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Plan for the lectures

1. Symmetries

2. Clifford algebras and spinors

3. Spinor properties3. Spinor properties

4. Duality and tools of gauge theories

5. Geometry and symmetries of 
supersymmetric theories and Kähler 
manifolds



Lecture 1: Symmetries

� What is a symmetry (1.2)

� Finite and infinitesimal transformations, generators, 
matrices, commutators, (1.2.2, 11.1.1)

� Spacetime symmetries (1.2.3)� Spacetime symmetries (1.2.3)

� Noether currents and charges, energy-momentum 
tensors (1.3)

� Classical versus quantum transformations (1.4, 1.5)

� Gauge transformations (11.1.2)

� Counting degrees of freedom (intro ch.4)



What is a symmetry ?

� A rule : φ i(x) satisfying eom → φ’ i(x) 
satisfying eom

� Symmetries that leave the action invariant: 
S[φ] = S[φ’].   Not for dualities.

� Lagrangian invariant up to a total derivative

� Usually internal symmetries: leave 
Lagrangian invariant, spacetime symmetries 
not.



Finite and infinitesimal 
transformations

� φ′ (x)= U φ (x)

� we will consider in this course only 
transformations connected to the identity

� typically defined by matrices tA

� Infinitesimal first order in the parameters: 



Generators in general

� In this chapter: symmetries that leave action 
invariant.

� Continuous, infinitesimal: Lie algebra.

� Extend: structure functions.

� General treatment: 
spacetime, internal symmetries and susy.



Global infinitesimal symmetries



Poincaré symmetries: 

Space with (xµ) = (t, �x)

Metric 
ds2 = −dtdt+ d�x · d�x = dxµηµνdxν

Algebra SO(1, D-1)

[m[µν],m[ρσ]] = ηνρm[µσ] − ηµρm[νσ]

−ηνσm[µρ]+ ηµσm[νρ]

Act on fields:  φ(x)=φ´(x´)ds = −dtdt+ d�x · d�x = dx ηµνdx

Isometries (preserve metric)

xµ = Λµνx
′ν + aµ

ΛµρηµνΛ
ν
σ = ηρσ

Expand
Λµν = δµν + λµν +O(λ2)

=

�
e
1
2λ
ρσm[ρσ]

�µ
ν

m[ρσ]
µ
ν ≡ δµρηνσ − δ

µ
σηρν = −m[σρ]

µ
ν

Act on fields:  φ(x)=φ´(x´)

φ′(x) = U(Λ)φ(x) = φ(Λx)

U(Λ) ≡ e
−12λ

ρσL[ρσ]

L[ρσ] ≡ xρ∂σ − xσ∂ρ

More general if not scalar fields

ψ′i(x) = U(Λ, a)ijψ
j(x)

=

�

e
−12λ

ρσm[ρσ]

�i

jψ
j(Λx+ a)

J[ρσ] = L[ρσ] +m[ρσ] ,



for the Poincaré group



The nonlinear σ-model and 
Killing symmetries.



Noether currents



Noether currents for the 
spacetime symmetries

� translations : index A is another spacetime index. 
E.g. for scalars

� for Lorentz transformations for scalars

� in general

� can be used to make energy-momentum tensor 
symmetric (and still prerserved)



To charges and quantum commutators

when Poisson brackets can be defined (define momenta, …):

From Poisson brackets to quantum operators



Transformation 
rules

Currents

Charges



Local symmetries and gauge fields

� Gauge theory



Exercises lecture 1
Start from matrices that satisfy

what is θ ?what is θ3 ?

In general for  ǫ bosonic or fermionic 



Exercises on chapter 1
� Ex 1.5: Show that the action 

is invariant under the transformation

S =
�
dDxL(x) = −12

�
dDx

�
ηµν∂µφ

i∂νφ
i+m2φiφi

�

φi(x)
Λ
−→ φ′i(x) ≡ φi(Λx).

