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Chapter 1

Solitons in 1+1 Dimensions

As an introduction we consider in this chapter the easiest �eld theoretic

examples for solitons. These are real scalar �eld theories in 1+1 dimensions

with a quartic and a sine-Gordon potential, respectively. We will concentrate

on physical aspects which are relevant also in higher dimensions and more

complicated theories like QCD.

1.1 De�nition of the Models

We investigate the theory of a single real scalar �eld �(t; x) in one time and

one space dimension. The usual Lagrangian (density) is,

L =

1

2

_

�

2

�

1

2

(@

x

�)

2

� V (�) (1.1)

We consider two cases for the potential. Case (a) refers to the `Mexican-hat'

potential, well-known from spontaneous symmetry breaking,

case (a): V (�) =

�

4!

�

�

2

� F

2

�

2

(1.2)

while case (b) is the sine-Gordon model,

case (b): V (�) = A

�

1� cos

2��

F

�

(1.3)

which is an exactly solvable system. The important point about these models

is that the vacuum is degenerate. In case (a) it is two-fold degenerate,

� = �F
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Figure 1.1: Potentials under consideration: the Mexican-hat (case (a), see (1.2))

and the sine-Gordon model (case (b), see (1.3)). Both have degenerate vacua and

allow for non-trivial solutions.

while in case (b) we have an in�nite number of vacua,

� = nF; n 2Z

In standard perturbation theory one considers small 
uctuations � around

the vacua,

case (a): � = F + �

case (b): � = 0 + �; (� � �)

and expands the potential. Here we get the usual mass term together with

three and four point interactions,

case (a): V (�) =

1

2

m

2

�

2

+

g

3!

�

3

+

�

4!

�

4

m

2

� �F

2

=3; g � �F

case (b): V (�) =

1

2

m

2

�

2

�

�

4!

�

4

+ : : :

m � 2�

p

A=F

� � 16�

4

A=F

4

��

A � m

4

=�

F � 2�m=

p

�

m is the mass of the particles of the theory (we use ~ = 1) and g and �

are de�ned such that the three and four point vertices are proportional to

them. Usually one has small � and large F such that the mass

p

�F is �xed.

Notice that the mass square would be negative on the maxima 0 and n+

1

2

,

respectively, these so-called tachyons would render the theory unstable.
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1.2 Soliton Solutions

The degeneracy of the vacuum results in the fact that these models possess

non-trivial static solutions, which interpolate (in space) between the vacua.

We call them kinks or solitons. Their existence and shape are given by the

Euler-Lagrange equation

1

derived from L in (1.1),

�

� = @

2

x

��

@V

@�

= 0

If we think of �(x) as x(t), this is the equation of motion of a non-relativistic

particle, �x = �

@V

@x

, but in a potential �V . Like the energy in ordinary

mechanics, we �nd a �rst integral,

d

dx

�

1

2

(@

x

�)

2

� V (�)

�

= @

x

�

�

@

2

x

��

@V

@�

�

= 0

1

2

(@

x

�)

2

� V (�) = const. (1.4)

Since we want solutions with �nite energy, we have to demand that the energy

density,

E =

Z

1

�1

�

1

2

(@

x

�)

2

+ V (�)

�

dx (1.5)

vanishes at spatial in�nity,

jxj ! 1 : @

x

�! 0; V (�)! 0

i.e. the above constant is zero. The remaining �rst order di�erential equation

can easily be solved,

x(�) =

Z

d�

p

2V (�)

(1.6)

In our models we can write down the solutions exactly,

case (a): �(x) = F tanh

1

2

m(x� x

0

)

case (b): �(x) =

2F

�

arctan

�

e

m(x�x

0

)

�

1

For time-independent solutions we could also work in the Hamiltonian formalism.

Moreover, any of the following static solutions can be transformed into a steadily moving

one by a Lorentz transfomation.
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Figure 1.2: Solitonic solutions in both potentials have nearly identical shape: The

transition from one vacuum value to the next one takes place around an arbitrary

position x

0

. It decays with a rate that is proportional to the inverse mass of the

(light) particles of the theory.

x

0

is an arbitrary constant (of integration) due to translational invariance.

Their shapes are very similiar (cf Fig. 1.2) and show the typical behaviour:

(i) Solitons interpolate between two neighbouring vacua:

case (a): �(x!�1) = �F

case (b): �(x!�1) = 0;

�(x! +1) = F

(ii) The solutions are (nearly) identical to a vacuum value everywhere except

a transition region around an arbitrary point x

0

. The shape of the solution

there is given by the shape of the potential between the vacua. Near the

vacua the solution is decaying exponentially with a rate � / 1=m. Thus �

can be approximated by a step function, for instance in case (a),

�(x) = F sgn (x� x

0

) for jx� x

0

j � 1=m

In terms of mechanics one could think of a particle which passes the

bottom of a valley at some time t

0

. It has just the energy to climb up the hill

and stay there. Actually this will take in�nitely long, but after a short time

it has already reached a position very near the top. Of course, the particle

must have been on top of the opposite hill in the in�nite past. Whenever

both tops have the same height such a solution exists, no matter which form

V has inbetween.
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The energy of the solution (its mass) can be computed from (1.5) and

(1.4),

E = 2

Z

1

�1

V (�) dx =

Z

�

1

�

�1

@

x

� d�

=

�

2m

3

=� for case (a);

8m

3

=� for case (b):

Alternativelywe can use the saturation of the Bogomol'nyi bound (cf Exercise

(i)),

E =

Z

�

(0)

2

+ total derivative

�

= W (�)j

�

1

�

�1

(1.7)

In both cases the mass of the soliton is given by the cube of the mass of the

elementary particles divided by � (which has dimension (mass)

2

). The soliton

is very massive in the perturbative limit. That means we are dealing with

a theory which describes both, light 
uctuations, the elementary particles,

and heavy solutions, the solitons. This mass gap supports the validity of

perturbation theory (for example for tunneling).

Up to now we have only considered one-soliton solutions which interpolate

between neighbouring vacua. Due to the ambiguity of the square root in (1.6)

there are also solutions interpolating backwards, anti-solitons. Now one could

immediately imagine solutions consisting of whole sequences of solitons and

�(x)

F

�F

x

x

0;1

x

0;2

x

0;3

(a)

�(x)

2F

F

0

�F

x

(b)

Figure 1.3: Multi-Solitons are approximate solutions built of solitons and anti-

solitons at arbitrary positions x

0;i

. The sequences are strongly constrained in case

(a), while in case (b) they are arbitrary.
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anti-solitons (see Fig. 1.3). As discussed in Exercise (ii), these approximate

solutions are only valid for widely separated objects jx

0;1

�x

0;2

j � 1=m, such

that we have a 'dilute gas'.

Here the Mexican-hat and the sine-Gordon model di�er slightly. Solitons

and anti-solitons have to alternate in the �rst model. From a particle point of

view the anti-soliton is really the anti-particle of the soliton. If the potential

is symmetric, we cannot distinguish between them. The situation is like in

a real scalar �eld theory.

In the latter model we can arrive at any vacuum by choosing the right

di�erence between the number of solitons and anti-solitons. Now solitons

and anti-solitons are distinguishable and the analog is a complex scalar �eld

theory.

1.3 Chiral Fermions

Now we investigate the (still 1+1 dimensional) system,

L

 

= �

�

 (


�

@

�

+ g�(x)) 

where  is a Dirac �eld, 


�

are the (Euclidean) Dirac matrices, which we can

choose to be the Pauli matrices,




1

= �

1

; 


4

= �

3

; 


5

= �

2

and � is a solution from above

2

. We could say we put fermions in a soli-

ton background or we study the consequences to the solution if we couple

fermions to it.

The interaction is provided by the usual Yukawa coupling. The �eld � acts

like a (space-dependent) mass. If � takes the vacuum value F everywhere,

then we simply have a theory with massive fermions,

L

 

= �

�

 (


�

@

�

+m

 

) ; m

 

= gF

The energies, i.e. the eigenvalues of the (hermitean) Hamilton-Operator,

3

H = �i@

t

= i�

2

@

x

+ �

3

m

 

2

In particular we take � from case (a), since with the sine-Gordon model we would be

forced to use a cos-interaction which is not normalisable in 4 dimensions.

3

We use the complex notation @

4

= �i@

t

.
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m

 

�m

 

E

(a)

E

(b)

Figure 1.4: The usual spectrum of massive fermions (a) is produced by a constant

vacuum solution � � F . For a soliton there is one additional zero mode (b).

come in pairs �E with jEj � m. The �elds with the opposite energies are

generated by 


1

= �

1

,

f�

1

; �

2

g = f�

1

; �

3

g = 0) H = E 
 H(


1

 ) = �E(


1

 )

In the spirit of Dirac we de�ne the vacuum to be �lled with negative

energy states, the particles to be excitations with E > 0 and the anti-particles

to be holes in E < 0 (cf Fig. 1.4). 


1

is the fermion number conjugation.

As well-known the chiral symmetry generated by 


5

,

 ! 


5

 ;

�

 ! �

�

 


5

is broken by the mass term. But as an interaction this term can be made

invariant by

�!��

which is again a solution. That means 


5

generates a state with the same

energy but with � in the opposite vacuum.

Now we really want to insert a non-trivial � and look for its spectrum.

Still �

1

generates opposite energy solutions. It comes out that again they

are displaced by the soliton. What about the special case of solutions of zero

energy? Acting on them, H and �

1

commute, and we choose the zero modes

 to be eigenfunctions of �

1

,

�

1

 

�

= � 

�

;  

+

=

 

1

(x)

p

2

�

1

1

�

;  

�

=

 

2

(x)

p

2

�

1

�1

�
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x

ln 

2

�

ln 

1

(a)

x

 

1

(x)

(b)

Figure 1.5: Zero energy solutions in a soliton background: ln 

1;2

/ �

R

�dx (cf

(1.8)). Only one of the solutions is normalisable, the one with the full line in (a).

It is localised at the soliton position which we have chosen to be 0 here (b). A

similiar picture applies for the anti-soliton.

Now we have to solve

(�

1

@

x

+ g�) 

�

= �

3

E 

�

= 0

which becomes

@

x

 

1;2

= �g� 

1;2

; ln 

1;2

= �g

Z

�dx (1.8)

Knowing the general shape of the soliton � we see immediately that the

solution with the lower sign is non-normalisable, while the one which the

upper sign ful�lls every decent boundary condition, since it drops exponen-

tially. Notice that  

1

 

2

= const. as a general property. Thus, if we add the

continuum, there is an `odd' (but in�nite) number of solutions.

For completeness we give the formula for the normalisable zero mode,

 

+

= const

�

cosh

m

2

(x� x

0

)

�

�2m=m

 

�

1

1

�

It is strongly localized at the position x

0

of the soliton (cf Fig. 1.5). For the

anti-soliton �� the solution with the lower sign is normalisable,

 

�

= const

�

cosh

m

2

(x� x

0

)

�

�2m=m

 

�

1

�1

�

8



This of course agrees with the chiral transformed  

+

,

 

+

! 


5

 

+

= const

�

cosh

m

2

(x� x

0

)

�

�2m=m

 

�

2

�

1

1

�

= const

�

cosh

m

2

(x� x

0

)

�

�2m=m

 

�

i

�i

�

/  

�

These zero modes are called Jackiw-Rebbi modes [1]. We view them as

soliton-fermion bound states indistinguishable from the original true soliton

4

.

