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Introduction

@ implementation of the renormalization group idea

@ for continuum field theory

functional methods + renormalization group
scale-dependent Schwinger functional Wk]j]
scale-dependent effective action I',[¢]

conceptionally simple, technically demanding flow equations
scale parameter k = adjustable screw of microscope

large values of a momentum scale k: high resolution

lowering k: decreasing resolution of the microscope
(known) microscopic laws —> complex macroscopic phenomena

non-perturbative
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@ Wy[j] obeys Polchinski flow equation
@ [[y] obeys Wetterich flow equation

@ flow from classical action S[y] to effective action I'[¢]
@ applied to variety of physical systems
» strong interaction
electroweak phase transition
asymptotic safety scenario
condensed matter systen
e.g. Hubbard model, liquid He*, frustrated magnets,
superconductivity . ..
» effective models in nuclear physics
» ultra-cold atoms

v vVvYyy
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% Theory space
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Scale-dependent functionals

@ generating functional of (Euclidean) correlation functions

z[] = / DpeSIGD)  (j ¢) = / 49 j(x)6(x)

@ Schwinger functional W[j] = log Z[j] — connected correlation
functions

o effective action = Legendre transform of W[j]

Mgl = (,0) — W[ with  o(x) = (¢(x)); = (;%g]

— one-particle irreducible correlation functions
@ solve for j[¢], insert into first equation
@ [[¢]: encodes properties of QFT in most economic way

Andreas Wipf (FSU Jena) The Functional Renormalization Group Metho 11. September 2015

9/60



@ add scale-dependent IR-cutoff term A S, to classical action in
functional integral — scale-dependent generating functional

Zelj] = / D e Slel+i0)-AS9] (1 )J

@ Scale-dependent Schwinger functional

Wil = log Zj] @]

@ regulator: quadratic functional with a momentum-dependent mass,

88061 = [ L6 PRI = 2 ¢ @IRPIP).

— one-loop structure of flow equation
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Conditions on cutoff function Rk(p)

@ should recover effective action for k — 0:
Rk(p) “290  for fixed p
@ should recover classical action at UV-scale A:
Ry =0
@ regularization in the IR:

Rk(p) >0 for p—0
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cut-offs used:

2
the exponential regulator: Rk(p) = # ,
eP?/ke — 14
the optimized regulator: R(p) = (k% — p?) 6 <k2 — p2> ,
the quartic regulator: Rk(p) = k*/p? ,
. _ p° 2
the sharp regulator: Rk(p) = m —p°,

the Callan-Symanzik regulator: Ry(p) = k2
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exponential cutoff function and its derivative

2k2 —~JokR«
k2 4
R«
p2
k2 2K?
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Polchinski equation

@ partial derivative of Wy in (2) is given by

Wl = — [ 4xa%y (600 Rlx.9)60 )i

@ relates to connected two-point function

GP(x,y)

W _ -
50031y — GO = ¢(0e()

@ Polynomial Polchinski equation

1
O =~ [ axaly O, y) Gy X) ~ B A8

= it (Bl W) — OkASy [ W 3)
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Scale dependent effective action

@ average field of the cutoff theory with j

p(x) = 5;(/%]

@ fixed source j — average field ¢ depends on cutoff
@ fixed average field — source depends on cutoff
@ modified Legendre transformation:

Ckle] = (s ) — Wilj] — ASk[¢]

@ solve (4) for j = j[¢] — use solution in (5)
@ [, not Legendre transform of W][j] for k > 0!
@ [, need not to be convex, but I'x_,g is convex
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Derivation of Wetterich equation

@ vary effective average action

e [ i) [OW S)  9ASH)
et = | s S et

@ terms chancel — effective equation of motion

ok . ) L
ot =0 = 53 A =00~ (Re) () <6>J
@ flow equation: ¢ fixed, j depends on scale, differentiate I'
) ) OWklj] - .
o= [ axaui(etx) - 9wl - [ 7Moo - aaside
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@ black terms cancel
@ 0k Wi[j]: only scale dependence of the parameters

OkTk = — Ok Wk[j] — Ok ASk[¢]