Important: fields transform, not the integration variables

� Ex.1.6: Compute the commutators 

and show that they agree with that for matrix

generators. 
Show that to first order in λρσ

Important: fields transform, not the integration variables

[L[µν], L[ρσ]]

φi(xµ)− 1
2λ
ρσL[ρσ]φ

i(xµ) = φi(xµ+ λµνxν)



Exercise on Lorentz transformations

λµν are the parameters of Lorentz transformations 

δΨ = 1
2λ
µν(−LµνΨ−ΣµνΨ) ,

δΨ̄ = 1
2λ
µν(−LµνΨ̄ + Ψ̄Σµν)

S[Ψ̄,Ψ] =
�
dDxΨ̄(x)[γµ∂µ −m]Ψ(x)

λµν are the parameters of Lorentz transformations 

Σµν are some matrices in spinor space similar to γµ

Which fundamental relation of gamma matrices is 
required in order to have invariance of the action ?



exercise: improved energy-
momentum tensor

� Suppose that we have calculated the energy-momentum 
tensor of a field, Tµν and it is not symmetric. We know 
that there is also a Lorentz current that is preserved:

� Prove that 

1. is preserved

2. is (weakly) symmetric



Exercise on gauge theories

Note rewriting of spinor quantity 
with indices to be explained tomorrow



On-shell Degrees of freedom 
by initial conditions

� On-shell= nr. of helicity states

� count number of initial conditions, divide by 2. 
(coordinate + momenta describe one state)

� E.g. scalar: field equation ∂µ∂µφ =0.� E.g. scalar: field equation ∂µ∂ φ =0.
Initial conditions φ(t=0,xi) and ∂0φ(t=0,xi)

� Dirac: first order: determines time derivatives: (for D=4)       

4 initial conditions: 2 dof on shell

� PS: ∂i∂iφ =0 has no normalizable solutions in RD-1 ; 
hence this gives φ=0  (other way: we consider ∂i∂i=k2).

� count only gauge inequivalent solutions. How: choose a 
gauge condition



On-shell degrees of freedom (dof)

� The Maxwell field Aµ (x), with field equation

;

and symmetry transformation
∂µFµν = 0 Fµν ≡ ∂µAν − ∂νAµ

δAµ = ∂µθ
Split the spacetime indices in µ = (0,i) ; and 
consider the gauge 

1. Prove that this is a good gauge

2. Prove that the field has D-2 on-shell dof

δAµ = ∂µθ

∂iAi = 0



3. Clifford algebras and spinors

� Determines the properties of 
- the spinors in the theory
- the supersymmetry algebra

� We should know� We should know
- how large are the smallest spinors in each 

dimension
- what are the reality conditions
- which bispinors are (anti)symmetric 

(can occur in superalgebra)



Lecture 2 and 3
� 2. Clifford algebras and spinors

- Clifford algebra in a general dimension (3.1): 
Complete Clifford, Levi-Civita, practical basis (even dim), 
highest rank and chiral, odd-dim, symmetries of γ- matrices

- Spinors in general dimension (3.2): - Spinors in general dimension (3.2): 
including: spinor bilinears, spinor indices, Fierz relations, 
reality

� 3. Spinor properties
- Majorana spinors (3.3) (and other reduced spinors): 

their dimension and properties

- Majorana spinors in physical theories (3.4): 
field equations, Weyl versus Majorana, U(1) symmetries



3.1 The Clifford algebra in general 
dimension

3.1.1 The generating γ matrices

Hermiticity (hermitian for spacelike)Hermiticity γµ† = γ0γµγ0 (hermitian for spacelike)

representations related by conjugacy by unitary S

γ′µ = SγµS−1

explicit representation and dimension 2[Int(D/2)]
unique except one sign in odd D



3.1.2 The complete Clifford algebra

γµ1...µr = γ[µ1 . . . γµr] , e.g. γµν = 1
2γ
µγν−12γ

νγµ

3.1.3 Levi-Civita symbol

ε012(D−1) = 1 , ε012(D−1) = −1

all traceless except 1, and product of all in odd D.