When we quantise the theory,  becomes an operator with Fermi-Dirac

statistics/anti-commutation relations, especially

^

 

2

= 0.

^

 

+

and

^

 

�

com-

mute with the Hamiltonian: [

^

 

�

;

^

H] = 0. In general this commutator in-

volves the energy, but here we have E = 0. Whether these states are �lled or

empty has no e�ect on the energy, they are `somewhere inbetween fermions

and anti-fermions'. As we have seen they are related by 


5

. In fact Jackiw

and Rebbi [1] have shown that the soliton has two states with

fermion number: n = �1=2, no spin, no Fermi-Dirac statistics!

n is the expectation value of the conserved charge

^

Q

0

=

R

dx :

^

�

 


0

^

 : in

these states.

1.4 Outlook to Higher Dimensions

In higher dimensions the �eld will still like to sit in a vacuum for most of the

space-time. The kinks will now be substituted by (moving) domain walls,

i.e. transition regions between domains with di�erent �-values. Their shape

will depend on the model. In any case passing domain walls will have huge

physical consequences. For example in case (a) passing from � to �� means

transforming (by chiral symmetry) matter into anti-matter.

The domains themselves are related through a discrete global symmetry,

namely Z

2

in case (a) and Zin case (b). In other words we have two sorts

of domains in case (a) and in�nitely many in case (b), respectively.

Concerning the chiral fermions, they are massive inside the domains and

massless on the walls. The latter are localised in the direction perpendicular

4

The counting of states depends on this interpretation (cf [1]).

9



II

IV

I

III

Figure 1.6: The picture we expect in higher dimensions: In the domains I to IV

� sits in di�erent vacua, which are related by a discrete symmetry. The transition

takes place on domain walls. Inside the domains fermions are massive (�), on the

walls they are massless (�) and localised perpendicular to the walls.

to the domain wall. Along the domain wall we can view them as lower-

dimensional Dirac fermions. This scenario has become helpful for studying

fermions on the lattice.

10



Chapter 2

The Abrikosov-Nielsen-Olesen-

Zumino Vortex

2.1 Approach to the Vortex Solution

We try to �nd the analogue of domain walls in 2+1 dimensions. They will

come out as vortices or strings. We have to take a complex (or two component

real) scalar �eld,

� = �

1

+ i�

2

;

~

� =

�

�

1

�

2

�

(2.1)

We use the generalization of (1.1) with a global U(1) invariance,

L = �@

�

�

�

@

�

��

�

2

�

�

�

�� F

2

�

2

(2.2)

as our starting point. Notice that the vacuum manifold is now a circle j�j =

F . For the desired soliton solution we combine it with the directions in space

at spatial in�nity,

jxj ! 1 :

~

�! F

~x

jxj

; �! Fe

i'

(2.3)

where ' is the polar angle in coordinate space. One such solution is depicted

in Fig. 2.1. The solution could also be a deformation of this, but should

go a full circle around the boundary. Since the map on the boundary is

non-trivial, � must have a zero inside.

11



Figure 2.1: A typical vortex solution with isospace vectors

~

� depicted in (2 di-

mensional) coordinate space ~x. The �eld `winds around once' at spatial in�nity as

a general feature. Angle and length of

~

� inside, especially the position of the zero,

are still arbitrary. All these con�gurations are speci�ed by the winding number 1.

But this non-trivial map at spatial in�nity has the e�ect that the energy,

E =

Z

d

2

x

�

~

@�

�

~

@�+ V (�; �

�

)

�

(2.4)

is divergent, since the rotation of � enters the kinetic energy,

jxj ! 1 : @

i

�

j

!

F

jxj

�

�

ij

�

x

i

x

j

jxj

2

�

2

X

i;j=1

(@

i

�

j

)

2

!

F

2

jxj

2

(2 � 2 + 1) =

F

2

jxj

2

Z

d

2

x

~

@�

�

~

@� ! 2�

Z

1

0

djxj

F

2

jxj

: : : log. divergent

Thus in a theory with global U(1) invariance, there exists a vortex, but its

energy (per time unit in three dimension) is logarithmically divergent!

Derrick's Theorem [2] states that this divergence is unavoidable for time-

independent solutions in d � 2. Since it is only a mild divergence, the

solution still plays a role in phase transitions in statistical mechanics.

12



2.2 Introduction of the Gauge Field

Now we cure the above divergence by making the U(1) invariance local in the

standard manner. We add a gauge �eld A

�

and replace the partial derivative

in (2.2) by the covariant one,

@

�

�! D

�

� = (@

�

� ieA

�

)� (2.5)

This gives

~

D� the chance to converge better than

~

@� (we still deal with

static solutions). In other words the divergence is absorbed in

~

A. Since

asymptotically � depends only on the angle ',

~

A will only have a component

in this direction

Asymptotically, � is real at the x-axis,

�! Fe

i'

j

'=0

= F

and the gradient has only a y component,

~

@�!

�

@

x

�

@

y

�

�

�

�

�

�

'=0

=

�

@

r

�

1

r

@

'

�

�

�

�

�

�

'=0

=

�

0

iF=r

�

We can read o�

~

A from the demand of vanishing covariant derivative,

~

A!

1

ie

�

�1

~

@�; A

x

! 0; A

y

!

1

er

For the general case (at any point (x; y)) we perform a trick, namely we can

rotate � locally to be real,

�! 
F with 
(~x) = e

i'

thus,

~

A! �

1

ie




~

@


�1

In fact the covariant derivative vanishes asymptotically,

~

D�!

�

~

@
 + 
(

~

@


�1

)


�

F = 


~

@

�




�1




�

F = 0

The general form of

~

A is,
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~

A

~

B

�

Figure 2.2: The introduction of a circular gauge �eld

~

A (cf (2.6)) leads to a vortex

with quantised magnetic 
ux � = n

2�

e

.

A

i

!�

1

e

�

ij

x

j

r

2

(2.6)

As we expected it has only a '-component,

A

r

! 0; A

'

!

1

er

Furthermore it is a pure gauge asymptotically and the �eld strength vanishes,

~

A!

1

e

~

@'; F

ij

! 0

giving a solution with �nite energy per unit length.

It can be shown that the choices for � and A are solutions of the Euler-

Lagrange equations asymptotically. If we try to extend them naively towards

the origin, A runs into a singularity. Instead one could make an ansatz for �

and A and try to solve the remaining equations numerically [3]. But already

from the asymptotic behaviour we can deduce a quantised magnetic 
ux,

� =

Z

S

~

Bd~� =

Z

C=@S

~

Ad~x = g

m

; g

m

=

2�

e

For higher windigs we have analogously,

� = ng

m

with n 2Z
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The situaton is very much like in the Ginzburg-Landau theory for the

superconductor. In this theory an electromagnetic �eld interacts with a fun-

damental scalar �eld describing Cooper pairs. The latter are bound states

of two electrons with opposite momentum and spin. As bosonic objects they

can fall into the same quantum state resulting in one scalar �eld �. The

potential of the scalar �eld is of the Mexican-hat form with temperature-de-

pendent coe�cients. In the low temperature phase the symmetry is broken

and the photons become massive. That means if a magnetic �eld enters the

superconductor at all, it does so in 
ux tubes. Performing an Aharonov-

Bohm gedankenexperiment around such a tube leads to a 
ux quantum,

�

SC

= ng

SC

The only di�erence to the above model is a factor 2 from the pair of electrons,

q

SC

= 2e; g

SC

=

2�

q

SC

=

�

e

2.3 Bogomol'nyi Bound for the Energy

Adding the �eld strength term to (2.2) and (2.5), the complete Lagrangian

reads,

L = �D

�

�

�

D

�

��

�

2

�

�

�

�� F

2

�

2

�

1

4

F

��

F

��

(2.7)

The energy integral is now,

E =

Z

d

2

x

�

D

i

�

�

D

i

�+

1

2

F

2

12

+

�

2

�

�

�

�� F

2

�

2

�

In the gauge where � is real

1

the integrand consists of a sum of squares,

E =

Z

d

2

x

�

(@

i

�)

2

+ e

2

~

A

2

�

2

+

1

2

F

2

12

+

�

2

�

�

�

�� F

2

�

2

�

where the second and the fourth term cannot be zero at the same time. For

the Bogomolnyi bound we reduce the number of squares by partial integration

1

At the origin this gauge 


�1

= e

�i'

becomes singular, since ' is ambiguous at this

point.
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as for the soliton (cf (1.7) and Exercise (i)),

(@

i

�)

2

+ e

2

~

A

2

�

2

= (@

i

�� e�

ij

A

j

�)

2

� e�

2

F

12

+ total der.

1

2

F

2

12

+

�

2

�

�

�

�� F

2

�

2

=

1

2

�

F

12

�

p

�(�

2

� F

2

)

2

�

2

�

p

�(�

2

� F

2

)F

12

Notice that the new square in the �rst equation looks like a covariant deriva-

tive, but it is not. The boundary contributions are easily to be calculated.

For the special choice

2

of

� = e

2

m

�

= m

A

=

p

2eF

the energy simpli�es further,

E =

Z

d

2

x

�

(@

i

�� e�

ij

A

j

�)

2

+

1

2

�

F

12

�

p

�(�

2

� F

2

)

2

�

2

� eF

2

F

12

�

� eF

2

�

�

�

�

Z

F

12

d

2

x

�

�

�

�

For the saturation of the bound the �rst two equations can be solved numer-

ically, while the rest gives the total magnetic 
ux,

E � eF

2

n

2�

e

= n

�m

2

e

2

(2.8)

Again we have found the typical dependence mass

2

=coupling for heavy topo-

logical objects.

2.4 Gauge Topology Description

For the vortex as well as for the soliton we have seen that the asymptotic

behaviour is important, in the sense that the requirement of �nite energy

forces the con�gurations to fall into disjoint `classes'. Interpolating between

these classes must include con�gurations with divergent energy. Now we

want to clarify this topological property.

Along the lines of spontaneous symmetry breaking, (2.7) is a U(1) gauge

theory coupled to a Higgs �eld �. The vacuum manifold j�j = F is U(1)-

invariant, but the special choice � = F breaks the U(1) down to 1l: No

2

This choice corresponds to the type I/type II phase boundary of the superconductor.
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~

A

�

1

�

2

�

3

Figure 2.3: A non-trivial con�guration of vortices carrying total 
ux (n

1

+ n

2

+

n

3

)

2�

e

2

. For topological reasons it cannot be continuously shrinked to the trivial

vacuum (unless n

1

+ n

2

+n

3

= 0). The total 
ux also results in a lower bound for

the energy (cf (2.8)): E � jn

1

+ n

2

+ n

3

j

�m

2

e

2

for � = e

2

.

gauge transformation leaves this special value invariant. That is, the gauge

transformation leading to this gauge must be a mapping from the boundary

of R

2

to U(1)=1l,


 : S

1

�! U(1)=1l � U(1)

The identity has been (formally) divided out, since for the general case 
 need

not come back to the same group element. It is allowed to di�er by another

group element belonging to the subgroup which leaves the vacuum choice

invariant. We say the Higgs �eld � transforms under the group U(1)=1l.