— — O Wilj] — % / dxd%y o(x)0k Rk (X, ¥)e(¥)

@ use Polchinski equation —

1
0Tk = / d9xd%y Rk (x,y) G2 (y, x) (7)

second derivative of Wy vs. second derivative of I'j:

oWk

SD(X) - (Sj(X) 5rk

dp(x)

and j(x) 2

+ / d%y Ri(x, y)¢(¥)
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@ chain rule —

5(X—y)=/ dZ(SSO( )5/(2) /ddZGl(f)(X,Z){rEf)‘i‘Rk}(Z,y)

3j(z) de(y)
@ Hence
1 6°r
G _ T K
=, 0N = 5086 )

@ insert into (7) — non-polynomial Wetterich equation

1 Ok Ry
OkTklp] = =tr | —g—t— (8)
k[ klo] St (rg(z)[@] N Rk)
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@ (finite) non-linear functional integro-differential equation
@ first order in k = initial condition’ I'y determines Ik
@ full propagator enters flow equation
@ finite and exact FRG flow equations
@ Polchinski: simple polynomial structure
favored in structural investigations
@ Wetterich: second derivative in the denominator
stabilizes flow in (numerical) approach
mainly used in explicit calculations.
@ in practice: truncation = projection onto finite-dim. space
@ difficult: error estimate for truncated flow
— improve truncation, optimize regulator, check stability
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Gaussian model in d dimensions

@ at the cutoff .
MAlp] = Z/ddx P(—A+ M)

@ solution of the FRG-equation

1 — A+ m2 + Ry
Melp] =T — log det A 9
Wl = ol + 5 logdet ( —5T 0 ) ©
@ last term for optimized cutoff
_ 1 mp(k — A) k3 A3
3d: 6.2 (m,\ arctan W + ma(A— k) + 3~ 3> ;
_ 1 m,\+k2 o (o .o\ K+ A
4d: W< milog B+ mh (A "‘)*2‘2)
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Functional renormalization in QM

@ anharmonic oscillator

Stal = [ a7 (3¢ + V(@) .

@ here LPA (local potential approximation)

ruldl = [ or (3¢ + ula)) (10)J

@ low-energy approximation

leading order in gradient expansion
@ scale-dependent effective potential uk
@ neglected: higher derivative terms, mixed terms q"q™
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@ flow equation contains F(Q) —02 + u(q)
@ LPA: sufficient to consider a constant g — momentum space

8Uk(q) 1/ /aRk / 1 o
/dT ok 5 drdr A T)—82+UZ(Q)+Rk(T T)

/ / Ik Rk (p)
27 p? + 1(q) + Rk(p)

@ choose optimal regulator function

Ri(p) = (k2 — p?) 0 (k2 - p2) — 9 Ri(p) = 2kO(K? — p?)
@ non-linear partial differential equation for u:

1 k2

IkUk(q) = K U(q)
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@ minimum of uk(q) not ground state energy
differs by g-independent contribution
@ free particle limit fixes subtraction in flow equation

k? _)_ 1 u(a)

T _ 1 59 11
K+ u(q) g

Iuk(q) = % <

@ assume up(q) even — uk(q) even
@ polynomial ansatz

u(@)= (;n)!azn(k)qz”,

n=0,1,2...
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@ scale-dependent couplings axn(k)
@ Insert into (11), compare coefficients of powers of g2
@ — infinite set of coupled ode’s

dag 1 1
da k2

Fre

day k2N2

k= (@ —sdin)
dae - szg

= (as — 3048500 + 90a2A§) ,

@ initial condition: ao, at cutoff = parameters in classical potential
@ projection onto space of polynomials up to given degree n
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@ e.g. crude truncation ag = ag = - - - = 0: finite set of ode’s
@ use standard notation

’
a=Ex, ap=w?, az=X and Ag=

k2 —&-w,% '

= truncated system of flow equations
LR JRC SO YR I e
dk ~ % dk x 0 4k x 0

@ solve numerically (eg. with octave)

@ initial conditions Ex = 0, wp = 1, varying A at the cutoff scale
— scale-dependent couplings E and w?