3.1.4 Practical γ – matrix manipulation
γµγµ = D , γµνγν = (D − 1)γµ

Schouten identity

reversal symmetry of indices
products of matrices



3.1.5 Basis of the algebra for even 
dimension D = 2 m

{ΓA = , γµ, γµ1µ2, γµ1µ2µ3, · · · , γµ1···µD}

with µ 1< µ 2 < ...< µ r

{Γ = , γ , γ , γ , . . . , γ } .
reverse order list
{ΓA = , γµ, γµ2µ1, γµ3µ2µ1, . . . , γµD···µ1} .

Tr(ΓAΓB) = 2m δAB

expansion for any matrix in spinor space M

M =
�

A

mAΓ
A , mA =

1

2m
Tr(MΓA)



3.1.6 The highest rank Clifford 
algebra element



3.1.7 Odd spacetime dimension 
D=2m+1

γ matrices can be constructed in two ways from 
those in D=2m:

The set with all                  is overcompleteγµ1...µr

Ex. 3.16: prove this and the analogue for even dimensions, 
in particular D=4



Supersymmetry and 
symmetry of bi-spinors (intro)

� E.g. a supersymmetry on a scalar is a symmetry 
transformation depending on a spinor ε: 

� For the algebra we should obtain a GCT� For the algebra we should obtain a GCT

� Then the GCT parameter 
should be antisymmetric in the spinor parameters

Thus, to see what is possible, we have to know the 
symmetry properties of bi-spinors

ξµ



3.1.8 Symmetries of γ - matrices
See D=5 first

the following suffices

Explicitely in constructed rep:



3.2 Spinors in general dimensions
3.2.1 Spinors and spinor bilinears

Dirac conjugate

Majorana conjugate

� with anticommuting
spinors

Since symmetries of spinor bilinears are important for
supersymmetry, we use 

the Majorana conjugate to define λ.



10
=11

Important consequence in even dimensions:



3.2.2 Spinor indices

NW-SE
convention



3.2.3 Fierz rearrangement
based on completeness relation

	
[D] = D, for even D ,
[D] = (D − 1)/2, for odd D

usually simplifies, e.g. D=4

	

−



3.2.4 Reality
Complex conjugation can be replaced by charge 

conjugation, an operation that acts as complex conjugation 
on scalars, and has a simple action on fermion bilinears. 

For example, it preserves the order of spinor factors.

The Dirac
conjugate of
a spinor is



3.3 Majorana spinors
� A priori a spinor ψ has 2Int[D/2] (complex) components

� Using e.g. ‘left’ projection PL = (1+γ*)/2 

‘Weyl spinors’ PL ψ= ψ if D is even (otherwise trivial)

� In some dimensions (and signature) there are reality conditions 

ψ =ψC = B−1 ψ*ψ =ψC = B−1 ψ*

consistent with Lorentz algebra: ‘Majorana spinors’

� consistency requires t1 = -1.

often described as: 
Dirac conjugate = Majorana conjugate



Other types of spinors

� If t1=1: Majorana condition not consistent

� Define other reality condition (for an even number of spinors):

� ‘Symplectic Majorana spinors’

� In some dimensions Weyl and Majorana can be combined, e.g. 

reality condition for Weyl spinors: ‘Majorana-Weyl spinors’



� Dependent on signature. 
Here: Minkowski

Dim Spinor min.# comp

2 MW 1

3 M 2

4 M 4

5 S 8

Possibilities  for susy depend on the
properties of irreducible spinors

in each dimension

Here: Minkowski

� M: Majorana
MW: Majorana-Weyl
S: Symplectic
SW: Symplectic-Weyl

5 S 8

6 SW 8

7 S 16

8 M 16

9 M 16

10 MW 16

11 M 32



3.4 Majorana OR Weyl fields in 
D=4

� Any  field theory of a Majorana spinor field Ψ

can be rewritten in terms of a Weyl field PLΨ

and its complex conjugate.

� Conversely, any theory involving the  chiral field � Conversely, any theory involving the  chiral field 
χ=PLχ and its conjugate χC=PRχC can be 
rephrased as a Majorana equation if one defines 
the Majorana field Ψ =PLχ +PRχ C.

� Supersymmetry theories in D=4 are formulated 
in both descriptions in the physics literature.