The mappings from S

1

into a manifoldM themselves form a group, called

the �rst homotopy group �

1

(M). �

1

measures the non-contractibiliy of M ,

i.e. the `existence of holes'. For contractible M all mappings are identi�ed

and �

1

is simply the identity.

The Lie group U(1) itself is a circle S

1

. The �rst homotopy group of S

1

is well-known to be the group of integers,

�

1

(S

1

) =Z

Notice that this group is Abelian.

Thus from topological arguments each vortex carries a quantum number

Q 2 �

1

(U(1)=1l) =Z
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B

A

X

D

C

Figure 2.4: In a general Higgs theory G! G

1

each vortex represents an element

of the group G

2

= �

1

(G=G

1

). The fusion rules are governed by this group, which

might be non-Abelian. For the depicted case we have g

A

g

B

= g

X

= g

C

g

D

.

which can be identi�ed with the total 
ux number n. We have found an

abstract reasoning for the quantisation of this physical quantity. There are

in�nitely many U(1)=1l vortices and they are additively stable.

Other situations may occur. Let a group G be spontaneously broken

down to a subgroup G

1

,

G

Higgs

�! G

1

Then in the same spirit

G

2

= �

1

(G=G

1

)

is the group of vortex quantum numbers. WheneverG

2

is non-trivial G

2

6= 1l,

there are stable vortices. Their fusion rules are given by the composition law

of the group G

2

, which in general might be non-Abelian. Then the quantum

number of the vortex is not additive, and one vortex cannot `go through the

other one' without leaving a third vortex (cf Fig. 2.4, 2.5 and Exercise (iii)).

This situation plays a role in the theory of crystal defects, where the vortices

go under the name of `Alice strings'. Generically it does not occur in the

Standard Model of elementary particle physics.

But let us consider a `double Higgs theory',

SU(2)

Higgs

�!

I = 1

U(1)

Higgs

�!

I = 1

Z

2
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A

B

A

B

C

Figure 2.5: Alice strings: When a non-Abelian group G

2

is associated to the

vortices, the hitting of two of them (A and B) will lead to a third one C =

ABA

�1

B

�1

as indicated by the dashed contour.

The SU(2) theory is broken by a Higgs �eld in the adjoint (I = 1) repre-

sentation down to the maximal Abelian subgroup U(1). This U(1)

�

=

SO(2)

corresponds to the residual rotations around the preferred vacuum direction.

Afterwards the theory is broken down further to Z

2

by another adjoint Higgs

�eld. Z

2

as the center of SU(2) is mapped onto the identity in the adjoint

representation (cf (2.10)) and thus acts trivially on the Higgs �eld.

To be explicit we parametrise SU(2) as a three-sphere (cf Fig. 2.6),

SU(2) 3 
 = a

0

1l + ia

i

�

i

; a

�

real; a

2

0

+ ~a

2

= 1 (2.9)

The center Z

2

sits on the poles a

0

= �1; ~a = 0; 
 = �1l. Clearly it sends an

I = 1 �eld � back to itself,

�!




� = 


y

�
 = (�)

2

1l�1l = � (2.10)

It is just the identi�cation of opposite points that leads to the group SO(3),

SU(2)=Z

2

�

=

SO(3)

In addition non-contractible closed paths are created, namely those which

connect two opposite points. The �rst homotopy group of SO(3) is non-

trivial,

�

1

(SO(3)) = Z

2

Therefore, a SU(2)=Z

2

vortex carries a multiplicative quantum number �1.

+1 stands for the contractible situation, which is homotopic to the trivial
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a

0

a

2

; a

3

a

1


 = �1l


 = 1l

Figure 2.6: The group SU(2) parametrised as a three-sphere a

2

0

+

P

3

i=1

a

2

i

= 1.

The center Z

2

= �1l sits on the poles, and every closed path can be contracted to

a point: �

1

(SU(2)) = 1l. After identi�cation of opposite points (�) one arrives at

the group SO(3). Every path connecting two opposite points is now closed, but

not contractible: �

1

(SO(3)) = Z

2

.

vacuum. Unlike the case above there is only a �nite number of di�erent

vortices, namely two.

Another signi�cant di�erence to the U(1)=1l case is the orientability: One

could try to label the quantum numbers of the vortices by arrows. But as

Fig. 2.7 indicates, these arrows are unstable in the SU(2)=Z

2

case.

Altogether we have that

the U(1) ! 1l vortex has an additive quantum number

n 2Zand is orientable.

while

the SU(2)! U(1)! Z

2

vortex has a multiplicative quantum number

�1 2 Z

2

and is non-orientable.

This statement has a very interesting physical consequence (cf Fig. 2.8).

Imagine two U(1) ! 1l vortices with 
ux 2�=e, respectively. The total 
ux

is 4�=e. But seen as SU(2)! U(1)! Z

2

vortices the intermediate vortex is

equivalent to the vacuum with 
ux zero. The vortices have snapped creating
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�

�

+ +

Figure 2.7: A graphical proof that the SU(2)=Z

2

vortex is non-orientable: Two in-

coming vortices with quantum number �1 produce a vortex with quantum number

+1. It is equivalent to the vacuum, and the arrows become inconsistent.

a pair of something that carries magnetic charge. We conclude there must

be magnetic monopoles with magnetic charge 4�=e (or an integer multiple of

it). We will analyse these magnetic monopoles in the next chapter.

U(1)! Z

2

SU(2)! U(1)! Z

2

Figure 2.8: The snapping of vortices (see text).
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Chapter 3

Magnetic Monopoles

3.1 Electric and Magnetic Charges and the

Dirac Condition

Studying the vortices of Chapter 2 automatically revealed the existence of

pure magnetic charges in non-Abelian gauge theories G! U(1). As worked

out,

SU(2)

I=1

! U(1)

produces magnetic monopoles with magnetic 
ux �4�=e = g

m

. The mini-

mally allowed electric charge is q = e=2 for I = 1=2 doublets. Indeed the

Dirac condition,

qg

m

= 2�n n 2Z

is exactly obeyed.

We remind the reader of its origin. In Maxwell's theory isolated magnetic

sources are excluded and the magnetic �eld is the curl of a smooth gauge �eld.

Thus for a monopole the Maxwell �eld has to be singular at the so-called

Dirac string. This is a curve which extends from the monopole to in�nity

1

and carries a magnetic 
ux g

m

. Physically the magnetic monopole is the

endpoint of a tight magnetic solenoid which is too thin to detect. The string

itself can be moved to a di�erent position by a singular gauge transformation.

1

It could also extend to a second monopole with inverse charge such that the net 
ux

through a surface including both vanishes.
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DD

0

I

C

II

M

Figure 3.1: For introducing a magnetic monopole (M) into an Abelian theory, a

Dirac string (D) is needed. When moving around the string on a circle C the wave

function picks up a phase. This phase is proportional to the magnetic 
ux carried

by the string, and the Dirac condition follows. The Dirac string can be put on

a di�erent position (D

0

) by a singular gauge transformation. In the �bre bundle

construction the circle C is the overlap region of two patches (I,II).

Now we consider a matter �eld in the presence of that string. The vector

potential enters the Schr�odinger equation via the conjugate momentum,

H = H(~p � q

~

A; V )

When we go around the string the wave function picks up a phase,

q

Z

C

~

Ad~r = qg

m

In the Aharonov-Bohm e�ect the same consideration leads to a phase shift

of two electron beams. Since the wave function has to be single-valued and

no AB e�ect shall take place, we have the restriction that qg

m

= 2�n. The

existence of one monopole quantises all electric charges.

2

One can avoid the singularities by a �bre bundle construction: Every

two-sphere around the monopole consists of two patches on which the gauge

�elds are regular, respectively. The patches overlap on some circle C around

the string. There a gauge transformation (`transition function') 
 = e

ie�

connects the �elds,

~

A

(II)

=

~

A

(I)

+

~

r�;  

(II)

=  

(I)

e

ie�

2

Introducing the magnetic charge q

mag

= g

m

=4� the Dirac condition reads qq

mag

=

n=2.
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For 
 to be single-valued � has to ful�l,

q[�(' = 2�)��(' = 0)] = 2�n

The functions � fall into disjoint classes, the simplest representatives of which

are just proportional to the angle ' around the string,

� =

n

q

'

On the other hand the magnetic 
ux is given by the A-integral on the boun-

dary. Here it is the

~

r�-integral on that circle,

g

m

=

Z

C

~

r�d~r = �j

2�

0

= 2�n=q (3.1)

The Dirac condition has a topological meaning: The transition function 
 :

S

1

! U(1) has a winding number and (3.1) is how to compute it.

3.2 Construction of Monopole Solutions

After the excursions through lower dimensions we present in this section a

3+1 dimensional theory. No surprise, it is a non-Abelian gauge theory with

gauge group SU(2) and a Higgs �eld � in the I = 1 representation,

L = �

1

2

(D

�

�

a

)

2

�

�

8

�

�

2

a

� F

2

�

2

�

1

4

F

a

��

F

a

��

(3.2)

Both � and A are elements of the Lie algebra su(2)

�

=

R

3

,

� = �

a

�

a

; A

�

= A

a

�

�

a

; �

a

= �

a

=2

and the non-Abelian de�nition of the covariant derivative and the �eld strength

includes commutator terms,

D

�

�

a

= @

�

�

a

+ �

abc

A

b

�

�

c

; F

a

��

= @

�

A

�

� @

�

A

�

+ �

abc

A

b

�

A

c

�

We look for static solutions of the �eld equations. Repeating the argu-

ments from the previous chapter we expect � to live on a sphere with radius

F asymptotically: �

a

�

a

= F

2

. Topologically it is a mapping from S

2

(as the

boundary of the coordinate space) to another S

2

(of algebra elements with
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Figure 3.2: The Higgs �eld of a monopole con�guration shows a `hedgehog' be-

haviour. It points in the same direction (in isospace) like its argument (in coordi-

nate space) and has winding number 1.

�xed length). The degree of this mapping is an integer. Alternatively one

can see immediately that � transforms under (SU(2)

I=1

� SO(3))=U(1). Its

second homotopy group

3

is the group of (even) integers. The one to one

mapping,

�

a

(x)! F x̂

a

; x̂

i

= x

i

=j~xj; j~xj =

p

x

i

x

i

; i = 1; 2; 3

is the �rst non-trivial mapping. On the boundary the same things happen

as before, � `winds around once'. Notice that the isospace structure (indices

a) is mixed with the space-time structure (indices i). Inside, � is of the same

form,

�

a

(x) = �(j~xj)x̂

a

(3.3)

with a regular function �(j~xj). The solution is depicted in Fig. 3.2. It is

called a `hedgehog' and has a zero inside.

Corresponding to our previous discussions we make the natural ansatz:

A

0

= 0; A

a

i

= �

iaj

x̂

j

A(j~xj) (3.4)

The �rst condition means that there is no electric �eld, the second one is the

analogue of the circular gauge �eld in (2.6). Again it exploits the mixing of

isospace and coordinate space indices. The magnetic �eld at spatial in�nity

looks like if there were a magnetic charge inside: B

i

/ x

i

=j~xj

3

.

3

Analogously to �

1

, the second homotopy group �

2

is the group of mappings from S

2

into the given manifold.
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What happens after spontaneous symmetry breaking? To extract the

physical content one usually makes use of the local gauge symmetry. We

diagonalise �, i.e. force it to have only a third component. The corresponding

gauge is called `unitary gauge',

�!