@ hardly change for k > w

@ variation near typical scale k ~ w
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Ex w?
from above:
.5 1.4 1=2.0
from above: 1=1.0
41 1=20 13 1 o
A1=1.0 -
1=0.5
3 =00 1.2
2 L1 A\
1A 1.
k 0 k
T T T T T T T T
1 2 3 4 1 2 3 4

The flow of the couplings Ex and w2 (Ep = 0, w

>N
I
—_
~
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® w = wk—o > 0 = effective potential minimal at origin
@ ground state energy: Ey = min(Ux—o)
@ energy of first excited state

Ey=Ey+ U;(IZO(O) = Ep + wk=o

@ already good results with simple truncation
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energies for different A
different truncations und regulators

units of fw
ground state energy energy of first excited state

cutoff optimal optimal Callan exact optimal optimal Callan exact

order 4 order order 4 result order 4 order order 4 result

12 12

A=0 0.5000 0.5000 0.5000 0.5000 1.5000 1.5000 1.5000 1.5000
A=1 0.5277 0.5277 0.5276 0.5277 1.6311 1.6315 1.6307 1.6313
A =2 0.5506 0.5507 0.5504 0.5508 1.7324 1.7341 1.7314 1.7335
A=3 0.5706 0.5708 0.5703 0.5710 1.8177 1.8207 1.8159 1.8197
A=4 0.5885 0.5889 0.5882 0.5891 1.8923 1.8968 1.8898 1.8955
A=5 0.6049 0.6054 0.6045 0.6056 1.9593 1.9652 1.9562 1.9637
A=6 0.6201 0.6207 0.6196 0.6209 2.0205 2.0278 2.0168 2.0260
A=7 0.6343 0.6350 0.6336 0.6352 2.0771 2.0857 2.0728 2.0836
A=8 0.6476 0.6484 0.6469 0.6487 2.1299 2.1397 2.1250 2.1374
A=9 0.6602 0.6611 0.6594 0.6614 21794 2.1905 21741 2.1879
A =10 0.6721 0.6732 0.6713 0.6735 2.2263 2.2385 2.2205 2.2357
A =20 0.7694 0.7714 0.7679 0.7719 2.5994 2.6209 2.5898 2.6166
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Recall flow equation in LPA:

/1
Iuk(q) = —;l%
@ negative w2 in up: local maximum at 0 and two minima
@ denominator minimal where vy’ minimal (maximum of u)

@ denominator positive for large scales

= denominator remains positive during the flow (stability)
@ flow equation =

ux(q) increases toward infrared if uy(q) is positive

ux(q) decreases toward infrared if u}/(q) is negative

= double-well potential flattens during flow, becomes convex
@ convexity expected on general grounds
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solution of partial differential equation, w,"( =—1, =1
Uk

Uk=0
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@ energies of ground state and first excited state:
less good, less stable
@ fourth-order polynomials — inaccurate results for weak couplings
@ numerical solution of the flow equation (PDE) does better
@ decreasing A (increasing barrier) — increasingly difficult
@ to detect splitting induced by instanton effects:
must go beyond leading order LPA
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energies for w? = —1 and varying \
optimized regulator, units of hw

ground state energy energy of first excited state

optimal optimal pde exact optimal optimal pde exact

order 4 order 12 order 4 order 12
A=1 -0.8732 -0.8556 -0.7887 -0.8299
A=2 -0.2474 -0.2479 -0.2422 0.0049 0.0063 -0.0216
A=3 0.2473 -0.0681 -0.0679 -0.0652 -0.2241 0.3514 0.3500 0.3307
A=4 -0.0186 0.0286 0.0290 0.0308 0.3511 0.5753 0.5755 0.5598
A=5 0.0654 0.0949 0.0953 0.0967 0.5835 0.7455 0.7462 0.7324
A=6 0.1234 0.1457 0.1461 0.1472 0.7509 0.8842 0.8851 0.8723
A=7 0.1688 0.1871 0.1876 0.1885 0.8851 1.0021 1.0030 0.9909
A=38 0.2063 0.2223 0.2228 0.2236 0.9987 1.1052 1.1061 1.0944
A=9 0.2671 0.2530 0.2535 0.2543 1.1863 1.1972 1.1981 1.1866
A=10 0.2386 0.2803 0.2808 0.2816 1.0978 1.2805 1.2814 1.2701
A=20 0.4536 0.4632 0.4639 0.4643 1.7866 1.8638 1.8648 1.8538
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Scalar Field Theory