U(1) symmetries

� Note that for Majorana fields we cannot have U(1) 
transformations 

� but we can have

� but this is not a symmetry of the massive action

� only for the massless action.

� Note that in terms of chiral fermions:



Dirac and Majorana mass terms
� Decompose a Dirac field as

� Obtain that the Dirac kinetic term can be writtten as

� Rewrite phase (em) transformations as

� Rewrite mass terms 

which of these respect the em symmetry ?



Dirac and Majorana mass terms 
and sterile neutrinos

� Derive the field equationDerive the field equation
� Terminology: Dirac mass: m; Majorana mass µ

� Chiral fermions: ψ =PLψ . Rewrite in Majorana 
notation. Which mass terms can survive ?

� Conclude: one massive chiral fields can have only 
Majorana mass terms. These neutrinos should 
then be gauge invariant (‘sterile neutrinos’)



Exercises on gamma matrix 
products



Exercise Lorentz generators

� Prove that

are good Lorentz generators.are good Lorentz generators.

1. They satisfy 

2. They respect the Lorentz algebra 
(normalization correct) 

[Σµν, γρ] = 2γ[µην ]ρ = γµηνρ − γνηµρ



Exercises with the Levi-Civita tensor



Exercise: map of susy and sugra

� Take the following ingredients from field theory:
- supersymmetry theories can have at most 16 real 

supercharges (spinor parameters)

- supergravity at most 32.

� Make now a map of possible supersymmetric 
(and supergravity) theories that are possible in 
dimensions D ≥ 4 : dimension vertically, and 
number of generators horizontally. 



The map: dimensions and 
# of supersymmetries

D spinor 32 24 20 16 12 8 4

11 M

10 MW

9 M

8 M8 M

7 S

6 SW

5 S

4 M



The map: dimensions and 
# of supersymmetries

D susy 32 24 20 16 12 8 4

11 M M

10 MW IIA IIB I

9 M N=2 N=1

8 M N=2 N=18 M N=2 N=1

7 S N=4 N=2

6 SW (2,2) (2,1) (1,1) (2,0) (1,0)

5 S N=8 N=6 N=4 N=2

4 M N=8 N=6 N=5 N=4 N=3 N=2 N=1

SUGRA SUGRA/SUSY SUGRA SUGRA/SUSY



Exercise: ‘cyclic identities’
(related to Ex. 3.27)

more convenient:

for consistency of SUSY YM, string actions, brane actions

valid for 
• D=2 with Majorana-Weyl spinors• D=2 with Majorana-Weyl spinors
• D=3 Majorana spinors
• D=4 Majorana spinors
• D=6: symplectic Majorana-Weyl (a bit tricky with indices)
• D=10: Majorana-Weyl spinors

Prove for D=4 !



Part of Ex. 3.29

� Prove the Fierz identity

you will need the identity

and



Exercise on chapter 3
� Ex. 3.40: Rewrite

as

S[Ψ] = −12

�
dDx Ψ̄[γµ∂µ −m]Ψ(x)

S[ψ] = −12

�
d4x



Ψ̄γµ∂µ −m

�
(PL+ PR)Ψ

� � �

and prove that the Euler-Lagrange equations are

Derive � PL,RΨ = m2 PL,RΨ from the equations above

−
� 


−
�

= −
�
d4x

�
Ψ̄γµ∂µPLΨ− 1

2mΨ̄PLΨ− 1
2mΨ̄PRΨ

�
.

/∂PLΨ= mPRΨ , /∂PRΨ = mPLΨ .



SUSY algebra

when you know that

and Q is Majorana, prove that 

� prove that the quantum algebra implies
Tr(QQ† )=P0



� Ex. 6.11 : Consider the theory of the chiral multiplet 
after elimination of F. Show that the action

is invariant under the transformation rules

The chiral multiplet

Show that the commutator on the scalar is

but is modified on the fermion as follows:

We find the spacetime translation plus an extra term that vanishes for 
any solution of the equations of motion.



