transformation

[T√2 δw](k) ≡ 2δw(k/
√
2) = τδw(k).

Clearly, the eigenvectors have still the form

δw(k) = kℓ ⇒ τℓ = 21−ℓ/2.

The correspondent exponent is

αℓ = ln τℓ/ ln 2 = 1− ℓ/2 .



The values can be classified as:

(i) ℓ = 1 ⇒ τ1 =
√
2, α1 = 1

2 . This corresponds to an unstable direction;

a component on such a eigenvector diverges for m → ∞.

In the RG terminology, a perturbation corresponding to a positive expo-

nent α, and which thus moves away from the fixed point, is called relevant.

Here, a perturbation linear in k violates the condition w1 = 0. One is

then brought back to the study of fixed points with w1 6= 0.

(ii) ℓ = 2 ⇒ τ2 = 1, α2 = 0. A vanishing eigenvalue characterizes a

marginal perturbation. Here, the perturbation only modifies the value of w2

and, again, has an interpretation as a linear transformation on the random

variable.

(iii) ℓ > 2 ⇒ τℓ = 21−ℓ/2 < 1 , αℓ = 1 − ℓ/2 < 0. Finally, all perturba-

tions ℓ > 2 correspond to stable directions in the sense that their amplitudes

converge to zero for m → ∞ and are irrelevant.



Redundant perturbations. In the examples examined here, the marginal

perturbations correspond to simple changes in the normalization of the ran-

dom variables. In many problems, this normalization plays no role. One

can then consider that fixed points corresponding to different normaliza-

tions should not be distinguished. From this viewpoint, in both cases one

has found really only one fixed point. The perturbation corresponding to

the vanishing eigenvalue is then no longer called marginal but redundant,

in the sense that it changes only an arbitrary normalization.

Other fixed points. Other values of λ = 21/µ, correspond formally to new

fixed points of the form |k|µ, 0 < µ < 2 (µ > 2 is excluded because the

coefficient of k2 is strictly positive). However, these fixed points are no

longer regular functions of k. They correspond to distributions that have

no second moment 〈q2〉 and thus no variance: they decay only algebraically

for large values of q. In the RG terminology, they correspond to different

universality classes, distributions with other decay properties.



Random walk on the lattice of points with integer coordinates. The anal-

ysis can also be generalized to a random walk on the points of integer coor-

dinate. The main difference is that w(k) is a periodic function of period 2π.

However, at each iteration the period is multiplied by a factor λ > 1. Thus,

asymptotically, the period diverges and, at least for continuous observables,

the discrete character of the initial lattice disappears.

In the d-dimensional lattice Z
d, if the random walk has hypercubic sym-

metry, the leading term in the expansion of w(k) for k small is again 1
2w2k

2

because it is the only quadratic hypercubic invariant. Therefore, asymptot-

ically the random walk is Brownian with rotation symmetry. The lattice

structure is only apparent in the first irrelevant perturbation because there

exists two independent cubic invariant monomials of degree four:

d
∑

µ=1

k4µ,
(

k2
)2

.



Brownian motion and path integral

If one is interested only in the asymptotic properties of the distribution,

which have been shown to be independent of the initial transition proba-

bility, one can obtain them, in the continuum limit, starting directly from

Gaussian transition probabilities of the form (assuming rotation symmetry)

ρ(q) =
1

(2πw2)1/2
e−q2/2w2 .

In the case of a certain initial position q = q0 = 0, an iteration of the

evolution equation then leads to

Pn(q) =
1

(2πw2)n/2

∫

dq1 dq2 . . .dqn−1 e
−S(q0,q2,...,qn) (9)

with qn = q and

S(q0, q2, . . . , qn) =
n
∑

ℓ=1

(qℓ − qℓ−1)
2

2w2
.



We then introduce macroscopic time variables,

τℓ = ℓε , τn = nε = t ,

and a continuous, piecewise linear path x(τ ) (Fig. 1)

x(τ ) =
√
ε

[

qℓ−1 +
τ − τℓ−1

τℓ − τℓ−1
(qℓ − qℓ−1)

]

for τℓ−1 ≤ τ ≤ τℓ .

One verifies that S can be written as (with the notation ẋ(τ ) ≡ dx/dτ )

S
(

x(τ )
)

=
1

2w2

∫ t

0

(

ẋ(τ )
)2
dτ

with the boundary conditions

x(0) = 0 , x(t) =
√
εq = x .



x(τ) x
xn−1

xℓ

x1 x2

xn−2xℓ+1
x0 xℓ−1

τ

0 τ1 τ2 τℓ−1 τℓ τℓ+1 τn−2 τn−1 t

Fig. 1 Path contributing to the integral (9) (d = 1) with xℓ ≡ x(τℓ).

Moreover,

Pn(q) =
1

(2πw2)1/2

∫

(

n−1
∏

ℓ=1

dx(τℓ)

(2πw2ε)1/2

)

e−S(x) .