@ QM = 1-dimensional field theory
@ Now: Euclidean scalar field theory in d dimensions

L= 30401+ V(9)

@ first: local potential approximation (LPA)
1
rule] = [ o (000 + uili))

@ second functional derivative: FE(Z) =—A+ u(p)
o flow of effective potential: may assume constant average field

1 d% IRk (p)
2/ @07 P2 1 U)() + Re(p) (12)

Ikuk(q) =
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@ optimized regulator:
= volume of the d-dimensional ball divided by (27)9,

1
1o = (am)d2r(d/2 + 1)

@ p-integration can be done — flow equation

kd+1

Uk (p) = Hdm

@ dimensions enters via k9" and yq4
@ nonlinear PDE
@ polynomial ansatz for even potential
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@ flow equations for infinite set of couplings

dag _ d+2 _ 1
dk — THakT"ho, AO_k2-|—ag’
dap _ d+2 52
k o pak“ CAGas
day
Ko = —uagk®+203 (ae - 6a§Ao) ,
da
d_k6 = —udkd+2A% (ag —30asasAo + 9032A6) ]
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Fixed points

K>
\\/ T<T,
/k (K7, K3): fixed point
/\ (K¢, K».): critical point
T>T,.
line of critical points
K,
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critical hyper-surface on which £ = oo
RG trajectory moves away from critical surface

most critical points are not fixed point

d > 3 : expect a finite set of isolated fixed points
fixed point K* = (K}, K5,...)

RG flow in the vicinity of fixed point K = K* + K
linearize flow around fixed point

OR;

AR DR R AR 2

K*
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@ linearized RG transformation,

I

@ eigenvalues and left-eigenvectors ¢, of matrix M

Do OLM =20, = b,
J

@ every )\, defines a critical exponent y,,
@ consider the new variables

Ga = Zd}’aéK, .
i
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@ We have

g = 0LoK =3 ol MIsK; =" peol 5K, = bg,
i if J
@ y, > 0: flow moves point K* + g, away from the fixed point K* —
relevant perturbation

@ y, < 0: flow carries point K* + g,, towards the fixed point K* —
irrelevant perturbation

® y, = 0: marginal coupling

@ relevant couplings determine important scaling laws

@ all TD critical exponent functions of relevant exponents
@ relevant couplings and exponents determine IR-physics
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Fixed point analysis for scalar models

@ introduce the dimensionless field and potential,

o=k igx and  uk(p) = kpavi(x)
@ flow equation in terms of dimensionless quantities

d—2 1 av,
k

@ at afixed point: 9vx =0 =
@ fixed point equation for effective potential
a—-2 1

av, — —— V. = ——
2 X 1+ v/
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@ constant solution dv, = 1 — trivial Gaussian fixed point
@ are there non-Gaussian fixed points?

@ answer depends on the dimension d of spacetime

@ even classical potential — v, even as well:

. X2
vk(x) = wi(e), with o=

@ flow equation for wy()

1
1+ w (o) + 20w/(0)

kokwi(0) + dwi (o) — (d — 2) owi(0)

@ fixed point equation

:
1+ wl(o) + 20w (0)

dw, (o) — (d — 2) oW.(0)
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@ 2d theories: co many fixed-point solutions [Morris 1994]
@ also true for 2d Yukawa theories [Synatschke et al.]
@ polynomial truncation to order m:

m
W™ = 3" 6n o
n=0

@ flow equation for couplings

kokCo = —dco + Do,  Do=(1+¢1)"",

kdkcy = —2¢1 — 6C A3

kdkco = (d — 4)cp — 150342 + 36C5 A3

kokcs = (2d — 6)c3 — 28¢4 A3 + 180c2c3A3 — 21663 A

kokcy = (3d — 8)cy — 45¢5 A3 + (336Cac4 + 225¢5) A3
—1620¢5c3 A% + 1296¢3 A3
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Scalar fields in three dimensions

