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Horizons

An observer in a spacetime (M, gab) is represented by an

inextendible timelike curve γ. Let I−(γ) denote the

chronological past of γ. The future horizon, h+, of γ is

defined to be the boundary, İ−(γ) of I−(γ).
h +

γ

γ )(I
−

Theorem: Each point p ∈ h+ lies on a null geodesic

segment contained entirely within h+ that is future



inextendible. Furthermore, the convergence of these null

geodesics that generate h+ cannot become infinite at a

point on h+.

Can similarly define a past horizon, h−. Can also define

h+ and h− for families of observers.
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Black Holes and Event Horizons

Consider an asymptotically flat spacetime (M, gab). (The

notion of asymptotic flatness can be defined precisely

using the notion of conformal null infinity.) Consider the

family of observers Γ who escape to arbitrarily large

distances at late times. If the past of these observers

I−(Γ) fails to be the entire spacetime, then a black hole

B ≡M − I−(Γ) is said to be present. The horizon, h+, of

these observers is called the future event horizon of the

black hole.

This definition allows “naked singularities” to be present.



Cosmic Censorship

A Cauchy surface, C, in a (time orientable) spacetime

(M, gab) is a set with the property that every

inextendible timelike curve in M intersects C in precisely

one point. (M, gab) is said to be globally hyperbolic if it

possesses a Cauchy surface C. This implies that M has

topology R× C.
An asymptotically flat spacetime (M, gab) possessing a

black hole is said to be predictable if there exists a region

of M containing the entire exterior region and the event

horizon, h+, that is globally hyperbolic. This expresses

the idea that no “naked singularities” are present.



Cosmic Censor Hypothesis: The maximal Cauchy

evolution—which is automatically globally hyperbolic—of

an asymptotically flat initial data set (with suitable

matter fields) generically yields an asymptotically flat

spacetime with complete null infinity.

The validity of the cosmic censor hypothesis would assure

that any observer who stays outside of black holes could

not be causally influenced by singularities.



Spacetime Diagram of Gravitational Collapse
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Spacetime Diagram of Gravitational Collapse

with Angular Directions Suppressed and Light
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Null Geodesics and the Raychauduri Equation

For a congruence of null geodesics with affine parameter

λ and null tangent ka, define the expansion, θ, by

θ = ∇ak
a

The area, A of an infinitesimal area element transported

along the null geodesics varies as

d(lnA)

dλ
= θ

For null geodesics that generate a null hypersurface (such

as the event horizon of a black hole), the twist, ωab,

vanishes. The Raychauduri equation—which is a direct



consequence of the geodesic deviation equation—then

yields
dθ

dλ
= −1

2
θ2 − σabσab −Rabk

akb

where σab is the shear of the congruence. Thus, provided

that Rabk
akb ≥ 0 (i.e., the null energy condition holds),

we have
dθ

dλ
≤ −1

2
θ2

which implies
1

θ(λ)
≤ 1

θ0
+

1

2
λ

Consequently, if θ0 < 0, then θ(λ1) = −∞ at some

λ1 < 2/|θ0| (provided that the geodesic can be extended

that far).



The Area Theorem

Any horizon h+, is generated by future inextendible null

geodesics; cannot have θ = −∞ at any point of h+.

Thus, if the horizon generators are complete, must have

θ ≥ 0. However, for a predictable black hole, can show

that θ ≥ 0 without having to assume that the generators

of the event horizon are future complete—by a clever

argument involving deforming the horizon outwards at a

point where θ < 0.

Let S1 be a Cauchy surface for the globally hyperbolic

region appearing in the definition of predictable black

hole. Let S2 be another Cauchy surface lying to the

future of S1. Since the generators of h+ cannot leave h+



and S2 is a Cauchy surface, all of the generators of h+ at

S1 also are present at S2. Since θ ≥ 0, it follows that the

area carried by the generators of h+ at S2 is greater or

equal to A[S1 ∩ h+]. In addition, new horizon generators

may be present at S2. Thus, A[S2 ∩ h+] ≥ A[S1 ∩ h+],
i.e., we have the following theorem:

Area Theorem: For a predictable black hole with

Rabk
akb ≥ 0, the surface area A of the event horizon h+

never decreases with time.



Killing Vector Fields

An isometry is a diffeomorphism (“coordinate

transformation”) that leaves the metric, gab invariant. A

Killing vector field, ξa, is the infinitesimal generator of a

one-parameter group of isometries. It satisfies

0 = Lξgab = 2∇(aξb)

For a Killing field ξa, let Fab = ∇aξb = ∇[aξb]. Then ξ
a is

uniquely determined by its value and the value of Fab at

an aribitrarily chosen single point p.