0

@

0

0

F

1

A

+

0

@

0

0

�

1

A

(3.5)

F and � are the vacuum expectation value and the 
uctuations of the Higgs

�eld, respectively. The third component of the Higgs �eld gets a mass,

M

�

�M

H

= F

p

�

For the gauge �elds it is the other way round. A

1

�

and A

2

�

are massive vector

bosons, A

3

�

is the massless photon referring to the unbroken U(1) in the third

direction,

M

A

1;2
�M

W

�
= eF; M

A

3
= 0

The gauge �eld coupling is denoted by `e', since this is also the charge unit

with respect to the residual Maxwell potential A

3

�

.

It can be shown that under spontaneous symmetry breaking the hedgehog

con�guration turns into a Dirac monopole. It resides in the origin, while the

Dirac string is placed along the negative z-axis. The last point is not di�cult

to explain (see also Exercise (iv)): The gauge transformation has to rotate

� onto the positive z-axis in the algebra. It can be written in terms of the

spherical coordinates � and '. The latter becomes ambiguous on the z-axis.

This does not matter at its positive part, since � is already of the desired

form there. But on the negative part it points just in the opposite direction

and there are a lot of rotation matrices. Whatever direction we choose for the

spontaneous symmetry breaking in (3.5), a singularity occurs: the unitary

gauge changes the asymptotic behaviour of � from the hedgehog to the trivial

one. Like in the explicit case the singularity is always situated on the opposite

part of the chosen axis. We have found again that the existence of the Dirac

string is gauge invariant, its position is gauge dependent.
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3.3 Existence of Monopoles

What is the general feature of theories which allow for monopole solutions?

The U(1)

em

must be embedded as a subgroup

4

in a larger non-Abelian group

G, and

�

1

(G) <Z

For the winding number to be �nite, G must have a compact covering group

5

.

This is the topological reason for the statement, that there are no magnetic

monopoles in the electroweak sector of the Standard Model

SU(2)

I

� U(1)

Y

! U(1)

em

U(1) has a non-compact covering group, namely R

+

. Thus �

1

(SU(2)

I

�

U(1)

Y

) is still Zand vortices refuse to snap.

In Grand Uni�ed Theories (GUT) the Standard Model is embedded in

a larger group like SU(5). Then monopole solutions become possible again

and have magnetic 
ux 2�=e. As we will see in the next section, its mass

is bigger than the mass of the massive vector bosons W of the theory. The

GUT scale is 10

16

GeV and the monopole mass is of the order of m

Planck

.

So far no experiment has detected magnetic monopoles. Perhaps they

exist somewhere in the universe. Not only GUT's but also cosmological

models predict their existence.

The generalization to monopoles with added electric charge was intro-

duced by Julia and Zee [4]. These particles are called `dyons'. It is easy to

imagine that one can add multiples of A

�

to a monopole,

g

m

=

4�

e

; q = ne

3.4 Bogomol'nyi Bound and BPS States

For estimating the monopole mass we again use the Bogomol'nyi trick,

E =

Z

d

3

x

�

1

2

(

~

D�

a

)

2

+

�

8

(�

2

a

� F

2

)

2

+

1

2

~

B

2

a

�

4

It is also possible to embed a product of U (1)'s into G which will be the case for the

Abelian Projection of SU (3) and higher groups in chapter 5.

5

The covering group of a given Lie group is constructed from the same Lie algebra, but

is simply connected.
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Note that the homogeneous �eld equation for non-Abelian theories read,

D

i

B

a

i

=

1

2

�

ijk

D

i

F

a

jk

= 0

It is the usual Bianchi identity that allows for the introduction of the A-�eld.

We use it to reduce the number of squares,

(

~

D�

a

)

2

+

~

B

2

a

= (

~

D�

a

�

~

B

a

)

2

� 2

~

B

a

~

D�

a

We rewrite the last term in a total derivative,

~

B

a

~

D�

a

=

~

@(

~

B

a

�

a

)

Its contribution to the energy is gauge invariant, and we compute it in the

unitary gauge,

Z

d

3

x

~

@(

~

B

a

�

a

) = F

Z

S

2

1

~

B

3

~n =

4�

e

F

Thus the energy of the monopole is bounded from below by the mass of the

W -boson,

E =

Z

d

3

x

�

1

2

(

~

D�

a

�

~

B

a

)

2

+

�

8

(�

2

a

� F

2

)

2

�

+

4�

e

2

M

W

(3.6)

The bound is saturated for vanishing potential, � = 0. The exact solution to

the remaining equations,

~

D�

a

�

~

B

a

= 0; j�j ! F

was given by Sommer�eld and Prasad. These so-called BPS states have a

mass,

M

mon

=

4�

e

2

M

W

and are important for supersymmetric theories.
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3.5 Orbital Angular Momentum for qg Bound

States

In this section we look for electrically charged particles bound to the monopole.

All particles with U(1) charge originate from SU(2) representations,

I = integer �! q

U(1)

= ne

I = integer +

1

2

�! q

U(1)

= (n+

1

2

)e

consistent with the Dirac condition,

g

mon

=

4�

e

�! qg

mon

= 2�n

Let us take a minimal charge q =

1

2

e, i.e. a �eld  in the de�ning represen-

tation of SU(2),

I =

1

2

:  =

�

 

1

 

2

�

and consider  near a monopole. The wave equation reads:

D

2

 + �

2

 ! 0 or (


�

D

�

+ �) ! 0

� plays the role of a binding potential. In the regular description the monopole

solution has �

a

(x) = �(jxj)x̂

a

. Its rotational symmetry can only be exploited

if we rotate �

a

together with ~x. That is spacial SO(3) rotations must be

coupled to isospin SU(2) rotations,

SU(2)

space

� SU(2)

isospin

�! SU(2)

diag

where SU(2)

diag

is the invariance group of the monopole. The representation

of our  in this SU(2)

diag

is,

L

tot

= L

space

+ L

isospin

l

tot

= l

space

�

1

2

 may be a scalar under spacial rotations but carries now half spin! Similar

things happen, when we give  an ordinary spin �

1

2

: the angular momentum
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D

mon

el

(a) (b) (c)

Figure 3.3: An electrically charged particle (el) feels the Dirac string (D) of a

magnetic monopole (mon). When moving around the string,  

el

picks up a phase

factor (a). This is equivalent to move the monopole around the electric charge

with its electric string (b). For bound states (c) we choose both strings to point

in opposite directions.

becomes an integer! We have found that [5]

q =

1

2

e particles will bind to a magnetic monopole

with g

m

=

4�

e

=

2�

q

in such a way that

the orbital angular momentum is integer +

1

2

:

The spin becomes half-odd integer, although the monopole is a spin 0 object.

The anomalous spin addition theorem for qg bound states with q � g = 2�

reads:

integer + integer �! integer+

1

2

etc. Something like this was never seen in quantum �eld theory before.

The reasoning heavily relies on the existence of Dirac strings. Imagine an

electric charge in the fundamental representation and a monopole like in Fig.

3.3. The wave function of the electric charge  

el

feels the string coming from

the monopole. The Maxwell equations allow us to interprete the resulting

phase shift also after interchanging electric and magnetic charges. Then  

mon

feels the string coming from the electric charge. Accordingly, the eg bound

state has two strings. When they are oppositely oriented, the bound state

looks like if it has a string running from�1 to1. We remind the reader that

one part of the string is only felt by the magnetic monopole wave function,

while the other part only by the electric charge wave function.
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1 2

=

2 1

(a)

1 2

=

2 1

(b)

1 2

(?)

=

2 1

(c)

Figure 3.4: The two-particle-wave function of monopoles (a) and electric charges

(b) is symmetric due to the fact that the charges do not feel string of their own

kind. What will happen for bound states (c) is discussed in the text.

Now consider two identical bosonic monopoles and two identical bosonic

electric charges. Since the charges do not feel strings of its own kind, they

can be moved around freely (cf Fig. 3.4(a) and 3.4(b)). In the same way

combine the charges into identical bound states. What is their statistics?

What happens to the wave function when we interchange two of these?

They are the states of Fig. 3.4(c), and, considering the wave functions

of these objects, with all strings attached, there will be no anomalous sign

switch if we interchange the two objects.

However, we may now observe that, as long as the objects remain tightly

bound, each as a whole feels a string that runs from �1 to +1: since they

carry both electric and magnetic charge, they each feel the combination of

the strings from Fig. 3.4(a) and 3.4(b). To be precise: if ~r

1

is the center of

mass of bound state 1 and ~r

2

is the center of mass of bound state 2, the wave

function is,

 

12

(~r

1

; ~r

2

) =  

cm

(

~r

1

+ ~r

2

2

) 

rel

(~r

1

� ~r

2

)

and it is  

rel

(~r

1

� ~r

2

) that feels a Dirac string running through the origin

from z = �1 to z = +1.

The point is now that we may remove this Dirac string by multiplying

 

rel

with

e

i'(~r

1

�~r

2

)

This produces a minus sign under the interchange ~r

1

$ ~r

2

. The bound states

obey Fermi-Dirac statistics [6]! After the Dirac string is removed, the system
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of two identical bound states is treated as an ordinary system of particles

such as molecules.

3.6 Jackiw-Rebbi States at a Magnetic Mo-

nopole

In the �rst chapter we have seen that there are chiral fermions in the back-

ground of a kink. We brie
y discuss this e�ect for the monopole. We intro-

duce fermions  transforming under some representation of the gauge group

SU(2) given by the generators (T

a

)

ij

,

L = L

mon

�

�

 
D �G

�

 

i

�

a

T

a

ij

 

j

The �rst part L

mon

is the theory (3.2) we have discussed so far. Since the

fermion couples to the Higgs �eld it gets a mass,

unitary gauge: h�

a

i !

0

@

0

0

F

1

A

: m

 

= C �GF

where C is a coe�cient depending on the representation.

The energies are again the eigenvalues of the Hamilton operator,




4

@

i@t

! 


4

E

We use an o�-diagonal representation for the matrices ~� and �,




4

~
 = �i~�; ~� =

�

0 ~�

~� 0

�

; 


4

= �; � = �i

�

0 1l

�1l 0

�

The energy equation reads

h

~�(~p+ gT

a

~

A

a

) + �GT

a

�

a

i

 = E 

We split  into its chirality components  =

�

�

+

�

�

�

and insert the magnetic

monopole in its regular form ((3.3),(3.4)),

[~�(~p+ gA(j~xj)T

a

(~� ^ ~r)

a

)� iG�(j~xj)T

a

x̂

a

]�

�

= E�

�
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which for E = 0 separates into equations for �

+

and �

�

, respectively.

We have already discussed the symmetry of this equation. Invariant ro-

tations are generated by the total angular momentum

~

J,

~

J =

~

L+

~

S +

~

T

where

~

L,

~

S and

~

T are the ordinary angular momentum, the spin and the

isospin, respectively. Let us work in the de�ning representation t = 1=2

(q = �e=2) and look for the simplest solutions with

~

J =

~

L = 0,

~

S +

~

T = 0

For this case Jackiw and Rebbi found one solution,

E = 0; (j = l = 0):

Note that j = 0 inspite of s = 1=2.