@ expect nontrivial fixed pointin d = 3
@ first: polynomial truncation = set ¢x = 0 for k > m
@ insert into above system of equations with Ihs = 0
= m algebraic equations for the m + 1 fixed-point couplings

0= fo(cy,cf) =fi(ci,c5) =+ = fp1(ci, ..., Cp)

@ polynomialsin ¢§,c;,...,cpand Ag =1/(1 +¢7)

@ prescribe ¢ (= slope at origin) and thus Ag

@ solve the system for ¢, 5, ¢c3, . .., Cp, in terms of ¢}

@ algebraic computer program — solution for m up to 42
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@ explicit expression for the lowest fixed-point couplings

= 1 !
° " 31+¢
. Ci+cp)?
@ = —3
o ci(1+¢r)3(1 +13¢)
E 45
o oGP+ et +7c)
e 21 '
¢, = c2(1 +¢;)™Pm_s(c}) ,

@ Py polynomial of order k
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@ trivial solution (Gaussian fixed point w, = 1)

search for other fixed points:

setcy, =0— Py_3(ci) =0

polynomials P, has many real roots ¢}

for each m choose cj such that convergence for large m

the approximating polynomials converge to a power series with
maximal radius of convergence

@ example:

m =20 = ¢f = —.186066

m =42 = c¢f = —.186041

@ calculate other c; = fixed point solution
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@ With n! multiplied fixed-point coefficients ¢,

5

5

5

s

¢

s

s

[ c] c3 c3 cy ci G

m =20 0.409534 -0.186066 0.082178 0.018981 0.005253 0.001104 -0.000255

m =42 0.409533 -0.186064 0.082177 0.018980 0.005252 0.001104 -0.000256
o Y 5 cy Cry Cip i

m =20 -0.000526 -0.000263 0.000237 0.000632 0.000438 -0.000779 -0.002583

m =42 -0.000526 -0.000263 0.000236 0.000629 0.000431 -0.000799 -0.002643
Ciy Cs Cg iy Cig Cig >

m =20 -0.002029 0.007305 0.028778 0.034696 -0.077525 -0.381385 0.000000

m =42 -0.002216 0.006677 0.026544 0.026320 -0.110498 -0.517445 -0.587152

@ c; stable when one increases polynomial order m (m 2 2k)
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Polynomial approximations vs. numerical solution

numerics: shooting method with seventh-order Runge-Kutta

Wi numerical
solution
=10

Andreas Wipf (FSU Jena) The Functional Renormalization Group Metho 11. September 2015 47 /60



@ fine-tune slope at origin — w,(0) ~ —0.186064249376
@ Polynomial of degree 42 — w;(0) ~ —0.186064279993

Critical exponents

@ flow equation in the vicinity of fixed-point solution w,
@ set wx = w, + d, linearize the flow in small
@ — linear differential equation for the small fluctuations

Kok = — ddx + (d — 2) 9(5;(
— (aw, — (d — 2) ow,)* (5 + 200)

@ insert the polynomial approximation for fixed-point solution
@ polynomial ansatz for the perturbation —

m—1 X2
k(e) = dno" o= 5
n=0
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@ linear system for the coefficients dp,

do do
ad; d;
KOk =M (c")
dm—1 dm—1

@ critical exponents = eigenvalues of m-dimensional matrix M
@ — up to order m = 46 with algebraic computer program
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m v=-1 /w1 wo w3 w4 ws
10 0.648617 0.658053  2.985880  7.502130 17.913494
14 0.649655 0.652391  3.232549 5733445  9.324858
18 0.649572 0.656475  3.186784  5.853987  9.141093
22 0.649554 0.655804  3.170538  5.977066  8.522811
26 0.649564 0.655629  3.182910  5.897290  8.844632
30 0.649562 0.655791  3.180847  5.903039  8.907607
34 0.649561 0.655749  3.178636  5.922910  8.702583
38 0.649562 0.655731  3.180577  5.908885  8.814225
42 0.649562 0.655755  3.180216  5.909910  8.847386
46 0.649562 0.655746  3.179541 5915754  8.738608

@ convergence

@ two negative exponents wg = -3 and wy = —1/v

@ wy ground state energy, unrelated to critical behavior

@ wa,w3, W4, ..