Bifurcate Killing Horizons

2-dimensions: Suppose a Killing field ξa vanishes at a

point p. Then ξa is determined by Fab at p. In

2-dimensions, Fab =∝ ǫab, so ξ
a is unique up to scaling

If gab is Riemannian, the orbits of the isometries

generated by ξa must be closed and, near p, the orbit

structure is like a rotation in flat space:

.
p

Similarly, if gab is Lorentzian, the isometries must carry



the null geodesics through p into themselves and, near p,

the orbit structure is like a Lorentz boost in

2-dimensional Minkowski spacetime:

. p

4-dimensions: Similar results to the 2-dimensional case

hold if ξa vanishes on a 2-dimensional surface Σ. In

particular, if gab is Lorentzian and Σ is spacelike, then,

near Σ, the orbit structure of ξa will look like a Lorentz

boost in 4-dimensional Minkowski spacetime. The pair of



intersecting (at Σ) null surfaces hA and hB generated by

the null geodesics orthogonal to Σ is called a

bifurcate Killing horizon.

. Σ

h
B

hA

It follows that ξa is normal to both hA and hB. More

generally, any null surface h having the property that a

Killing field is normal to it is called a Killing horizon.



Surface Gravity and the Zeroth Law

Let h be a Killing horizon associated with Killing field

ξa. Let U denote an affine parameterization of the null

geodesic generators of h and let ka denote the

corresponding tangent. Since ξa is normal to h, we have

ξa = fka

where f = ∂U/∂u where u denotes the Killing parameter

along the null generators of h. Define the surface gravity,

κ, of h by

κ = ξa∇a ln f = ∂ ln f/∂u

Equivalently, we have ξb∇bξ
a = κξa on h. It follows

immediately that κ is constant along each generator of h.



Consequently, the relationship between affine parameter

U and Killing parameter u on an arbitrary Killing

horizon is given by

U = exp(κu)

Can also show that

κ = lim
h
(V a)

where V ≡ [−ξaξa]1/2 is the “redshift factor” and a is the

proper acceleration of observers following orbits of ξa.

In general, κ can vary from generator to generator of h.

However, we have the following three theorems:

Zeroth Law (1st version): Let h be a (connected) Killing



horizon in a spacetime in which Einstein’s equation holds

with matter satisfying the dominant energy condition.

Then κ is constant on h.

Zeroth Law (2nd version): Let h be a (connected) Killing

horizon. Suppose that either (i) ξa is hypersurface

orthogonal (static case) or (ii) there exists a second

Killing field ψa which commutes with ξa and satisfies

∇a(ψ
bωb) = 0 on h, where ωa is the twist of ξa

(stationary-axisymmetric case with “t-φ reflection

symmetry”). Then κ is constant on h.

Zeroth Law (3rd version): Let hA and hB be the two null

surfaces comprising a (connected) bifurcate Killing

horizon. Then κ is constant on hA and hB.



Constancy of κ and Bifurcate Killing Horizons

As just stated, κ is constant over a bifurcate Killing

horizon. Conversely, it can be shown that if κ is constant

and non-zero over a Killing horizon h, then h can be

extended locally (if necessary) so that it is one of the null

surfaces (i.e., hA or hB) of a bifurcate Killing horizon.

In view of the first version of the 0th law, we see that

apart from “degenerate horizons” (i.e., horizons with

κ = 0), bifurcate horizons should be the only types of

Killing horizons relevant to general relativity.



Event Horizons and Killing Horizons

Hawking Rigidity Theorem: Let (M, gab) be a stationary,

asymptotically flat solution of Einstein’s equation (with

matter satisfying suitable hyperbolic equations) that

contains a black hole. Then the event horizon, h+, of the

black hole is a Killing horizon.

The stationary Killing field, ξa, must be tangent to h+. If

ξa is normal to h+ (so that h+ is a Killing horizon of ξa),

then it can be shown that ξa is hypersurface orthogonal,

i.e., the spacetime is static. If ξa is not normal to h+,

then there must exist another Killing field, χa , that is

normal to the horizon. It can then be further shown that

there is a linear combination, ψa, of ξa and χa whose



orbits are spacelike and closed, i.e., the spacetime is

axisymmetric. Thus, a stationary black hole must be

static or axisymmetric.

