Tools for supersymmetry

Based on some sections of the b
‘Supergravity’
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Lecture 1: Symmetries

= What is a symmetry (1.2)

= Finite and infinitesimal transformations, generaor
matrices, commutators, (1.2.2, 11.1.1)

m Spacetime symmetries (1.z

= Noether currents and charges, energy-momentum
tensors (1.3)

m Classical versus quantum transformations (1.4, 1.5)
m Gauge transformations (11.1.2)
m Counting degrees of freedom (intro ch.4)












d(e) = eATA,

Ty operator,
can in Hamiltonian be defined by Poisson brackets.
First linear:

Tad' = —(ta)'¢’, [tasts] = fas“tc.
Transformations act on fields !l

5(e1)d(e2)¢' = €/Tueh [—(tB)';¢]
ete5(—tp)'Tad’
ered (—tp) j(—ta) k"
Leads to
(T4, T8] = fap“Tc,

T4 IS more general notation.
W in a complex representation of a compact symmetry
group, their conjugates W,, and fields ¢” in the adjoint:

TAaW® = —(ta)*sW7?,







AS operator

6 = al'Py + M My,

=.g; on fermions: (my,,] = 57uv)

— (L[HV] + j’ﬂw)w(w)




Not linear

Tag" = kY4(9) -

with ky = k% () 322.:

(ka, kgl = fap©kc




Generic infinitesimal

5¢'(x) = e A ¢t (),

(constant parameters).

Transformation of Lagrangian:

0L 0L

58M¢i8u AQbZ + 5¢z

Leads to conserved currents
0L

58H¢Z

T APt = Ao KK .

A bt + KK OuJt 4~ 0.




n L L
|74
—8
¢81/¢5 ,C |
|

eul/ —_
— THV
50
p (mPH”
R
— mVPH




7(Z,0) = 65/80,6(7, 0

Ay’ (x) = {Qa,¢'(x)]

{Qa, QY = f45°QC

{A,BY=C — [A,B]qu=IC, h=1.







generic gauge symmetry
Tp

local translations Py

Lorentz transtormations My,
Supersymmetry Qa

Internal symmetry T'4




@Aa tB] — fABCtCa
5(0)p = —0t 40
[6(61),6(02)]¢ = 6(63)¢

65 = 0803 14,°

d(e) = eATA,

D — 3 AQD

(T4, Tg] = fag“Tc,













Starting from the SUSY-commutator relation

[6(e1),8(e2)] = a e Py = —5e5(v") gaci Pa
read of that

{Qa. Qp} = —5(7apPa. — —5(Yap = faa"-

Obtain from this the supergravity transformation of the frame field eﬁ,
using that this is the gauge field of translations, and that ;bg is the
gauge field of supersymmetry.

(There are no other commutators of the form [Ty, Q] = ...P%)




On-shell Degrees of freedom
by Initial conditions

m On-shell= nr. of helicity states

= count number of initial conditions, divide by 2.
(coordinate + momenta describe one state)

= E.g. scalar: field equaticod 0*¢ =0.
Initial conditionsg(t=0,X) andd,¢(t=0,X)

m Dirac: first order: determines time derivativést D=4)
4 initial conditions: 2 dof on shell

= PS:0'0'¢p =0 has no normalizable solutions iRR,
hence this gives=0 (other way: we considéidi=k?).

= count only gauge inequivalent solutions. How: cleoas
gauge condition






3. Clifford algebras and spinors

= Determines the properties of
- the spinors Iin the theory
- the supersymmetry algebra

= We should knoy
- how large are the smallest spinors in each
dimension
- what are the reality conditions

- which bispinors are (anti)symmetric
(can occur in superalgebra)



m 2.

Lecture 2 and 3
Clifford algebras and spinors

Clifford algebra in‘a general dimensi(#1):
Complete Clifford, Levi-Civita, practical basis (even dim),
highest rank and chiral, odd-dim, symmetries-ainatrices

Spinors in general dimensi(3.2):
Including: spinor bilinears, spinor indices, Fierz relations,
reality

. Spinor properties

Majorana spinor¢3.3) (and other reduced spinors):

their dimension and properties

Majorana spinors in physical theorigs4).

fleld equations, Weyl versus Majorana, U(1) symmetries












_ (_i)m—l—l

T = 7071 ---TD-1>

which satisfies 42 = 1.
E.g. D=4: v = ivg717273-

Projections

Pr, = %(ﬂ + V) Pr = %(ﬂ — Vx)







Supersymmetry and
symmetry of bi-spinors (intro)

m E.g. a supersymmetry on a scalar is a symmetry
transformation depending on a spigor

0(e)p(x) = ey(x)
= For the algebra we should obtain a C
[6(e2), 6(e1)] p(x) =E17 20 ()
= Then the GCT parametéf
should be antisymmetric in the spinor parameters

¢ = €19 eo = —exveq
Thus, to see what Is possible, we have to know the
symmetry properties of bi-spinors



C is a matrix such that Cryy,...u, are
all symmetric or antisymmetric,

o
w

C_|_=O'1®(72®0'1®02®..., tot1 =1,
C_=0o2R01RQRooRo1 R ..., tot1 = —1.