. all positive (irrelevant)

@ LPA-prediction: v = 0.649562 (high-T expansion: v = 0.630)
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Wave function renormalization

@ next-to-leading in derivative expansion —

wave function renormalization Zx(p, ¢)
@ difficult non-linear parabolic partial differential RG-equations
@ first step: neglect field and momentum dependence —

rilel = [ o (320002 + uds)) -

@ second functional derivative Ff(z) = —ZkA+ u(p)
@ flow equation (simplification for Rx — Zx Rk):

/ddx <;(8kzk) (0u0)? + 8;<Uk(%0)> — %tr (Zk Ok(ZkRk) >

(P? + Rx) + u(»)
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@ simple: flow of effective potential:

Z Hd di2

@ more difficult: flow of Zj

@ project flow on operator (9¢)?

@ must admit non-homogeneous fields — [p?, u}/(¢)] # O
@ final answer

1

2
a+2 2 _
kkZi = —pig K9+ (ZkasAo) D=

see A. Wipf, Lecture Notes in Physics 864
@ anomalous dimension

n= —Kok |Og Z;
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Linear O(N) models

@ scalar field p € RN

1

L=

0u0)% + V(9)

@ O(N) invariant potential
@ fixed-point analysis: dimensionless quantities x and v
@ invariant dimensionless composite field

1 N
o=5> X
i=1

N

@ set v(x) = wk(o)
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flow equation in LPA (optimized regulator)

1

kaka + de — (d — 2) QW,/( —

1+W,’(+1+W,’(+2,gw,’(’

contribution of the N — 1 Goldstone modes
contribution of massive radial mode

linearize about fixed-point solution: wy = w, + dx

°
°
@ large N: Goldstone modes give dominant contribution
°
°

fluctuation d, obeys the linear differential equation

N—-1)4
kakak:—d5k+(d—2)95'k—( Jo

8}, + 200
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@ proceed as before: polynomial truncation to high order (40)
— slope at origin of fixed-point solution

@ find always Wilson-Fisher fixed point

@ eigenvalue wy = —3 of the scaling operator 1 not listed

N 1 2 3 100 1000
—w.(0) 0.186064 0.230186 0.263517 0.384172 0.387935
v=—1/wy 0.64956 0.70821 0.76113 0.99187 0.99923
w2 0.6556  0.6713  0.6990  0.97218 0.99844
w3 3.1798  3.0710  3.0039  2.98292 2.99554
@ extract asymptotic formulas
0.4096 0.9616
w.(0) ~ —0.3881 + , v~0.9998 —
N N
1 1.081
Vs ~ = ———
exact N
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Large N Limit

@ rather simple flow equation (t = log(k/A) = 0t = kdk, wkx = w)

—(d — I
ow = (d —2) oW — dw + 3 :
N P

= atW, = (d—2) QW// —2W, — mw

@ can be solved exactly with methods of characteristics
@ analytic relation between fixed point solution and perturbation in

s(t, p) = wi(p) +e*'3(p)

@ result:
8(p) = const w (o) +9)/2 |
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@ if perturbation regular — all critical exponents
we{2n—-d|n=0,1,2,...}

@ one-parameter family of fixed point solutions

N=10°
2_

o/N

\

% ~3r/4
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. . . A
dimensionless potential:  wa(p) = =2 (p — /<c/\)2

2

flow of dimensionless eff. potential for critical ~

0.5 4

Andreas Wipf (FSU Jena)

A\ = 17 RN = Kerit

wi — wi(0)

k/iA — 0

\

o/N

—
[\
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flow of dimensionful eff. potential above critical «
=1, kp = 1.8kqie = broken phase

ur/(u3A*N)

2 4
1 4
50 6/(usAN)
4
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flow of dimensionful eff. potential below critical
M =1, kp = 0.5k = symmetric phase

ur/(u3A*N)
1 -
k—0
0.5 4
k> A
o 0/(u3AN)
1 1.5 2
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