We can choose the normalization of χa so that

χa = ξa + Ωψa

where Ω is a constant, called the

angular velocity of the horizon.
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A Close Analog: Lorentz Boosts in Minkowski Spacetime

horizon of accelerated
observers

null plane: past

orbits of

symmetry
boost

Lorentz

horizon of accelerated
observers

null plane: future

Note: For a black hole with M ∼ 109M⊙, the curvature

at the horizon of the black hole is smaller than the

curvature in this room! An observer falling into such a

black hole would hardly be able to tell from local

measurements that he/she is not in Minkowski spacetime.



Summary

• If cosmic censorship holds, then—starting with

nonsingular initial conditions—gravitational collapse

will result in a predictable black hole.

• The surface area of the event horizon of a black hole

will be non-decreasing with time (2nd law).

It is natural to expect that, once formed, a black hole

will quickly asymptotically approach a stationary

(“equilibrium”) final state. The event horizon of this

stationary final state black hole:

• will be a Killing horizon

• will have constant surface gravity, κ (0th law)



• if κ 6= 0, will have bifurcate Killing horizon structure
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Lagrangians and Hamiltonians in Classical Field Theory

Lagrangian and Hamiltonian formulations of field

theories play a central role in their quantization.

However, it had been my view that their role in classical

field theory was not much more than that of a mnemonic

device to remember the field equations. When I wrote

my GR text, the discussion of the Lagrangian

(Einstein-Hilbert) and Hamiltonian (ADM) formulations

of general relativity was relegated to an appendix. My

views have changed dramatically in the past 20 years:

The existence of a Lagrangian or Hamiltonian provides

important auxiliary structure to a classical field theory,

which endows the theory with key properties.



Lagrangians and Hamiltonians in Particle Mechanics

Consider particle paths q(t). If L is a function of (q, q̇),

then we have the identity

δL = [
∂L

∂q
− d

dt

∂L

∂q̇
]δq +

d

dt
[
∂L

∂q̇
δq]

holding at each time t. L is a Lagrangian for the system

if the equations of motion are

0 = E ≡ ∂L

∂q
− d

dt

∂L

∂q̇

The “boundary term”

Θ(q, q̇) ≡ ∂L

∂q̇
δq = pδq



(with p ≡ ∂L/∂q̇) is usually discarded. However, by

taking a second, antisymmetrized variation of Θ and

evaluating at time t0, we obtain the quantity

Ω(q, δ1q, δ2q) = [δ1Θ(q, δ2q)− δ2Θ(q, δ1q)]|t0
= [δ1pδ2q − δ2pδ1q]|t0

Then Ω is independent of t0 provided that the varied

paths δ1q(t) and δ2q(t) satisfy the linearized equations of

motion about q(t). Ω is highly degenerate on the infinite

dimensional space of all paths F , but if we factor F by

the degeneracy subspaces of Ω, we obtain a finite

dimensional phase space Γ on which Ω is non-degenerate.

A Hamiltonian, H, is a function on Γ whose pullback to



F satisfies

δH = Ω(q; δq, q̇)

for all δq provided that q(t) satisfies the equations of

motion. This is equivalent to saying that the equations of

motion are

q̇ =
∂H

∂p
ṗ = −∂H

∂q



Lagrangians and Hamiltonians in Classical Field Theory

Let φ denote the collection of dynamical fields. The

analog of F is the space of field configurations on

spacetime. For an n-dimensional spacetime, a Lagrangian

L is most naturally viewed as an n-form on spacetime

that is a function of φ and finitely many of its

derivatives. Variation of L yields

δL = Eδφ+ dΘ

where Θ is an (n− 1)-form on spacetime, locally

constructed from φ and δφ. The equations of motion are

then E = 0. The symplectic current ω is defined by



ω(φ, δ1φ, δ2φ) = δ1Θ(φ, δ2φ)− δ2Θ(φ, δ1φ)

and Ω is then defined by

Ω(φ, δ1φ, δ2φ) =

∫

C

ω(φ, δ1φ, δ2φ)

where C is a Cauchy surface. Phase space is constructed

by factoring field configuration space by the degeneracy

subspaces of Ω, and a Hamiltonian, Hξ, conjugate to a

vector field ξa on spacetime is a function on phase space

whose pullback to field configuration space satisfies

δHξ = Ω(φ; δφ,Lξφ)