As for the kink, the Jackiw-Rebbi state lies inbetween the fermion and

anti-fermion eigenstates. Whether it is full or empty does not change the

energy of the system (Fig. 3.5). In most cases the baryon number is just a

conserved charge, the monopole (anti-monopole) contributes to since it has:

baryon number = � 1=2

electric charge = � e=4

E

empty

full or empty

full

Figure 3.5: The spectrum of fermions in the background of a magnetic monopole.

There are E = 0 Jackiw-Rebbi states, the degeneracy of which depends on the

total angular momentum j.
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Much more is to be said about the electric charges. Here we only state that

the bound states behave like particles or anti-particles under U(1)

charge

.

For the adjoint representation t = 1 we have j = 1=2. There are now two

solutions with E = 0 and j

z

= � 1=2 and we get a 2

2

-fold degeneracy.

Notice that the Jackiw-Rebbi solution is a chiral wave function: �

+

and

�

�

are eigenstates of 


5

, which is block-diagonal in the chosen representation.
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Chapter 4

Instantons

New topological objects, the so-called instantons, arise in pure non-Abelian

gauge (Yang Mills) theories in four dimensions. We approach the topic by

investigating the structure of gauge transformations.

4.1 Topological Gauge Transformations

Let us work in the Weyl (=temporal) gauge A

0

= 0, where the theory reduces

to

F

a

0i

= @

0

A

a

i

; L =

1

2

(@

0

A

a

i

)

2

�

1

4

F

a

ij

F

a

ij

=

1

2

�

~

E

2

a

�

~

B

2

a

�

:

The Lagrangian density is nothing but the di�erence of kinetic and potential

energy in a Yang Mills sense. The action of a gauge transformation 
 on a

gauge �eld A is,

A

�

! 
(x)(

1

ie

@

�

+A

�

)


�1

(~x)

Obviously the surviving invariance of the gauge A

0

= 0 consists of time-

independent gauge transformations,

@

t


 = 0) 
(~x; t) = 
(~x)

just like a global symmetry in time. The Hamiltonian of the theory,

H =

Z

d

3

~x(E

a

i

@

0

A

a

i

� L) =

1

2

Z

d

3

~x(

~

E

2

a

+

~

B

2

a

)
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S

3

R

3

[ f1g

Figure 4.1: The stereographic projection identi�es the three-sphere with the three-

space compacti�ed at spacial in�nity, which is the image of the north pole.

is the sum of the kinetic and potential energy, and commutes with these

gauge transformations,

[H;
(~x)] = 0

We can diagonalise both operators simultaneously,

Hj i = Ej i; 
(~x)j i = !(~x)j i

The eigenvalues ! are constants of motion. Now in�nitesimal gauge trans-

formations give rise to eigenvalues �,


(~x) = 1l + i��(~x); �(~x)j i = �(~x)j i

The only values of � consistent with the unbroken spacial Lorentz transfor-

mations is

�(~x) = 0

However, a class of 
(~x) exists that cannot be obtained from in�nitesimal

gauge rotations �(~x). We remind the reader of the stereographic projection,

which identi�es the three-space R

3

compacti�ed at spacial in�nity with the

three-sphere S

3

(Fig. 4.1). If 
 has the same limit when going to spacial

in�nity in any direction, it can be regarded as a function on R

3

[f1g

�

=

S

3

.

Since SU(2) is again a three-sphere we have,


 : S

3

! S

3
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� = 0 : A

�

� = 1 :




1

A

(a)

E[A

i

(�; ~x)]

�

0 1




1

(b)

Figure 4.2: A continuous line of gauge �elds connects two gauge equivalent con-

�gurations (a). Since the intermediate points are physically di�erent, they have

di�erent energies (b) and tunnelling is expected.

Similiarly to vortices and monopoles, these mappings are classi�ed by the

third homotopy group, which for SU(2) is an integer,

�

3

(SU(2)) = �

3

(S

3

) =Z

Again the one to one mapping 


1

is distinct from the trivial mapping 


0

(~x) �

1l and has winding number one. Representatives of higher windings are de-

livered by raising this function to the nth power,




n

(~x) = (


1

(~x))

n

Still these operators can be diagonalised together with the Hamiltonian.

Since they are unitary, their contants of motion are characterised by an angle

�,




1

(~x)j i = e

i�

j i; 


n

(~x)j i = e

in�

j i; � 2 [0; 2�) (4.1)

� is a Lorentz invariant. It is called the instanton angle. It is a fundamental

parameter of the theory, which could be measured in principle

1

.

Although 


n

(~x) form topologically distinct gauge transformations, they

act on the space fA

i

(~x)g which is topologically trivial. Consider a continuous

line of gauge �elds connecting two gauge equivalent A's (Fig. 4.2(a)),

A

i

(~x)! A

i

(�; ~x); A

i

(1; ~x) =




1

A

i

(0; ~x)

1

The experimental evidence that there is little CP violation in QCD indicates that �

must be very small or zero.
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But at fractional � this is not a gauge transformation. These gauge �elds lie

on di�erent orbits, i.e. are physically di�erent! So do their energies, i.e. the

expectation value of H in these con�gurations,

E[A

i

(�; ~x)] = hfA

i

(�; ~x)gjHjfA

i

(�; ~x)gi

If � = 0 and � = 1 are vacua, the energy is higher inbetween as drawn in

Fig. 4.2(b). The system may tunnel through the gauge transformation 


1

.

How one actually computes the tunnelling rate and how the action enters

this calculation will be explained in the next section.

4.2 Semiclassical Approximation for Tunnelling

For the eigenfunctions  of the HamiltonianH of an ordinary one dimensional

quantum mechanical system

H = E ; H =

1

2

p

2

+ V (x) (~ = m = 1)

we write formally,

p = �i

@

@x

 =

p

2(E � V (x)) 

Thus

 / exp(i

Z

p

2(E � V (x)) dx)

is an approximate solution, i.e. describes the leading e�ects (in ~). In the

classically allowed regions E > V (x) the wave function just oscillates, while

in the forbidden regions there is an exponential suppression,

E < V (x) :  / exp(�

Z

p

2(V (x)� E) dx)

We deduce that the following quantity approximates the tunnelling ampli-

tude,

exp(�

Z

B

A

p

2(V (x)�E) dx)
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V (x)

x

A B

E

Figure 4.3: The semiclassical situation for tunnelling through a potential barriere

(see text).

where A and B are the boundary points of the forbidden region V (A) =

V (B) = E.

The sign switch V �E ! E�V is equivalent to p! ip; p

2

!�p

2

or to,

t! it = �; E ! iE; V ! iV

The �rst replacementmeans that we can interchange the meaning of `allowed'

and `forbidden' by going to an imaginary time. For �eld theories one passes

from Minkowski to Euclidean space, accordingly.

Moreover, the integral can be rewritten as the action for imaginary times,

Z

B

A

p

2(V (x)� E) dx =

Z

t

B

t

A

p _x dt =

Z

�

B

�

A

L(� ) d� = S

tot

(if E = 0)

Thus the dominant contribution to a tunnelling transition is obtained by

computing the action of a classical motion in Eulidean space, and write,

e

�jS

tot

j

(4.2)

For tunnelling in the space of gauge �elds we are automatically driven to the

following topic.

4.3 Action for a Topological Transition, Ex-

plicit Instanton Solutions

Let us seek for a tunnelling con�guration along the lines of Fig. 4.4. In the

in�nite (Euclidean) past the gauge �eld is trivial A = 0. Then it evolves
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����
����
����
����

����
����
����
����

~

A = 


1

(~x)

1

ig

~

@ 


�1

1

(~x)

A = 0

A = 0

~

A(�; ~x)A = 0

x

4

! �1

x

4

! +1

Figure 4.4: A tunnelling process in Yang Mills theory. A trivial vacuum at

x

4

! �1 evolves into a vacuum with winding number 1 at x

4

! +1:

somehow and arrives at the �rst non-trivial vacuum

~

A = 


1

(~x)

1

ig

~

@ 


�1

1

(~x) in

the in�nite future. During the whole process A should vanish at the spacial

boundary. For x

4

! +1 we already know this, since 


1

(~x) becomes constant

there. But now we can write A as a pure gauge on the whole boundary of

R

4

,

~

A! 


1

(x)

1

ig

~

@ 


�1

1

(x) with 


1

(x) =

�




1

(~x) at x

4

! +1;

const. elsewhere:

A gauge equivalent (now we leave A

4

= 0), but more symmetric way is

to choose

A

�

! 


1

(x)

1

ig

@

�




�1

1

(x) (4.3)

with




1

(x)!

x

4

1l + ix

i

�

i

jxj

; jxj =

p

x

�

x

�

Notice that 


1

lives on the boundary of R

4

which is a three-sphere. It has

the same degree as discussed above and mixes coordinate space and isospace.

The last point will be crucial for �nding explicit instanton solutions. The

problem becomes simpler due to the higher symmetry. The action of 


1

on

a fundamental spinor is,




1

(x)

�

1

0

�

=

�

x

4

+ ix

3

�x

2

+ ix

1

�

1

jxj

(4.4)
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and covers the whole sphere. The symmetry is such that an SO(4) rotation

in Euclidean space is linked to isospin SU(2) rotations,

SO(4)

�

=

SU(2)

L


 SU(2)

R

SU(2) ! SU(2) 
 1l

Obviously the Lie algebra so(4) is 6=3+3 dimensional. For a matrix � 2

so(4),

�

��

2 R; �

��

= ��

��

we de�ne the `dual transform' ~� as,

~�

��

:=

1

2

�

����

�

��

The six degrees of freedom can be divided as follows,

�

��

=

1

2

(�+ ~�)

��

+

1

2

(�� ~�)

��

6 = 3 + 3

The terms on the right handside are selfdual and anti-selfdual (

~

~� � �) and

correspond to representations of su(2)

L

and su(2)

R

, respectively.

A �eld  

a

transforming as an I = 1 representation under SU(2)

L

can be

written as,

 

a

= �

a

��

a

��

The coe�cients are denoted by the tensor �. It is selfdual,

�

a

��

= ~�

a

��

and of course anti-symmetric in (�; �), as easily seen from the explicit rep-

resentation,

�

a

ij

= �

aij

; �

a

i4

= �

a

i

; �

a

4i

= ��

a

i

As �

iaj

in three dimensions it provides the mixing of coordinate space and

isospace.

The �-tensor can now be used to describe the vector �eldA

a

�

in the adjoint

representation. One �nds from (4.3) and (4.4) that, asymptotically,

A

�

! 


1

1

ig

@

�




�1

1

� 2�

a

��

x

�

jxj

2

�

a
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It becomes singular when approaching the origin. Which smoothened con-

nection near the origin minimises the action? With our knowledge we try,

A

a

�

= �

a

��

x

�

A(jxj)

Indeed, the pro�le,

A(jxj) =

2

jxj

2

+ �

2

(4.5)

makes the action minimal,

S =

1

4

Z

F

a

��

F

a

��

= �

8�

2

g

2

(4.6)

This number has to be exponentiated in (4.2). If jgj is small, the resulting

rate is very very small. Furthermore since its expansion for small g gives zero

in all orders, tunnelling processes will not be seen in pertubation theory.