In the continuum limit ε → 0, n → ∞ with t fixed, the expression becomes

a representation of the distribution of the continuum limit,

Π(t, x) ∼ ε−1/2Pn(q),

in the form of a path integral, which we denote symbolically

Π(t, x) =

∫

[dx(τ )] e−S(x(τ)) ,

where
∫

[dx(τ )] means sum over all continuous paths that start from the

origin at time τ = 0 and reach x at time t. The trajectories that contribute

to the path integral correspond to a Brownian motion, a random walk in

continuum time and space. The representation of the Brownian motion by

path integrals, initially introduced by Wiener, is also called Wiener integral.



Detailed balance: introduction

The condition of detailed balance is needed for one of the exercises, but

it also characterizes an important class of random dynamical systems. It

relates a Markov process and its time-reversed one. Expressed in terms of

the transition probability ρ(q,q′), it reads

ρ(q,q′)P∞(q′) = ρ(q′,q)P∞(q), (10)

where P∞ is a probability distribution:

P∞(q) ≥ 0 ,

∫

ddq P∞(q) = 1 .

We now integrate equation (10) over q′ and use the condition of conservation

of probabilities (1)
∫

ddq′ρ(q′,q) = 1 .



We obtain

P∞(q) =

∫

ddq′ ρ(q,q′)P∞(q′).

Thus, the distribution P∞(q) is the asymptotic distribution of the process.

If P∞(q) is strictly positive, which, for example, is implied by the condi-

tion ρ(q,q′) > 0, one can define the kernel

T (q,q′) = P−1/2
∞ (q)ρ(q,q′)P 1/2

∞ (q′) = T (q′,q), (11)

which corresponds to a real symmetric operator. This operator plays the

role of the transfer matrix in statistical lattice models, the time of the

stochastic process becoming the space of the lattice. With a few additional

weak technical conditions, one shows that this operator has a discrete real

spectrum.

In translation-invariant examples, detailed balance is formally satisfied if

ρ(q) = ρ(−q) ec·q, but then the function P∞ is not normalizable and not a

distribution. Nevertheless, the spectrum of ρ is real.



Exercises

Exercise 1

Study the local stability of the Gaussian fixed point

ρG(q) = e−q2/2 /
√
2π ,

by starting directly from the equation

[Tλρ](q) = λ

∫

dq′ρ(q′)ρ(λq − q′). (12)

Determine the value of the renormalization factor λ for which the Gaussian

probability distribution ρG is a fixed point of Tλ.
Setting ρ = ρG + δρ, expand equation (12) to first order in δρ. Show that

the eigenvectors of the linear operator acting on δρ have the form

δρp(q) = (d/dq)
p
ρG(q), p > 0 .

Infer the corresponding eigenvalues.



Exercise 2

Random walk on a circle. To exhibit the somewhat different asymptotic

properties of a random walk on compact manifolds, it is proposed to study

random walk on a circle. One still assumes translation invariance. The ran-

dom walk is then specified by a transition function ρ(q− q′), where q and q′

are two angles corresponding to positions on the circle. Moreover, the func-

tion ρ(q) is assumed to be periodic and continuous. Determine the asymp-

totic distribution of the walker position. At initial time n = 0, the walker is

at the point q = 0.

Exercise 3

Another universality class

One considers now the transition probability ρ(q − q′) with

ρ(q) =
2

3π

2 + q2

(1 + q2)2
.



The initial distribution is again

P0(q) = δ(q).

Evaluate the asymptotic distribution Pn(q) for n → ∞.

Exercise 4

Random walk and detailed balance. One considers a Markovian process in

continuum space with, as transition probability, the Gaussian function

ρ(q, q′) =
1√
2π

exp
[

− 1
2 (q − λq′)2

]

,

where λ is a real parameter with |λ| < 1.

Show that ρ(q, q′) satisfies the condition of detailed balance (10). Infer

the asymptotic distribution at time n when n → ∞. Associate to ρ(q, q′) a

real symmetric operator T as in equation (11),

T (q, q′) = P−1/2
∞ (q)ρ(q, q′)P 1/2

∞ (q′) = T (q′, q).



Continuous phase transitions. Universality

We now discuss continuous (second order) phase transitions in statistical

systems with short range interactions. We work in the framework of fer-

romagnetic systems but, as a consequence of the universality property of

critical phenomena, the results that are derived apply to many other transi-

tions that are not magnetic, like the liquid–vapour, binary mixtures, super-

fluid Helium etc.... Surprisingly enough, they also apply to the statistical

properties of polymers, or self-avoiding random walk on a lattice.

For these statistical systems, the correlation length, which characterizes

the decay at large distance of connected correlation functions, diverges at

the transition temperature: a distance scale, large with respect to the mi-

croscopic scales (range of forces, lattice spacing), is generated dynamically.

A non-trivial large distance physics then appears that has properties largely

independent of the details of the microscopic interactions. This is the phe-

nomenon that we want to investigate.