Diffeomorphism Covariant Theories

A diffeomorphism covariant theory is one whose

Lagrangian is constructed entirely from dynamical fields,

i.e., there is no “background structure” in the theory

apart from the manifold structure of spacetime. For a

diffeomorphism covariant theory for which dynamical

fields, φ, are a metric gab and tensor fields ψ, the

Lagrangian takes the form

L = L
(

gab, Rbcde, ...,∇(a1 ...∇am)Rbcde;ψ, ...,∇(a1 ...∇al)ψ
)



Noether Current and Noether Charge

For a diffeomorphism covariant theory, every vector field

ξa on spacetime generates a local symmetry. We associate

to each ξa and each field configuration, φ (not required,

at this stage, to be a solution of the equations of motion),

a Noether current (n− 1)-form, Jξ, defined by

Jξ = Θ(φ,Lξφ)− ξ · L

A simple calculation yields

dJξ = −ELξφ

which shows Jξ is closed (for all ξa) when the equations

of motion are satisfied. It can then be shown that for all



ξa and all φ (not required to be a solution to the

equations of motion), we can write Jξ as

Jξ = ξaCa + dQξ

where Ca = 0 are the constraint equations of the theory

and Qξ is an (n− 2)-form locally constructed out of the

dynamical fields φ, the vector field ξa, and finitely many

of their derivatives. It can be shown that Qξ can always

be expressed in the form

Qξ = Wc(φ)ξ
c +Xcd(φ)∇[cξd] +Y(φ,Lξφ) + dZ(φ, ξ)

Furthermore, there is some “gauge freedom” in the

choice of Qξ arising from (i) the freedom to add an exact

form to the Lagrangian, (ii) the freedom to add an exact



form to Θ, and (iii) the freedom to add an exact form to

Qξ. Using this freedom, we may choose Qξ to take the

form

Qξ = Wc(φ)ξ
c +Xcd(φ)∇[cξd]

where

(Xcd)c3...cn = −Eabcd
R ǫabc3...cn

where Eabcd
R = 0 are the equations of motion that would

result from pretending that Rabcd were an independent

dynamical field in the Lagrangian L.



Hamiltonians

Let φ be any solution of the equations of motion, and let

δφ be any variation of the dynamical fields (not

necessarily satisfying the linearized equations of motion)

about φ. Let ξa be an arbitrary, fixed vector field. We

then have

δJξ = δΘ(φ,Lξφ)− ξ · δL
= δΘ(φ,Lξφ)− ξ · dΘ(φ, δφ)

= δΘ(φ,Lξφ)− LξΘ(φ, δφ) + d(ξ ·Θ(φ, δφ))

On the other hand, we have

δΘ(φ,Lξφ)− LξΘ(φ, δφ) = ω(φ, δφ,Lξφ)



We therefore obtain

ω(φ, δφ,Lξφ) = δJξ − d(ξ ·Θ)

Replacing Jξ by ξ
aCa + dQξ and integrating over a

Cauchy surface C, we obtain

Ω(φ, δφ,Lξφ) =

∫

C

[ξaδCa + δdQξ − d(ξ ·Θ)]

=

∫

C

ξaδCa +

∫

∂C

[δQξ − ξ ·Θ)]

The (n− 1)-form Θ cannot be written as the variation

of a quantity locally and covariantly constructed out of

the dynamical fields (unless ω = 0). However, it is

possible that for the class of spacetimes being considered,



we can find a (not necessarily diffeomorphism covariant)

(n− 1)-form, B, such that

δ

∫

∂C

ξ ·B =

∫

∂C

ξ ·Θ

A Hamiltonian for the dynamics generated by ξa exist

on this class of spacetimes if and only if such a B exists.

This Hamiltonian is then given by

Hξ =

∫

C

ξaCa +

∫

∂C

[Qξ − ξ ·B]

Note that “on shell”, i.e., when the field equations are

satisfied, we have Ca = 0 so the Hamiltonian is purely a

“surface term”.



Energy and Angular Momentum

If a Hamiltonian conjugate to a time translation ξa = ta

exists, we define the energy, E of a solution φ = (gab, ψ)

by

E ≡ Ht =

∫

∂C

(Qt − t ·B)

Similarly, if a Hamiltonian, Hϕ, conjugate to a rotation

ξa = ϕa exists, we define the angular momentum, J of a

solution by

J ≡ −Hϕ = −
∫

∂C

[Qϕ − ϕ ·B]

If ϕa is tangent to C, the last term vanishes, and we



obtain simply

J = −
∫

∂C

Qϕ



Energy and Angular Momentum in General Relativity:

ADM vs Komar

In general relativity in 4 dimensions, the Einstein-Hilbert

Lagrangian is

Labcd =
1

16π
ǫabcdR

This yields the symplectic potential 3-form

Θabc = ǫdabc
1

16π
gdegfh (∇fδgeh −∇eδgfh) .