The new length � is the width of the pro�le. Since these con�gurations

are local events in space and time, they are called instantons or pseudo-

particles. The action is independent of �, i.e. we have found a whole manifold

of instanton solutions. This so-called moduli space also contains the position

z

�

of the center of the instanton which was chosen to be at the origin in

above.

4.4 Bogomol'nyi Bound and Selfdual Fields

The instanton ful�lls a Bogomol'nyi bound. We write

� S =

1

8

Z

(F

a

��

�

~

F

a

��

)

2

+

1

4

Z

F

a

��

~

F

a

��

(4.7)

The number of squares has reduced from 3 � 6 in (4.6) to 3 � 3. To see that

the second term is a total derivative needs some e�ort,

1

4

F

a

��

~

F

a

��

=

1

8

�

����

F

a

��

F

a

��

=

1

2

�

����

(@

�

A

a

�

+

g

2

�

abc

A

b

�

A

c

�

)(@

�

A

a

�

+

g

2

�

ade

A

d

�

A

e

�

)

=

1

2

�

����

(@

�

A

a

�

@

�

A

a

�

+ g�

ade

@

�

A

a

�

A

d

�

A

e

�

+

g

2

4

�

abc

�

ade

A

b

�

A

c

�

A

d

�

A

e

�

)
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The g

2

term vanishes because of the symmetry of the �'s in (b; c; d; e) together

with the anti-symmetry of � in (�; �; �; �). Similar symmetry arguments give

the following result

2

,

1

4

F

a

��

~

F

a

��

=

8�

2

g

2

@

�

K

�

(4.8)

with the Chern-Simons current

K

�

=

g

2

16�

2

�

����

(A

a

�

@

�

A

a

�

+

g

3

�

abc

A

a

�

A

b

�

A

e

�

) (4.9)

being a gauge variant quantity. The asymptotic behaviour of this current,

jxj ! 1 : K

�

!

1

2�

2

x

�

jxj

4

gives the following surface integral

� S =

8�

2

g

2

Z

S

3

1

d

3

�K

?

=

8�

2

g

2

jxj

3

area(S

3

1

)

1

2�

2

1

jxj

3

=

8�

2

g

2

(4.10)

The vanishing of the square in (4.7) means that the �eld strength is selfdual.

From (4.5) we compute

F

a

��

=

~

F

a

��

= �

4

g

�

a

��

�

2

(jxj

2

+ �

2

)

2

and indeed,

D

�

F

��

(� D

�

~

F

��

) = 0:

In general, the Bogomol'nyi bound is a useful tool to solve the Yang-Mills

equations. After having introduced the A-�eld, one needs to solve D

�

F

��

=

0. This equation corresponds to the inhomogeneous Maxwell equation and

therefore is second order in A. The demand for selfdual �elds F

��

=

~

F

��

is

only �rst order in A. Now the Yang-Mills equation is automatically ful�lled

because of the Bianchi identity D

�

~

F

��

= 0.

For all con�gurations the second term in (4.7) is a multiple of �

8�

2

g

2

. It is

a topological quantity, called the Pontryagin index. Since the integral can be

reduced to the surface, it corresponds to the winding number 


1

: S

3

! S

3

discussed above.

2

For readers familiar with di�erential forms we give the following equivalent equation:

trF ^F / d tr(A ^ dA�

2ig

3

A ^A ^A) with a proper de�nition of the wedge product for

algebra elements
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4.5 Intermezzo: Massless Fermions in a Gauge

Theory

The coupling of fermions to the gauge �eld is done in a standard way by the

vector current,

J

�

=

�

 


�

 

where we dropped the isospace structure. For massless fermions, the axial

current is conserved, too,

J

5

�

=

�

 


�




5

 ; @

�

J

�

= @

�

J

5

�

= 0

Denoting by J

L

�

and J

R

�

the projections onto 


5

eigenstates, we can write,

J

�

= J

L

�

+ J

R

�

; J

5

�

= J

L

�

� J

R

�

Thus the total number of fermions as well as the di�erence of left-handed

and right-handed fermions are classically conserved.

In order to look whether these statements survive the quantisation of the

theory, consider the matrix element

h0jJ

5

�

jggi

g are the gauge photons (gluons) which couple to J

�

, not to J

5

�

. The corre-

sponding lowest order Feynman diagram is a one-loop graph depicted in Fig.

(4.5). We do not want to go into the details of the calculation, but rather

sketch the Dirac matrix structure,

�

���

(k; p; q) / Tr 


�




5

(
; k

1

)

k

2

1




�

(
; k

2

)

k

2

2




�

(
; k

3

)

k

2

3

(4.11)
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p
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g

g

Figure 4.5: The lowest order Feynman graph leading to the chiral anomaly.
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k

i

and (p; q) are the momenta of the fermions and the gauge photons, re-

spectively (k + p + q = 0). The diagram is totally symmetric in the sense

that in (4.11) we can put 


5

also after 


�

or 


�

due to the anti-commutation

relations. But the diagram is linearly divergent, and the in�nity must be

regularised. We prefer the introduction of Pauli-Villars mass terms, but the

result will be independent of the regularisation method,

�

PV

���

(k; p; q) / Tr 


�




5

M � i(
; k

1

)

k

2

1

+M

2




�

M � i(
; k

2

)

k

2

2

+M

2




�

M � i(
; k

3

)

k

2

3

+M

2

The symmetry is lost by renormalisation, namely the �nite part of the dia-

gram will depend on where one puts 


5

. The ambiguity in 


5

is removed by

the following choice,

p

�

�

���

(k; p; q) = q

�

�

���

(k; p; q) = 0

k

�

�

���

(k; p; q) / �

��
�

p




q

�

6= 0

The gauge invariance due to the two gauge photons has survived, but J

5

�

is

not conserved anymore,

@

�

h0jJ

�

(x)jggi = 0

@

�

h0jJ

5

�

(x)jggi =

g

2

16�

2

h0jF

a

��

~

F

a

��

jggi

The last identity is the non-Abelian version of the Adler-Bell-Jackiw anomaly

3

.

The topological density enters here, remember that

R

d

4

xF

a

��

~

F

a

��

=

32�

2

g

2

for

an instanton. It e�ects the charges Q

5

=

R

d

3

xJ

5

0

(x) in the way that the

charge `after the instanton' (at x

4

! �1) di�ers by two from the charge

`before the instanton' (at x

4

! +1),

Z

d

4

x@

�

J

5

�

= Q

after

5

�Q

before

5

= 2

One fermion has 
ipped its helicity from right to left. In other words, the in-

stanton adds a left-handed particle and removes a right-handed anti-particle

(the other way round for right-handed particles).

3

The Adler-Bardeen theorem guaranteees that there are no e�ects in higher order

pertubation theory.
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Right

instanton

Left

Figure 4.6: The (interaction with the) instanton 
ips the helicity of the fermion

from right to left as shown in the text.

4.6 Jackiw-Rebbi States at an Instanton

How to understand the fact, that the interaction with an instanton 
ips the

helicity of the fermion (Fig. 4.6)?

Let us investigate the gauge group SU(2) with fundamental fermions

(I = 1=2). As we know the spinorial group SU(2)

L


 SU(2)

R

couples to the

gauge group SU(2)

L

,

SU(2)

L


 (SU(2)

L


 SU(2)

R

)

For left-handed and right-handed fermions we have,

2

L

� (2

L

� 1

R

) = 3

L

+ 1

L

; 2

L

� (1

L

� 2

R

) = 2

L

� 2

R

respectively. There is one state with j

L

= j

R

= 0 which indeed has a nor-

malisable solution in four-space,

 =

const:

(jxj

2

+ �

2

)

3=2

This Jackiw-Rebbi state is a chiral eigenstate and ful�ls the (Euclidean) Dirac

equation


D = 0

Let us come back to the line

~

A(�; ~x) connecting two vacua in the gauge

A

4

= 0 (Fig. 4.2(a)) and choose just x

4

as the parameter of the con�guration,

� � x

4
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A




1

A

E > 0

E < 0

instanton

anti-inst.

E

Figure 4.7: The instanton not only changes the winding number by 1, but also

creates a (left-handed) particle and removes a (right-handed) anti-particle. For the

anti-instanton it is vice versa. Infact the picture is delicate: In the original theory

there is no mass and no gap, but we could add a small mass and the considerations

still hold.

The operator

@

@�

�

@

@x

4

enters the Dirac equation and extracts the energy,

(


4

@

4

+ ~


~

D) = 0 = (�


4

E + ~


~

D) 

We represent its action on  by two functions of �,

@

@�

 = +�(�) �! �1

@

@�

 = ��(�) �! +1

The signs follow from the general shape of normalisable modes. For the case

at hand it has a power law behaviour:  (�; ~x) /

1

�

3

. If we approximate

it by an exponential law, � and � become constants and we arrive at the

qualitative spectrum shown in Fig. 4.7: The instanton provides a transition

from A to




1

A during which the number of left-handed particles increases by

1, while the number of right-handed anti-particles drops by 1,

4Q

L

= �4Q

R

= 1

accordingly -1 for anti-instantons.
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4.7 Estimate of the Flip Amplitude

How to calculate the amplitude for a process with 4Q

5

= 2? As a device for

such a process we add the following term to the Lagrangian,

L = �

1

4

F

a

��

~

F

a

��

�

�

 
D � J

�

 

R

(x) 

L

(x

0

)

It simulates the 
ip from right to left resulting from an interaction with an

instanton. We wrote x and x

0

allowing J to be non-local. The vacuum-to-

vacuum amplitude is given by the usual path integral,

Z

DA

�

D

�

 D exp[ i

Z

L

A

�

�

 (
D + J) ]

The fermionic part gives the determinant of the operator 
D + J , therefore

we have to solve,


D (x

0

) + J (x) = � (x

0

); � 6= 0

The Jackiw-Rebbi mode has 
D = 0 and thus � / J .

Not only 
D but also the 
uctuation operator of A

�

has zero modes. We

expand around the instanton �eld,

A

�

= A

inst

�

+ �A

�

Since A

inst

�

is a classical solution the change in the action is second order,

�

Z

L =

Z

�A

�

M

��

�A

�

Zero modes of M are connected with the collective coordinates for the in-

stanton. We already mentioned �ve of them, namely the width � and the

position z

�

,

A

inst

(z

�

+ �z

�

; �+ ��) = A

inst

+ �A) �

Z

L

A

= 0

There are also three gauge-collective coordinates for SU(2), so in total we

have 5+3=8 zero modes.
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All other eigenstates of 
D and M have non-vanishing eigenvalues �

i

.

The path integral (in a semiclassical approximation for the gauge �eld) is

the product,

Z

D�A

�

D

�

 D /

Y

i

�

i

If J = 0 then the amplitude vanishes, it would have been an amplitude with

4Q

5

= 0. The term linear in J has

4Q

5

= �2

and this amplitude is not equal to zero.

We now ask: which e�ective Lagrangian would mimic the instanton ef-

fects? It must be a Lagrangian which (a) gives an interaction with 4Q

L

=

�4Q

R

=

1

2

4Q

5

= N

f

(the number of 
avours) and (b) obeys the 
avour

symmetry SU(N

f

)

L

� SU(N

f

)

R

� U(1)

vector

and violates U(1)

axial

.