Lecture 4: Duality and 
tools of gauge theories

1. Electromagnetic duality and the symplectic group (4.2.4)

2. Soft algebras and covariant translations: 
-first example in SUSY gauge theory (6.3.1)
-general formulation (first part of 11.1.3)-general formulation (first part of 11.1.3)

3. zilch symmetries and open algebras: 
- first example in Wess-Zumino multiplet (6.2.2)
- general formulation (continuation of 11.1.3),

4. Covariant derivatives, curvatures and their transformations (11.2)

5. (if time allows): modification for spacetime symmetries (11.3): 
general coordinate transformations, covariant derivatives and 
curvatures in gravity theories.



Electromagnetic duality 
and the symplectic group

coupling constants or functions of scalars

For consistency: 

Vector field strengths are in 2m – symplectic vectors

should be symmetric

Invariance under Gl(2m,R)



More on duality transformations
� Not symmetries of the action if B ≠ 0.

� Two applications: 
- symmetries : those induced by transformations of the 
scalars. In extended sugra: all symmetries of the scalars 
are of this form, embedded in Spare of this form, embedded in Sp

- constants (spurionic quantities) change: like in M-
theory: dualities between theories

� charges are in symplectic vectors. 
If quantized: charges: Sp(.., Z).



6.3. SUSY gauge theories
6.3.1 SUSY Yang-Mills vector multiplet  

gauge)



11.1.3. Modified symmetry algebras: 
soft algebra

� When extra gauge symmetries, gauged by the vector 
multiplets, the derivatives become covariant

Not mathematical Lie algebra

The algebra is ‘soft’: 
structure constants become structure functions. 
Modified Jacobi identities

For a solution: become again constants. 
Leads to e.g. AdS or central charges.



� Ex. 6.11 : Consider the theory of the chiral multiplet 
after elimination of F. Show that the action

is invariant under the transformation rules

The chiral multiplet

Show that the commutator on the scalar is

but is modified on the fermion as follows:

We find the spacetime translation plus an extra term that vanishes for 
any solution of the equations of motion.



Calculating the algebra
� Very simple on Z

� On fermions: more difficult; needs Fierz rearrangement

� With auxiliary field: algebra satisfied for all field 
configurations
Without auxiliary field: satisfied modulo field equations. Without auxiliary field: satisfied modulo field equations. 

� auxiliary fields lead to 
- transformations independent of e.g. the superpotential

- algebra universal : ‘closed off-shell’

- useful in determining more general actions

- in local SUSY: simplify couplings of ghosts



The commutator of two symmetries 
of the action  is a symmetry

A symmetry: 

− 1↔ 2

is a symmetry !



Zilch symmetries and open algebras

Therefore: transformations not uniquely determined.

But may include Zilch symmetries:

‘Closed on-shell’ or ‘open algebra’
If basis without second term: 
‘closed off-shell’, or ‘closed algebra'.



11.2 Covariant quantities
� Terminology: gauge fields ↔matter fields. 

� For the latter
do not involve derivatives of the gauge parameters.

A covariant quantity is a local function that transforms
under all local symmetries with no derivatives of a under all local symmetries with no derivatives of a 

transformation parameter.

Note for below: special care needed for local translations. 
Will be discussed afterwards.



Covariant derivatives and curvatures

is a covariant quantity.

Stronger: Gauge transformations and covariant derivatives 
commute on fields on which the algebra is off-shell closed.commute on fields on which the algebra is off-shell closed.

is a covariant quantity.



Remark as intro on 
(super)-Poincaré gauge theory

translations :

We will further define the spin connection such that R(P)=0 !



11.3.1 Gauge transformations for the 
Poincaré group



Lesson: 
Local Poincaré transformations

� Local translations are replaced by general 
coordinate transformations.