The corresponding Noether current and Noether charge

are

(Jξ)abc =
1

8π
ǫdabc∇e

(

∇[eξd]
)

,



and

(Qξ)ab = −
1

16π
ǫabcd∇cξd.

For asymptotically flat spacetimes, the formula for

angular momentum conjugate to an asymptotic rotation

ϕa is

J =
1

16π

∫

∞

ǫabcd∇cϕd

This agrees with the ADM expression, and when ϕa is a

Killing vector field, it agrees with the Komar formula.

For an asymptotic time translation ta, a Hamiltonian, Ht,

exists with

taBabc = −
1

16π
ǫ̃bc

(

(∂rgtt − ∂tgrt) + rkhij(∂ihkj − ∂khij)
)



The corresponding Hamiltonian

Ht =

∫

C

taCa +
1

16π

∫

∞

dSrkhij(∂ihkj − ∂khij)

is precisely the ADM Hamiltonian, and the surface term

is the ADM mass,

MADM =
1

16π

∫

∞

dSrkhij(∂ihkj − ∂khij)

By contrast, if ta is a Killing field, the Komar expression

MKomar = −
1

8π

∫

∞

ǫabcd∇ctd

happens to give the correct (ADM) answer, but this is

merely a fluke.



The First Law of Black Hole Mechanics

Return to a general, diffeomorphism covariant theory, and

recall that for any solution φ, any δφ (not necessarily a

solution of the linearized equations) and any ξa, we have

Ω(φ, δφ,Lξφ) =

∫

C

ξaδCa +

∫

∂C

[δQξ − ξ ·Θ)]

Now suppose that φ is a stationary black hole with a

Killing horizon with bifurcation surface Σ. Let ξa denote

the horizon Killing field, so that ξa|Σ = 0 and

ξa = ta + ΩHϕ
a

Then Lξφ = 0. Let δφ satisfy the linearized equations,

so δCa = 0. Let C be a hypersurface extending from Σ to



infinity.

0 =

∫

∞

[δQξ − ξ ·Θ)]−
∫

Σ

δQξ

Thus, we obtain

δ

∫

Σ

Qξ = δE − ΩHδJ

Furthermore, from the formula for Qξ and the properties

of Killing horizons, one can show that

δ

∫

Σ

Qξ =
κ

2π
δS

where S is defined by

S = 2π

∫

Σ

Xcdǫcd



where ǫcd denotes the binormal to Σ. Thus, we have

shown that the first law of black hole mechanics

κ

2π
δS = δE − ΩHδJ

holds in an arbitrary diffeomorphism covariant theory of

gravity, and we have obtained an explicit formula for

black hole entropy S.



Black Holes and Thermodynamics

Stationary black hole ↔ Body in thermal equilibrium

Just as bodies in thermal equilibrium are normally

characterized by a small number of “state parameters”

(such as E and V ) a stationary black hole is uniquely

characterized by M,J,Q.

0th Law

Black holes: The surface gravity, κ, is constant over the

horizon of a stationary black hole.

Thermodynamics: The temperature, T , is constant over a

body in thermal equilibrium.



1st Law

Black holes:

δM =
1

8π
κδA+ ΩHδJ + ΦHδQ

Thermodynamics:

δE = TδS − PδV

2nd Law

Black holes:

δA ≥ 0

Thermodynamics:

δS ≥ 0



Analogous Quantities

M ↔ E ← But M really is E!

1
2π
κ ↔ T

1
4
A ↔ S
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Particles and Particle Creation

Consider an ordinary quantum mechanical harmonic

oscillator with m = 1 and spring constant k = ω2

H =
1

2
[p2 + ω2q2] .

In the Heisenberg representation, the position operator

is given by

q(t) =
1√
2ω

[e−iωta+ e−iωta†] .

Suppose that we start the oscillator in its ground state

|0〉, satisfying a|0〉 = 0. Suppose we vary the spring

constant with time, k = k(t), and then bring it back to

its original value. Will the oscillator have a non-zero



probability of being in an excited state at the end of the

process? Yes, if and only if the classical solution that

initially oscillates with purely positive frequency (i.e., as

e−iωt) picks up a negative frequency part.

Now consider a Klein-Gordon scalar field, φ, in a

stationary, globally hyperbolic curved spacetime,

∇a∇aφ−m2φ = 0 .