As long as the correlation length remains finite, macroscopic quantities,

like the mean spin, have the behaviour predicted by the central limit the-

orem; in the infinite volume limit, they tend toward certain values with

decreasing Gaussian fluctuations. This result can be understood in the fol-

lowing way: the initial microscopic degrees of freedom can be replaced by

independent mean spins, attached to volumes having the correlation length

as linear size. Therefore, it is natural to first study the properties of Gaus-

sian models.

At the transition temperature Tc, and in the several phase region, the

arguments are no longer valid. Nevertheless, one may wonder whether the

asymptotic Gaussian measure can then be simply replaced by a perturbed

Gaussian measure, that is, whether the residual correlations between mean

spins can be treated perturbatively. Such an approximation can be called

classical or quasi-Gaussian.



The appearance of a large scale at the transition generates a non-trivial

large distance physics. The quasi-Gaussian approximation predicts that it

has remarkably universal large distance properties at Tc, independent to a

large extent of symmetries, of dimension of space... Moreover, within the

quasi-Gaussian approximation, universality extends to the critical domain:

|T − Tc| ≪ Tc and small magnetic field.

A systematic study of corrections to the quasi-Gaussian approximation

then allows verifying its consistency and its domain of validity. The special

role of space dimension 4 emerges, which separates the higher dimensions

where the approximation is justified, to lower dimensions where it cannot

be valid.

For simplicity, the discussion will first be restricted to models with a

discrete Ising-like Z2 reflection symmetry. Indeed, below Tc or in a magnetic

field, models with continuous symmetries have special properties due to the

presence of Goldstone modes, which require a specific analysis.



Effective statistical field theory

We have shown that the large distance properties of the simple random walk

can be described by a path integral.

Heuristic arguments of the kind we have given for the random walk, lead

us then to expect that, even if the initial statistical system is defined in

terms of random variables associated to the sites of a space lattice, and

which take only a finite set of values (like, e.g., the classical spins of the Ising

model), when the correlation length is large, the large distance properties

of the system can be inferred from an effective statistical field theory in

continuum space.

The effective statistical field theory is defined in terms of a random real

field σ(x) in continuum space, x ∈ R
d, and a functional measure on fields

of the form e−H(σ)/Z, where H(σ) is called the Hamiltonian in statistical

physics (a denomination borrowed from the statistical theory of classical

gases) and the normalization Z is the partition function.



Moreover, the partition function is given by the field integral

Z =

∫

[dσ(x)] e−H(σ),

where the dependence in the temperature T is included in H(σ).

Field integrals are the generalization to d space dimensions of path inte-

grals, and the symbol [dσ(x)] stands for summation over all fields σ(x).

The essential condition of short range interactions in the initial statistical

system translates into the property of locality of the field theory: H(σ) can

be chosen as a space-integral over a linear combination of monomials in the

field σ(x) and its derivatives.

We assume also space translation and rotation invariance and, to discuss

a specific case, Z2 reflection symmetry (like in the Ising model):

H(σ) = H(−σ).



In d space dimensions, a typical form then is

H(σ) =

∫

ddx
[

1
2

(

∇xσ(x)
)2

+ 1
2rσ

2(x) +
g

4!
σ4(x) + · · ·

]

.

(∇x is the gradient vector with components ∂/∂xµ, µ = 1, . . . , d.)

As a systematic expansion of corrections to the mean field approximation

indicates, the coefficients of H(σ), like above r, g..., are regular functions of

the temperature T near the critical temperature Tc.



Correlation functions

Physical observables involve field correlation functions (generalized mo-

ments of the field distribution),

〈σ(x1)σ(x2) . . . σ(xn)〉 ≡
1

Z

∫

[dσ(x)]σ(x1)σ(x2) . . . σ(xn) e
−H(σ).

They can be derived by functional differentiation from the generating func-

tional (generalized partition function) in an external field H(x),

Z(H) =

∫

[dσ(x)] exp

[

−H(σ) +

∫

ddxH(x)σ(x)

]

,

as

〈σ(x1)σ(x2) . . . σ(xn)〉 =
1

Z(0)

δ

δH(x1)

δ

δH(x2)
. . .

δ

δH(xn)
Z(H)

∣

∣

∣

∣

H=0

.



Connected correlation functions

More relevant physical observables are the connected correlation functions

(generalized cumulants). The n-point function W (n)(x1, x2, . . . , xn) can be

derived by functional differentiation from the free energy W(H) = lnZ(H):

W (n)(x1, x2, . . . , xn) =
δ

δH(x1)

δ

δH(x2)
· · · δ

δH(xn)
W(H)

∣

∣

∣

∣

H=0

.

Translation invariance then implies

W (n)(x1, x2, . . . , xn) = W (n)(x1 + a, x2 + a, . . . , xn + a) ∀a .

Connected correlation functions have the so-called cluster property: if in

a connected n-point function one separates the points x1, . . . , xn into two

non-empty sets, the function vanish when the distance between the two

sets goes to infinity. It is the large distance behaviour of connected corre-

lation functions in the critical domain near Tc that may exhibit universal

properties.