� Local Lorentz transformations: Only fields 
carrying local frame indices transform 
under local Lorentz transformations. The 
transformation rule involves the appropriate 
matrix generator.

at the end : use ξa =ea
µξ

µ (and λab ) as parameters



11.3.2. Covariant derivatives and  
general coordinate transformations

There is a problem:

1. Remove gct from the sum over all symmetries: 
all the others are called ‘standard gauge transformations’.

2. We will always impose the constraint Rµν(Pa)=0

3. We replace translations with 
‘covariant coordinate transformations’ 



Covariant general coordinate 
transformations

Action on various fields

� Scalars:

Gauge fields:� Gauge fields:

� Frame field:   

gauge rule for translations



11.3.3 Covariant derivatives and 
curvatures in a gravity theory

� Some gauge fields have extra (non-gauge) terms

� E.g.

� Covariant curvature  

� The covariant quantities in gravity have flat indices:

� Gauge fields do not appear naked in covariant quantities: 
either in covariant derivative or in curvature.



Lesson: 
Transformations of covariant quantities

1. The covariant derivative Da of a covariant 
quantity is a covariant quantity, and so is the 
curvature

2. The gauge transformation of a covariant quantity 2. The gauge transformation of a covariant quantity 
does not involve a derivative of a parameter.

3. If the algebra closes on the fields, then the 
transformation of a covariant quantity is a 
covariant quantity, 
i.e. gauge fields only appear either included in 
covariant derivatives or in curvatures.



Lecture 5: Geometry and symmetries 
of supersymmetric theories 

and Kähler manifolds
1. The nonlinear σ-model (7.11)

2. Symmetries and Killing vectors (7.12)

3. Scalars and geometry (12.5)3. Scalars and geometry (12.5)

4. Local description of complex and Kähler 
manifolds (13.1)

5. Mathematical structure of Kähler manifolds 
(13.2)

6. (if time allows): Symmetries of Kähler metrics 
(13.4)



Intro: 7. Differential geometry
7.2 Scalars, vector, tensors



7.3 The algebra and calculus of 
differential forms

definition and exterior derivative

insertion p → p-1 form

Lie derivative on forms



Intro: 7.9 Connections and 
covariant derivatives

metric postulate

if there is no ‘torsion’ Γ
ρ
µν = Γ

ρ
νµ

Γρµν = Γρµν(g) =
1
2g
ρσ(∂µgσν + ∂νgµσ − ∂σgµν)



7.11 The nonlinear σ-model
M

spacetime

φ i(x)

gµν(x)
gij(φ)φi(x) andgµν(x)

are variables in the
supergravity action

φ i

xµ

φ i(x)

induced metric gij(φ)(∂µφ i)(∂νφ j)|φ=φ(x)

appears in action 

gij(φ) is part of 
the definition 
of the model

S[φ] = −
1

2

�
dDx gij(φ)η

µν∂µφ
i∂νφ

j



7.12 Symmetries and Killing vectors
7.12.1 σ– model symmetries

Symmetries of action S[φ] = −
1

2

�
dDx gij(φ)η

µν∂µφ
i∂νφ

j

can be parametrized as a general form

Each kA
i (for every value of A) should satisfyEach kA (for every value of A) should satisfy

Solutions are called ‘Killing vectors’ 

and satisfy an algebra



7.12.2 Symmetries of the Poincaré plane

Poincaré plane (X, Y>0)



12.5  Scalars and geometry
� Scalar manifold can have isometries (symmetry of kinetic 

energy   ds2=gij dφ i dφ j ) 
� usually extended to symmetry of all equations of motions

(‘‘ UU--duality groupduality group’)’)
� The connection between scalars and vectors in the matrix 

(φ)   (or f (φ) )
� The connection between scalars and vectors in the matrix 
NAB(φ)   (or fAB(φ) )
⇒ isometries act also as duality transformations
⇒ restriction of possible U-duality groups: 
in D=4, N≥ 2:   U-duality group ⊂ Sp(2m) 

for theories with m vectors(from vector multiplets or supergravity mult.)

� A subgroup of the isometry group (at most of dimension m)
can be gauged.