Can decompose φ into “modes,” each of which behaves

as a decoupled harmonic oscillator. Interpret the ground

state of all of these modes as representing the “vacuum

state.” Interpret the excited states as representing the

presence of “particles.”



Now consider a spacetime that is initially stationary, goes

through a time dependent era, and then becomes

stationary again. If an initially positive frequency mode

picks up a negative frequency part as it evolves in this

spacetime, will have “spontaneous particle creation.”



Particle Creation by Black Holes

In extended Schwarzschild spacetime, consider the

backwards in time propagation of a positive frequency

wavepacket that oscillates as exp(−iωu) near future
infinity and vanishes on the future horizon. Part of this

wave will go through the white hole horizon and part will

scatter back to infinity.

H

H
I

I
+

+

−

−



Since Schwarzschild spacetime is static, the wavepacket

on the white hole horizon also will oscillate with positive

frequency exp(−iωu) in the white hole horizon

with respect to Killing time u. But affine time U is

related to Killing time by U = − exp(−κu). Thus, the
wave oscillates on the past horizon as

exp[+i
ω

κ
ln|U |]

with respect to affine time. This is a mixture of positive

and negative frequencies.

Now consider the backward propagation of this

wavepacket on a gravitational collapse spacetime



t
r

The positive and negative frequency decomposition with

respect to affine time on the past horizon of extended

Schwarzschild spacetime yields the positive and negative

frequency decomposition at early times in the

gravitational collapse spacetime. Consequently, particle

creation will occur at a steady rate in a gravitational



collapse spacetime. Even more remarkably, this particle

creation is thermal in that a distant observer will see an

exactly thermal flux of all species of particles appearing

to emanate from the black hole. Black holes are perfect

black bodies!

The temperature of the radiation “emitted” by a black

hole is

kT =
h̄κ

2π
.

For a Schwarzshild black hole (J = Q = 0) we have

κ = c3/4GM , so

T ∼ 10−7M⊙

M
.



The mass loss of a black hole due to this process is

dM

dt
∼ AT 4 ∝M 2 1

M 4
=

1

M 2
.

Thus, an isolated black hole should “evaporate”

completely in a time

τ ∼ 1073(
M

M⊙

)3sec .



Spacetime Diagram of Evaporating Black Hole

Black Holeattained
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Analogous Quantities

M ↔ E ← But M really is E!

1
2π
κ ↔ T ← But κ/2π really is the (Hawking)

temperature of a black hole!

1
4
A ↔ S



A Closely Related Phenomenon: The Unruh Effect

right wedge

View the “right wedge” of Minkowski spacetime as a

spacetime in its own right, with Lorentz boosts defining a

notion of “time translation symmetry”. Then, when

restricted to the right wedge, the ordinary Minkowski

vacuum state, |0〉, is a thermal state with respect to this

notion of time translations (Bisognano-Wichmann

theorem). A uniformly accelerating observer “feels



himself to be in a thermal bath at temperature

kT =
h̄a

2πc

(i.e., in SI units, T ∼ 10−23a).

For a black hole, the temperature locally measured by a

stationary observer is

kT =
h̄κ

2πV c

where V = (−ξaξa)1/2 is the redshift factor associated

with the horizon Killing field. Thus, for an observer near

the horizon, kT → h̄a/2πc.



The Generalized Second Law

Ordinary 2nd law: δS ≥ 0

Classical black hole area theorem: δA ≥ 0

However, when a black hole is present, it really is

physically meaningful to consider only the matter outside

the black hole. But then, can decrease S by dropping

matter into the black hole. So, can get δS < 0.

Although classically A never decreases, it does decrease

during the quantum particle creation process. So, can get

δA < 0.

However, as first suggested by Bekenstein, perhaps have

δS′ ≥ 0



where

S′ ≡ S +
1

4

c3

Gh̄
A

where S = entropy of matter outside black holes and A =

black hole area.



Can the Generalized 2nd Law be Violated?

Slowly lower a box with (locally measured) energy E and

entropy S into a black hole.

black holeE, S

Lose entropy S

Gain black hole entropy δ(1
4
A) = E

Tb.h.

But, classically, E = V E → 0 as the “dropping point”

approaches the horizon, where V is the redshift factor.

Thus, apparently can get δS′ = −S + δ(1
4
A) < 0.



However: The temperature of the “acceleration

radiation” felt by the box varies as

Tloc =
Tb.h.

V
=

κ

2πV

and this gives rise to a “buoyancy force” which produces

a quantum correction to E that is precisely sufficient to

prevent a violation of the generalized 2nd law!