NN RO OO

W W NNN | P =




3.2 Spinors In general dimensions
3.2.1 Spinors and spinor bilinears

Dirac_conjugate
X = \TRY
Majorana conjugate
A=)\ C
m with anticommuting
spinors

)_\P}//Ll.../,brx — t?"iﬁ)/ul...p,r)\

D (mod 8) |t =-1 t,=+1
0 0,3 2,1
0,1 2,3
1 0,1 2,3
2 0,1 2,3
1,2 0,3
3 1,2 0,3
4 1,2 0,3
2,3 0,1
5 2,3 0,1
§ 2,3 0,1
0,3 1,2
e 0,3 1,2

Since symmetries of spinor bilinears are important
supersymmetry, we use
the Majorana conjugate to define




HRHO O 0O
NI NN = W

X




X =C"g, o=z,

Note that C,3 are components of C~1
and C*? of CT.

(’Yu)aﬁ — (’Yu)ozfycfyﬁ
Have symmetry —t1: (vu)ag = —t1(Vu)ga-
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Complex conjugation can be replaced by charge
conjugation, an operation that acts as complexug@tjon
on scalars, and has a simple action on fermiondalis.

For example, it preserves the order of spinor facto

In fact complex conjugation uses

B = itonyO

()¢ =B B = (—tot1)w,

(RMA)* = (RMN)Y = (~tot1)xTMENC
Note: (A\)C = —t1, (7)€ = (-)P/2H1y,.







Majorana:

D=4 mod 4

(Pr)C = Prep, (Prip)© = Pry







3.4 Majorana OR Weyl fields In

D=4
= Any field theory of a Majorana spinor field
can be rewritten in terms of a Wey! fielguP

and its complex conjugate.

m Conversely, any theory involving the chiral fie
x=P, x and its conjugatg“=P5x* can be
rephrased as a Majorana equation Iif one defines
the Majorana field =P, x +Psx ©.

m Supersymmetry theories in D=4 are formulated
In both descriptions in the physics literature.
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Exercise: map of susy and sugra

m Take the following ingredients from field theory:

- Su
Su

- Su

persymmetry theories can have at most 16 real
percharges (spinor parameters)

pergravity at most 32.

= Make now a map of possible supersymmetric
(and supergravity) theories that are possible In
dimensiond > 4 : dimension vertically, and

number of generators horizontally.



The map: dimensionsand
# of supersymmetries

spinor

32

24

20

16

12

11

M

10

MW

M

M

M~ OO | N[00 |©




The map: dimensionsand
# of supersymmetries

D |susy| 32 24 20 16 12 8 4

11| M M

10| MW | THA | |IB I

9\ M N=2 N=1

8| M N=2 N=1

7S N=4 N=2

6|SW | (2,2 |(2,1) (1,1) (2,0 (1,0)

5|S N=8 | N=6 N=4 N=2

4\ M N=8 |N=6 | N=5 N=4 N=3 N=2 N=]
SUGRA SUGRA/SUSY| SUGRA| SUGRA/SUSY]







PrxA\Pr = —%Pm” X’YMPLX










= \%PL(@‘Z—I—F)@ 0Prx =
F = —-W'(Z 3

51, 82) Prx = €17 ea P, |—58ux + 2 (P + W")X




Lecture 4: Duality and
tools of gauge theories

Electromagnetic duality and the symplectic group (4.2.4)

Soft algebras and covariant translations:
-first example in SUSY gauge theory (6.3.1)
-general formulation (first part of 11.1

zilch symmetries and open algebras:
- first example in Wess-Zumino multiplet (6.2.2)
- general formulation (continuation of 11.1.3),

Covariant derivatives, curvatures and their transformations (11.2)

(if time allows): modification for spacetime symmetries (11.3):
general coordinate transformations, covariant derivatives and
curvatures in gravity theories.



= —3(Re fap)Fj, FM P4+4(Am f4p)e 7 Py

Bianchi identities

Equations of motion

G~ =(C+IiDf)F = (C+iDf)(A+iBf)~

if =(C+iDf)(A+iBf)~!




More on duality transformations

= Not symmetries of the action if BO.

= Two applications:

- symmetries : those induced by transformations @f th
scalars. In extended sugra: all symmetries of ta&ass
are of this form, embedded In

- constants (spurionic guantities) change: like nm M
theory: dualities between theories

m charges are in symplectic vectors.
If quantized: charges: Sp(.., Z).




= 9,0 + 0“4, fpc”
0N fpo,







= \%PL(@‘Z—I—F)@ 0Prx =
F = —-W'(Z 3

51, 82) Prx = €17 ea P, |—58ux + 2 (P + W")X







S i [6(e2)8(e1)] ¢ = 0




6S

[6(e1),8(e2)] ¢ = susy algebra + 7'/ (e1, o) 507




A covariant quantity is a local function that transfor
under all local symmetries with no derivatives ¢

transformation parameter.