Homogeneous / Symmetric manifolds
� If isometry group G connect all points of a manifold →

homogeneous manifold. 
Such a manifold can be identified with the coset G/H, 
where H is the isotropy group: group of transformations 
that leave a point invariant

� If the algebras    of G and     of H have the structureh� If the algebras    of G and     of H have the structure

then the manifold is symmetric. 
The curvature tensor is covariantly constant

g h



Geometries in supergravity

� Scalar manifolds for theories with more than 8 
susysare symmetric spacessusysare symmetric spaces

� Scalar manifolds for theories with 4 susys
(N=1, D=4, or lower D) are Kähler

� Scalar manifolds for theories with 8 susys are 
called ‘special manifolds’. 
Include real, special Kähler, quaternionic manifolds
They can be symmetric, homogeneous, or not even that



� With > 8 susys: symmetric spaces

The map of geometries

� 8 susys: very special, 
special Kähler and 
quaternionic spaces SU(2)=USp(2)

part in 
holonomy group

U(1) part in 
holonomy group

� 4 susys: Kähler: U(1) part in holonomy group



13. Complex manifolds
13.1 The local description of complex 

and Kähler manifolds

� Use complex coordinates 

Hermitian manifold
define fundamental 2-form

Kähler manifold: closed fundamental 2-form



Properties of metric, connection, 
curvature for Kähler manifolds

� metric derivable from a ‘Kähler potential’

� connections have only unmixed components

� curvature components related to
- (two holomorphic indiees up and 

down, and symmetric in these pairs)

� Ricci tensorRab = gcdRacbd = Rba



13.2 Mathematical structure of 
Kähler manifolds

� starts from a complex structure
- almost complex: tensor on tangent space Ji

k Jk
j= - δi 

j  

- Nijenhuis tensor vanishes. In presence of a torsion-free 
connection, this is implied by covariant constancy of complex 
structurestructure

- metric hermitian : JgJT=g 
and Levi-Civita connection of this metric is used above

� Then the Kähler form is 

� In complex coordinates



13.4 Symmetries of Kähler metrics
13.4.1 Holomorphic Killing vectors and 

moment maps

� require vanishing Lie derivatives of metric and of 
complex structure.

� Implies that in complex coordinates 
- the Killing vector is holomorphic

- Lie derivative of Killing form vanishes 
→ Killing vectors determined by real moment map P

PS: a Kähler manifold is a
symplectic manifold due to the 
existence of the Kähler 2-form. 

Moment map is generating function 
of a canonical transformation 



Kähler transformations and the moment map

� Kähler potential is not unique:

� Kähler transformations

� Also for symmetries� Also for symmetries



Exercises on duality
� dual of dual is identity

� Electromagnetic 
ex. 4.8: recognise the transformations 

Take f = -i Z = 1/g2 and find the duality Take fAB = -i Z = 1/g2 and find the duality 
transformation that gives this transformation. 
How does Z change under a general duality 
transformation ?

� How does g change under the specific one of 
electromagnetic duality ?  (related to ex. 4.15)



Exercise on covariant derivatives

� Symmetries of the nonlinear σ-model are 
generated by Killing vectors kA

i(φ). 
Suppose that the symmetry is gauged.
Show that the covariant derivativeShow that the covariant derivative

transforms as

1. using the theorems

2. doing the full calculation



Exercise on chapter 7
� Ex. 7.48: Consider for the Poincaré plane Z and     as the 

independent fields, rather than X and Y, and use the line element

The metric components are

Z̄

Show that the only non-vanishing components of the Christoffel
connection are ΓZZ

Z and its complex conjugate. Calculate them and 
then show that there are three Killing vectors, 

each with conjugate. Show that their Lie brackets give  a Lie algebra 
whose non-vanishing structure constants are

This is a standard presentation of the Lie algebra of

su(1,1) = so(2,1) = sl(2)



Exercises on chapter 13
� Ex. 13.14: Show that the metric of the Poincaré plane of 

complex dimension 1 is a Kähler metric. 
What is the Kähler potential?

� Ex. 13.18: Consider CP1with Kähler potential
- Check that there are 3 Killing vectors 

- that satisfy the su(2) algebra

� Ex. 13.20: Apply
to obtain  
Note that the Kähler potential is invariant under k3, but still r3 ≠ 0.  

Its value is fixed by the ‘equivariance relation’

[kA , kB] = εABCkC