Analogous Quantities

M ↔ E ← But M really is E!

1
2π
κ ↔ T ← But κ/2π really is the (Hawking)

temperature of a black hole!

1
4
A ↔ S ← Apparent validity of the generalized 2nd law

strongly suggests that A/4 really is the physical entropy

of a black hole!



Entanglement in Quantum Field Theory

Entanglement is a ubiquitous feature of quantum

mechanics, but it is an essential feature of quantum field

theory. Consider any two globally hyperbolic regions, O1

and O2, of spacetime that are causal complements of each

other, as shown:

1O O2

Let system 1 be the quantum field observables in O1 and

let system 2 be the quantum field observables in O2.



Then all physically reasonable states of the joint system

will be strongly (in fact, infinitely) entangled. In

particular, all physically reasonable states exhibit strong

correlations at spacelike separations on small scales.

For example, all physically reasonable states in

Minkowski spacetime display strong entanglement

between the field observables in the left and right Rindler

wedges. This accounts for why observers in a Rindler

wedge see a (mixed) thermal state when the quantum

field is in the (pure) Minkowski vacuum.



Entanglement with Black Holes; Information Loss

In a spacetime in which a black hole forms, there will be

entanglement between the state of quantum field

observables inside and outside of the back hole. This

entanglement is intimately related to the Hawking

radiation emitted by the black hole. In addition to the

strong quantum field entanglement arising on small scales

near the horizon associated with Hawking radiation,

there may also be considerable additional entanglement

because the matter that forms (or later falls into) the

black hole may be highly entangled with matter that

remains outside of the black hole.

The Hawking effect and its back reaction effects give rise



to the following semiclassical picture of black hole

evaporation:

Singularity
(r = 0)

r = 0
(origin of

coordinates)

Pure state

Mixed State

Correlations

Pure state

In a semiclassical treatment, if the black hole evaporates



completely, the final state will be mixed, i.e., one will

have dynamical evolution from a pure state to a mixed

state.



What’s Wrong With This Picture?

If the semiclassical picture is wrong, there are basically 4

places where it could be wrong in such a way as to

modify the conclusion of information loss:

I

II

III

IV



Possibility I: No Black Hole Ever Forms (Fuzzballs)

In my view, this is the most radical alternative. Both

(semi-)classical general relativity and quantum field

theory would have to break down in an arbitrarily low

curvature/low energy regime.

I

Note that if the fuzzball or other structure doesn’t form



at just the right moment, it will be “too late” to do

anything without a major violation of causality/locality

in a low curvature regime as well.



Possibility II: Major Departures from Semiclassical Theory

Occur During Evaporation (Firewalls)

This is also a radical alternative, since the destruction of

entanglement between the inside and outside of the black

hole during evaporation requires a breakdown of quantum

field theory in an arbitrarily low curvature regime.

II



A singular state at the horizon is clearly seems necessary

to avoid quantum field entanglement with the black hole,

but it is far from clear that it is sufficient, e.g., it would

seem that one would also need violations of

causality/locality to destroy the entanglement between

matter that formed the black hole and matter that never

fell in.



Possibility III: Remnants

This is not a radical alternative, since the breakdown of

the semi-classical picture occurs only near the Planck

scale.

III

However, it is not clear what “good” the remnants do



(since the “information,” although still present, is

inaccessible), and there are thermodynamic problems

with them. I don’t know of any present advocates of

remnants.



Possibility IV: A Final Burst

This alternative requires an arbitrarily large amount of

“information” to be released from an object of Planck

mass and size.

IV

This is not necessarily as crazy as it might initially

sound: Very recently, Hotta, Schtzhold, and Unruh have

considered the model of an accelerating mirror that emits



Hawking-like radiation. The “partner particles” to the

Hawking radiation are indistinguishable from vacuum

fluctuations, and thus the information is “carried off” by

vacuum fluctuations that are correlated with the emitted

particles—at no energy cost!

Unruh and I are currently working on showing that a

similar behavior could occur in the black hole case. If so,

it could provide a satisfactory means of regaining

information.



Arguments Against Information Loss:

Violation of Unitarity

In scattering theory, the word “unitarity” has 2

completely different meanings: (1) Conservation of

probability; (2) Evolution from pure states to pure states.

Failure of (1) would represent a serious breakdown of

quantum theory (and, indeed, of elementary logic).

However, that is not what is being proposed by the

semiclassical picture.

Failure of (2) would be expected to occur in any situation

where the final “time” is not a Cauchy surface, and it is

entirely innocuous.