For one 
avour the instanton induces an e�ective mass term,

4L

e�

/ e

�8�

2

=g

2

�

  ;

�

  /

�

 

R

 

L

+

�

 

L

 

R

For N

f


avours @

�

J

5 ij

�

is diagonal in the 
avour indices i and j,

@

�

J

5 ij

�

/ F

a

��

~

F

a

��

�

ij

; i; j = 1::N

f

but the e�ective instanton Lagrangian may contain Dirac indices. The orig-

inal gauge Lagrangian has no mass and thus the following symmetry,

U(N

f

)

L

� U(N

f

)

R

= SU(N

f

)

L

� SU(N

f

)

R

� U(1)

L

� U(1)

R

| {z }

U(1)

V

�U(1)

A

The instanton contribution violates U(1)

A

only and the �rst approximation

e

�8�

2

=g

2

(

�

 

1

 

1

) � : : : � (

�

 

N

f

 

N

f

)

should better be replaced with

e

�8�

2

=g

2

det

ij

(

�

 

i

 

j

) (4.12)

Even more precisely the e�ective Lagrangian is [7]

e

�8�

2

=g

2

X

a

i

;b

i

;j

i

R(a

i

; b

i

)�

j

1

:::j

n

(

�

 

a

1

1

[1 + 


5

] 

b

1

j

1

) � : : : � (

�

 

a

N

f

N

f

[1 + 


5

] 

b

N

f

j

N

f

)
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4.8 In
uence of the Instanton Angle

If we allow for �, the e�ective Lagrangian includes a multiplication with e

i�

for the instanton (e

�i�

for the anti-instanton),

e

�8�

2

=g

2

+i�

det(

�

 

R

 

L

)

To get the same e�ect on the level of the original Lagrangian, we have to add

the topological/surface term from (4.8),

L = �

1

4

F

a

��

F

a

��

+

g

2

4 � 8�

2

i�F

a

��

~

F

a

��

Then the instanton action becomes exp(�S)! exp(�S+ i�

g

2

8�

2

R

1

4

F

~

F) with

R

1

4

F

~

F =

8�

2

g

2

for an instanton (cf. (4.10)). In the preferred notation gA

�

=:

A

�

, gF

��

=: F

��

, where D

�

is free of g, we have,

L = �

1

g

2

�

1

4

F

a

��

F

a

��

+

i�

8�

2

�

1

4

F

a

��

~

F

a

��

Pure gauge theory has two constants of nature, g and �, both of which are

in principle observable. Especially in SUSY theories they are combined as,

z =

1

g

2

+

i�

8�

2

How to observe �? Let us study the e�ect of � on the electric charge of a

magnetic monopole,

L = �

1

4

F

a

��

F

a

��

+

i�g

2

8�

2

F

a

��

~

F

a

��

=

1

2

(

~

E

2

a

�

~

B

2

a

)�

�g

2

8�

2

~

E

a

�

~

B

a

=

1

2

(

~

E

a

�

�g

2

8�

2

~

B

a

)

2

�

1

2

(1 +

�

2

g

4

(8�

2

)

2

)

~

B

2

a

=

1

2

~

E

0 2

a

�

1

2

~

B

02

a

� shifts the electric �eld and changes the energy of the magnetic �eld (slightly).

This can be interpreted as the energy of a background electric �eld, which

gives small corrections to the mass.

Integrating the E

0

equation around a monopole gives a relation for the

charges,

q

0

e

= q

e

�

�g

2

8�

2

g

m

; q

e

= 0; g

m

=

4�

g
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e
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Figure 4.8: The �gures show (a) the electric charge q

e

of a monopole as a function

of the instanton angle � and (b) the possible values of electric and magnetic charges.

The monopole behaves like it has a fractional electric charge,

q

e

=

�

2�

g

Notice that we were not allowed to shift the B �eld, since this would give

magnetic charges to electric objects.

The function q

e

(�) for the monopole is plotted in Fig. 4.8(a). We already

know that the monopoles could get an integer electric charge by binding to

an electric particle, i.e. the original line in the �gure has vertically shifted

copies. In this way everything becomes periodic in � as it should be (from its

introduction via e

i�

, cf (4.1)). It is helpful to plot the possible electric and

magnetic charges like in Fig. 4.8(b).

Since the monopole now has an electric charge the Dirac condition has to

be modi�ed as well,

q

1

e

g

2

m

� q

2

e

g

1

m

= 2�n

12

n

12

2Z

In a theory with gauge group U(1)

N�1

like in the next chapter only the sum

of all U(1) charges is constrained,

N�1

X

i=1

q

1 (i)

e

g

2 (i)

m

� q

2 (i)

e

g

1 (i)

m

= 2�n

12

n

12

2Z

Geometrically, the area of the elementary cell in Fig. 4.8(b) is 2�, indepen-

dent of the value of �.
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Chapter 5

Permanent Quark Con�nement

The phenomenological observation that quarks cannot be seen in isolation

is called quark con�nement. Although being a basic issue of the strong

interaction theory, it remained a mystery before the 70's. The reason is that

con�nement is not a feature of perturbation theory. There one has to �x the

gauge �rst, then quantise the theory and expand in a small coupling constant.

Certain phenomenological aspects are described correctly, but there is no

con�nement.

To derive this new non-perturbative e�ect, one has to investigate the

theory more precisely. As in the theory of electrodynamics there occur gauge

�xing ambiguities when �xing the gauge. These so-called Gribov ambiguities

may explain con�nement.

Here we can give only a qualitative picture of the mechanism. We use a

special partial gauge �xing, the Abelian projection, where the (local) gauge

group is reduced to its (local) Abelian subgroup. Besides quarks and gauge

photons the Abelian theory contains magnetic monopoles, which via a (dual)

Meissner e�ect should con�ne all chromoelectric charges.

5.1 The Abelian Projection

In the following we deal with SU(N) as the prototype of a non-Abelian gauge

group. We do not focus on renormalisation (i.e. we do not attempt to account

for in�nities), because it does not have much to do with con�nement.

The principle of the Abelian projection is to �x the gauge `as locally as

possible' (using the gauge �eld only). How is it done?
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1 In the �rst step we pick a �eldX (elementary or composite) in the adjoint

representation of the gauge group

1

. Such a �eld is a N �N -matrix which is

hermitian,

X

y

= X

and usually also traceless. It transforms as

X !




X = 
X


�1

(5.1)

The gauge �eld itself is ruled out because of the inhomogeneous term. But

there are other candidates containing the �eld strength like

X

ij

= G

ij

12

or X

ij

= (D

�

G

��

D

�

G

��

)

ij

i; j = 1 : : : N

the latter having the advantage of being Lorentz invariant, but it is more

complicated. Adding a scalar to the theory in order to �x the gauge would

be the easiest, but it would of course change the model.

As (5.1) does not involve derivatives of 
 nor 
 at di�erent points, it is a

local transformation, which will be important when considering the ghosts.

2 In the next step we use the �eld X to �x the gauge (partially). We choose

the gauge 
 in which X is diagonal. Then X is of the form

X =

0

B

@

�

1

0

.

.

.

0 �

N

1

C

A

We further sort the eigenvalues,

�

1

� �

2

� � � � � �

N

(5.2)

This can always be done, but it does not �x 
 entirely. In technical terms

we introduce Lagrange multipliers � for the o�-diagonal components,

L

gauge

=

X

i<j

�

ij

X

ij

1

A �eld in the fundamental representation would even be better, but in QCD there

are only the quarks which as fermions are more di�cult to treat.
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3 Observe that the previous step leaves a local U(1)

N

=U(1) = U(1)

N�1

invariance. The gauge transformed X equals the original one if and only if

X and 
 commute,

X = 
X


�1

i� [X;
] = 0

For diagonal X this is true for (the group of) diagonal 
's,


 =

0

B

@

!

1

0

.

.

.

0 !

N

1

C

A

with

Y

i

!

i

= 1 (5.3)

= exp i

0

B

@

�

1

0

.

.

.

0 �

N

1

C

A

with

X

i

�

i

= 0 (5.4)

Every elementof the diagonal stands for one U(1) but the condition det 
 = 1

traces out an overall U(1). For SU(N) the number N � 1 is just the rank of

the group, i.e. the dimension of the Cartan subalgebra.

The stability group of X is bigger if two eigenvalues coincide (see step 7),

but generically this is not the case.

The remainder of the gauge group will be �xed in the next step.

4 The residual Abelian gauge might be �xed just as in QED, for instance

via the Lorentz gauge,

L

gauge;Abelian

=

N�1

X

i=1

�

i

@

�

A

�

ii

The total gauge �xing Lagrangian reads

L

gauge

=

N

X

i<j

�

ij

X

ij

+

N�1

X

i=1

�

i

@

�

A

�

ii

We have introduced 2

N(N�1)

2

+N�1 real Lagrange multipliers which together

give the dimension of the group.

Renormalisation is still to be done, so we expect highly singular Feynman

rules.

54



5 Fixing the gauge always includes a measure factor, the Faddeev Popov

determinant, which usuallly is exponentiated with the help of ghosts. As we

will now show they do not interact in Abelian Projections.

If the gauge is �xed by functions C

k

of the �elds their change under

in�nitesimal gauge transformations is

C

k

! C

k

+m

k�

�

�

� stands for the algebra element of the gauge transformations under consid-

eration 
 = exp(i�). In our case X

ij

transforms according to the adjoint

action of the group, which in�nitesimally gives the commutator,

X

ij

! X

ij

+ i[�;X]

ij

@

�

A

�

transforms like the gauge �eld itself, namely with the covariant deriva-

tive of the gauge parameter,

@

�

A

�

ii

! @

�

A

�

ii

+ @

�

(D

�

�)

ii

The Faddeev Popov determinant is included by adding ���

k

m

k�

�

�

to the

Lagrangian. � are anti-commuting variables, but as scalars carry no spin.

Violating the spin statistics theorem they are not observable, but integrating

them out gives the right measure factor,

Z

D�D�� exp(�

Z

dx��

k

m

k�

�

�

) / detm

For the gauge �xing above we get

L

ghost

= i

X

i<j

��

ij

[�;X]

ij

+

X

i

��

ii

@

�

(D

�

�)

ii

= i

X

i<j

��

ij

(�

i

� �

j

)�

ij

+

X

i

��

ii

@

2

�

�

ii

� ig

X

i

��

ii

@

�

(A

ik

�

�

ki

�A

ki

�

�

ik

)

The third term transforms � only one-way, hence it does not contribute in

loops. The second term corresponds to the free theory for the diagonal �'s,

while the �rst term is local in the o�-diagonal �'s, in other words these ghosts

have in�nite mass. In total, there are no (harmful) ghosts.
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6 Observe that we have all charcteristics of a U(1)

N�1

Abelian gauge theory.

The residual gauge transformations 
 (5.3) transform A

�

as

(A

�

)

ii

! (A

�

)

ii

�

1

g

@

�

�

ii

(A

�

)

ij

! exp(i(�

i

� �

j

))(A

�

)

ij

The diagonal gauge �elds (A

�

)

ii

are as photons in (N �1 independent) QED

('s). All other �elds carry U(1)

N�1

charges Q

i

with

P

i

Q

i

= 0. For the (ij)-

component of A

�

we have Q

i

= 1, Q

j

= �1. In addition to the electrically

charged quarks the theory contains now electrically charged `o�-diagonal

photons'.