(Ou — 6(Bu)) Cbi‘
(0u — BjiTa) 6"

_6(Rlﬂ/) 9
20y, B, + BB fpc?




(anti)commutators structure constants third parameter
| Maby Mcal] = 4ngafcMpap) f{ab}{cd}{ I = Bmudg oy | A8 = 221"
[Pa, M{bc}} — 277&[ch] fa’{bc} — 2%[1)5?] £4 = —)\%bflb 4+ )\Cl‘bﬁgb

[Pa, ] =0
{Qa, Qs} = —3(") apla = ¢ ¢4 = Teove

Mgy, Q = —57aQ =3 3= P Pvwe2 — 236
[Po, Q] =0

5%




Poincaré on scalars

5(a, Np(x) = a0 — SNV L] () = [0 + M) O () = £(2)dud(a

Orbital part can be included in £#(x).
Is change of basis from a“(z) and \%(z) to

Eh(z) = at(x) + MY (2)z, and A2 (2).

spinors: global

d(a, W (x) = [a" + A\Pax,] Bu\lf(:c)—%)\abfyab\lf(:c)

Local

5(&, MW (2) = EM(2)9uW (z) — 72 (2) v W (2)
Vectors

(&, ) Vu(x) = £ (x)0Vyu(x) + Vi(x)0ug” (x)

5(E, Ve = EM(x)0uVa(a) 4+ Vi(z) N0 () .




Lesson:
L ocal Poincareé transformations

= Local translations are replaced by general
coordinate transformations.

m Local Lorentz transformations: Only fields
carrying local frame indices transform
under local Lorentz transformations. The
transformation rule involves the appropriate
matrix generator.

at the end : usg =e2 ¢ (and\*’) as parameters



— 6(Bu)) ¢’

B{T ) P

cgct(‘f) — 5gct(f) — 5(§“Bu)










L.esson:
Transformations of covariant quantities

1. The covariant derivativP, of a covariant

quantity Is a covariant quantity, and so is the
curvature

2. The gauge transformation of a covariant qua
does not involve a derivative of a parameter.

3. If the algebra closes on the fields, then the
transformation of a covariant quantity Is a
covariant quantity,

l.e. gauge fields only appear either included in
covariant derivatives or in curvatures.
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Lecture 5: Geometry and symmetries
of supersymmetric theories

and Kahler manifolds
The nonlinear-model (7.11)

Symmetries and Killing vectors (7.12)
Scalars and geometry (12

Local description of complex and Kahler
manifolds (13.1)

Mathematical structure of Kahler manifolds
(13.2)

(if time allows): Symmetries of Kahler metrics
(13.4)



eneral coordinate transformations : infinitesimal z/* = z#* — ¢#(x)
op(x) = ¢'(x) — ¢p(x) = Lep = EHOug,
SUM(z) = UM(x) — UMx) = LUM = EPO,UH — (0,6MU7,
dwy(x) = wL(a:) —wp(x) = Lewy = EPOpwp + (Op€P)wp,
0T (z) = TP (x) — Ti(x) = LT = EPO,TH — (9,6")TH + (9,€°)TH



1
wP) = —Wpy pip-eppd T A A2 AL dahP

1

dwP) = —Opwpy pp--ppdat AdzHt AdaF2 AL P







@ (x) andg,,(X)
are variables in thg
supergravity actio




Vikja+Vikia =0,




SL(2,R) transformations act as nonlinear maps

Z 7 =%F =X+’




12.5 Scalars and geometry

m Scalar manifold can haveometriesymmetry of kinetic
energy dsg;de'dg! )

= usually extended to symmetry of all equations ofioms

(“ U-duality group)

= The connection between scalars and vectors In #giax
Nag(@) (orfaz(q))
=> Isometries act also akiality transformations
=> restriction of possible diuality groups:
in D=4, N'>2: U-duality groupcC Sp(2m)
for theories withm vectors(from vector multiplets or supergravity mult.)

= A subgroup of the iIsometry groga most of dimensiom)
can begauged







L= /99" (0ue”)(Ovp") guv(¥)




d 32 24 20 16 12
S{4(3) S#(2) O(2,n)
8 su@ ® U Thxom © O(1,1)
S{(5) O(3,
7 USp(4) USD{E()XRC))(RJ ® O(l’ 1)
0O(5.,5) SO(5,1) O(4,n) O(5.,n)
6 USp(4)xUSp(4) 'SO(5) O(n)x;:}{li) ®O(1,1) O(n)xugpM)
E. SU'(6) Q(5,n)
5 USp(8) USp(6) USp{4)an(n) ® O(1= 1)
4 E; S0*(12) | SU(1,5) su(1,1) ,, _ SO(6.n) SU(3.n)
SuU(8) u(6) u(5) U(1) SU(4)xSO(n) U(3)xSU(n)




Q = —2ig,3dz* A dz”

dQ = ~i(8y9,5—Dnyg.3)dz'AdzAdZ +c.c. = 0







i aabals
Vidi? = opJd — T Jd + 11,05 =0




= _2dP
= g,3k°(2) =i0aP(2,%),
= ggak’(z) = -0z P(2,%).
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