Initial

Final

For example, we get “pure → mixed” for the evolution of

a massless Klein-Gordon field in Minkowski spacetime if

the final “time” is chosen to be a hyperboloid. This is a

prediction of quantum theory, not a violation of quantum

theory.

The “pure → mixed” evolution predicted by the

semiclassical analysis of black hole evaporation is of an

entirely similar character.



I find it ironic that some of the same people who consider

“pure → mixed” to be a violation of quantum theory

then endorse truly drastic alternatives that really are

violations of quantum (field) theory in a regime where it

should be valid. I have a deep and firm belief in the

validity of the known laws of quantum theory (on length

and time scales larger than the Planck scale), and I will

continue to vigorously defend quantum theory against

those who may have initially set out to try to save it but

who somehow got diverted into trying to destroy it.



Arguments Against Information Loss:

Failure of Energy and Momentum Conservation

Banks, Peskin, and Susskind argued that evolution laws

taking “pure → mixed” would lead to violations of

energy and momentum conservation. However, they

considered only a “Markovian” type of evolution law

(namely, the Lindblad equation). This would not be an

appropriate model for black hole evaporation, as the

black hole clearly should retain a “memory” of what

energy it previously emitted.

There appears to be a widespread belief that any

quantum mechanical decoherence process requires energy

exchange and therefore a failure of conservation of energy



for the system under consideration. This is true if the

“environment system” is taken to be a thermal bath of

oscillators. However, it is not true in the case where the

“environment system” is a spin bath. In any case, Unruh

has provided a very nice example of a quantum

mechanical system that interacts with a “hidden spin

system” in such a way that “pure → mixed” for the

quantum system but exact energy conservation holds.

Bottom line: There is no problem with maintaining exact

energy and momentum conservation in quantum

mechanics with an evolution wherein “pure → mixed”.



Arguments Against Information Loss: AdS/CFT

The one sentence version of AdS/CFT argument against

the semiclassical picture is simply that if gravity in

asymptotically AdS spacetimes is dual to a conformal

field theory, then since the conformal field theory does

not admit “pure → mixed” evolution, such evolution

must also not be possible in quantum gravity.

AdS/CFT is a conjecture. The problem with using

AdS/CFT in an argument against information loss is not

that this conjecture has not been proven, but rather that

it has not been formulated with the degree of precision

needed to use it reliably in such an argument:

A slightly more careful version of argument that



AdS/CFT is incompatible with information loss goes as

follows: “Information loss” in black hole evaporation is

the statement that the bulk observables at late times are

not the complete set of bulk observables. AdS/CFT is

asserted to say that the complete set of bulk observables

should be in 1-1 correspondence with the complete set of

CFT observables. The CFT is supposed to undergo

ordinary Hamiltonian evolution, which implies that the

CFT observables at late times (or at any finite time) are

equivalent to the complete set of CFT observables. Thus,

if the bulk observables at late times are in 1-1

correspondence with the CFT observables at late times,

they must represent the complete set of bulk observables,



i.e., information cannot be lost.

Some weaknesses of this argument are as follows: (1)

Very little is explicitlly known about the conjectured

“dictionary” between bulk and CFT observables. Indeed,

there is very little, if any, understanding of what “bulk

observables” are supposed to be in quantum gravity!

Why can’t the CFT observables be in 1-1 correspondence

with only the bulk observables corresponding to the

spacetime region outside of black holes? (2) Is the

correspondence between bulk observables and CFT

observables supposed to “local in spacetime”? If so, then

since the CFT observables at one time determine the

CFT observables at all times, it follows that knowledge of



the bulk observables in a neighborhood of infinity at one

time would determine all bulk observables. This is totally

at odds with classical/semiclassical behavior in general

relativity, and raises issues much more significant than

the “information paradox.” (3) If the correspondence

between bulk and CFT observables is nonlocal in

spacetime, why can’t the CFT state at late times

continue to encode the information that went into a black

hole, even though that information is no longer accessible

to late time bulk observers?

So, I hope that the AdS/CFT ideas can be developed

further so as to make a solid argument against (or for!)

information loss. We will know that such as stage has



been reached when people who invoke AdS/CFT provide

some explanation of how information is regained—not

just that it must happen somehow or other. Until then,

I’m sticking with information loss!



Conclusions

The study of black holes has led to the discovery of a

remarkable and deep connection between gravitation,

quantum theory, and thermodynamics. It is my hope and

expectation that further investigations of black holes will

lead to additional fundamental insights.