Moreover, these �elds become massive. Since we removed the o�-diagonal

gauge symmetry, their masses are not protected by gauge invariance anymore,

(D

�

X)

ij

= @

�

X

ij

+ ig(�

i

� �

j

)(A

�

)

ij

Tr (D

�

X)

2

! (@

�

X)

2

+ g

2

(�

i

� �

j

)

2

(A

ij

�

)

2

But the theory is not exactly QED

N�1

, something of the non-Abelian char-

acter has to survive.

7 The gauge �xing may lead to singularities if �

i

= �

j

, which we argued

away so far by handwaving. Near such a point the Higgs �eld looks like (from

the ordering (5.2) it is clear that i and j are neighbours):

X =

0

B

B

B

B

@

.

.

.

0

� 0

0 �

0

.

.

.

1

C

C

C

C

A

+

3

X

k=1

a

k

(x)

0

B

@

.

.

.

: : :

�

k

: : :

.

.

.

1

C

A

We have used the parametrisation (2.9) for the SU(2) subset. The �rst part

is gauge invariant and the second part shall vanish when approaching some

subspace,

x! x

0

: a

k

(x)! 0 k = 1; 2; 3

Generically these three conditions rule out three planes crossing at x

0

. In

three-space this �xes a point, while in four-space it is a (world) line.
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Up to little deformations we can set a

k

(x) = (x � x

0

)

k

which is the

hedgehog from Chapter 3. At x

0

the residual gauge group is enlarged from

U(1)

N�1

to U(1)

N�3

� U(2) and non-Abelian. These are

magnetic monopoles

w.r.t. that subgroup. Their magnetic charges are g

i

= (0; : : : ; 0; 1;�1; 0; : : : ; 0)

and sum up to zero.

We conclude that in the Abelian projection we get electric and magnetic

charges which are all point-like. Note that in a �-vacuum (with instantons)

the magnetic monopoles receive electric charges

�

2�

g (cf. Fig. 4.8(b)).

For gauge group SU(N) the Dirac condition reads

N�1

X

i=1

g

i

q

i

= 2�

We expect complicated interactions among charged particles and mag-

netic monopoles. The latter will acquire a mass, since there is no reason for

them to be massless. Hence electro-magnetism provides the only long-ranged

�elds, N � 1 U(1) photons. We can now ask what happens to these objects

in a Higgs mechanism?

5.2 Phases of the Abelian Theory

In the usual Higgs mechanism h�i 6= 0 the Higgs �eld � is an `ordinary'

elementary �eld with electric charges only. This so-called Higgs phase

is similar to the superconductor. All magnetic charges will be con�ned by

Meissner 
ux tubes, see Fig. 5.1(a). We do not see weak magneticmonopoles.

Pure electric charges can move freely, see Fig. 5.1(b).

The con�nement phase can be thought of as the dual transform of the

Higgs phase. The condensed �eld � is now a magnetic object. Analogously all

objects on the tilted line in Fig. 5.2 are free, while gluons are con�ned, since

they are connected by N vortices. Quarks in the fundamental representation

have electric charge

e

N

and are connected by one vortex.

In the Coulomb phase no condensation takes place. Hence all charges

are free, but there are long-ranged electromagnetic �elds. This phase is self-

dual.
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SN

C

(a)

g

m

q

e

(b)

Figure 5.1: In the Higgs phase magnetic charges are connected by Meissner 
ux

tubes. On the circle C the Higgs �eld makes a full rotation (a). In this phase all

magnetic charges (�) are con�ned, while electric charges (�) are free/screened (b).

This and the following gq diagrams refer to the simplest case of SU(2)

color

.

If we are in the con�nement mode, then as � runs from 0 to 2� there

must be a phase transition: For small � like in Fig. 5.2(a) the charges along

� are condensed, while those along 2� � � are con�ned. For � near 2� it is

energetically favourable to have charges condensed along 2��� and con�ned

along � like in Fig. 5.2(b).

g

m

q

e

�=2�

(a)

g

m

q

e

1� �=2�

(b)

Figure 5.2: In the con�nement phase all objects along a particular line in the

charge lattice are free (�). Now electric objects like gluons (�) and quarks (�) are

con�ned by vortices. The diagrams show the con�nement phase for small � (a)

and � near 2� (b). The switch inbetween refers to a phase transition.
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g

m

q

e

Figure 5.3: Oblique con�nement removes the ambiguity for � near � by chosing

a third charge (�) to be condensed.

Note that physics is periodic in �, hence monopoles are not fundamentally

distinguishable from dyons.

The switch mentioned above refers to a phase transition, presumably at

� = �. This phase transition is somewhat arti�cial, because in nature � is a

constant. It may be found in simulations, but the situation is hard to do on

the lattice (complex action, instantons on the lattice).

We can imagine a more exotic condensation, oblique con�nement. Let

us have � close to �. Now Buridan's donkey cannot decide which of the

haystacks to choose. Fortunately there is a third choice in front of him (Fig.

5.3): Let the object inbetween (near g

m

-axis, small electric charge) be free

and the residual charges be con�ned. This phase will not occur in QCD

because there we know that � ' 0, but it has peculiar features.

For some theories, the Higgs mode and the con�nement mode are the

same thing. As an example let us look at the electroweak theory in the next

section.

5.3 A QCD-inspired Theory for the Electro-

weak Force

The weak interaction is described by the Weinberg-Salam model with gauge

group

SU(2)

`color'

� U(1)

`em'
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Besides the gauge �elds

U(1)-photon: 
; SU(2)-gluon: g

a

it has matter �elds in the fundamental representation of SU(2), i.e. color

doublets. We call them `partons' (the physical particles will come out later),

leptonic partons l

i=1;2

(spin 1/2, charge �1=2)

quark partons q

i=1;2

(spin 1/2, SU(3)-triplets, charge 1/6)

Higgs partons h

i=1;2

(spin 0, charge �1=2)

The theory is not fundamentally di�erent from QCD, but the (scalar) Higgs

is really there.

This theory has `mesons' (parton-antiparton), `baryons' (two partons)

and the usual photon 
. It comes out that the bound states without Higgs

decay very quickly. The scalar

2

part of the bound states are identi�ed with

physical particles as follows

`Mesons'

�

ll;

�

lq; �qq unstable

�

hl neutrino (charge 0)

�

hq up-quark (charge +2=3)

�

hh Higgs and Z

0

(orbital momentum) (charge 0)

`Baryons'

ll; lq; qq unstable

hl electron (charge �1)

hq down-quark (charge �1=3)

hh W

�

(charge �1)

The only di�erence from QCD is that one can do a nice pertubation ex-

pansion and recovers everything from the Standard Model. Like in Section

3.2 we �x the SU(2) gauge �rst. In the unitary gauge we write the Higgs

�eld h as

h =

�

F + h

1

0

�

2

w.r.t. the `color' gauge group
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Expanding in small 
uctuations h

1

the bilinear mesonic �eld combinations

create the up-components,

�

hl = Fl

1

+ : : :

�

hq = Fq

1

+ : : :

�

hh = F

2

+ 2Fh

1

+ : : :

while the bilinear baryonic �eld combinations create the down-components,

�

ij

h

i

l

j

= Fl

2

+ : : :

�

ij

h

i

q

j

= Fq

2

+ : : :

By virtue of the covariant derivative we get the vector bosons,

�

hD

�

h = FgW

3

�

F + : : : = gF

2

W

3

�

�

ij

h

i

D

�

h

j

= Fg(W

1

�

+ iW

2

�

)F + : : : = gF

2

W

�

�

We recovered the physical doublets,

�

l

1

l

2

�

=

�

�

e

�

;

�

q

1

q

2

�

=

�

u

d

�

; etc.

and all the rest is just the ordinary electroweak theory. In this model physical

particles are all con�ned, yet it trivially coincides with the perturbative sector

of the Standard Model, so con�nement is no longer a mystery at all.

5.4 Spontaneous Chiral Symmetry Breaking

in QCD

Let us take N

f

= 2 massless 
avours (u and d quark). The composite

operator

�

 

a

L

 

b

R

= �

ab

with colour indices a; b will be coupled to the agent of

the Abelian projection. An e�ective coupling

�

 

L

X 

R

+ h.c. will produce a

constituent mass (not algebraic mass) for the quarks.

But then each 
avour has a Jackiw-Rebbi zero mode at the monopole

singularities. Hence the monopoles have `fractional' chiral 
avour! Although

there are no explicit monopole solutions yet, we expect a 2

2

= 4-fold de-

generacy for each monopole. This procedure would suggest that these four

states transform as

1(no JR mode) + 2(any 
avour) + 1(both 
avours)
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under 
avour SU(2), see also Exercise (x).

But we have 
avour SU(2)

L

�SU(2)

R

. An alternative possibility then is

to attach one Jackiw-Rebbi mode to every left quark,

�

2

L

+ 2

R

= 4

Then we have 2

4

= 16 states which transform as follows

16 = 1 +

�

2

L

+ 2

R

+ 1 +

�

2

L

� 2

R

+ 1 +

�

2

L

+ 2

R

+ 1

1 + 4 + 6 + 4 + 1

If the

�

2

L

� 2

R

monopole condenses, i.e. gets a vacuum expectation value, we

have spontaneous chiral symmetry breaking, as realised in nature.

Moreover, we know from lattice simulations, that the con�nement-de-

con�nement phase transition and the chiral symmetry breaking take place

at the same temperature. We have learned that di�erent mechanisms are

responsible for these e�ects, but both refer to the same objects: magnetic

monopoles.

It is interesting to study these mechanisms in supersymmetric theories

like the Seiberg-Witten model.
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Chapter 6

E�ective Lagrangians for

Theories with Con�nement

The e�ective mesonic �elds �

ij

basically correspond to the quark-antiquark

composite operators,

�

ij

= ��q

R

j

q

L

i

where i; j = 1::N

f

are the indices of the chiral U(N

f

)

L

and U(N

f

)

R

, respec-

tively [7]. This symmetry acts as

�

0

ij

= U

L

ik

�

kl

U

Ry

lj

Decomposing � into its hermitean and anti-hermitean part we get the scalars.

Let us study the mesonic spectrum in an e�ective theory. Its Lagrangian

contains besides the kinetic term three potential terms,

L

e�

= �Tr @

�

�@

�

�

y

� V (�; �

y

)

V (�; �

y

) = V

0

+ V

m

+ V

inst:

which are the potential for spontaneous symmetry breaking, the contribution

of the quark masses and instanton contribution from (4.12), respectively,

V

0

= ��

2

Tr�

y

�+A (Tr�

y

�)

2

+B Tr (�

y

��

y

�)

V

m

= �

X

i

m

i

(�

ii

+ �

?

ii

)

V

inst:

= �2� Re(e

i�

det�)
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where A, B and �

2

are free parameters (�

2

> 0 for spontaneous symmetry

breaking), m

1

= m

u

, m

2

= m

d

, m

3

= m

s

, ... are the quark masses and �

contains the standard factor e

�8�

2

=g

2

. V

0

preserves the U(N

f

)

L

�U(N

f

)

R

sym-

metry, while V

m

and V

inst:

break it down to U(N

f

) and SU(N

f

)

L

�SU(N

f

)

R

�

U(1)

V

, respectively.

Let us study the case of 3 
avours with m

1

' m

2

� m

3

and keep

� = 0 for simplicity [8]. We expand the 3 � 3 matrix � around its vacuum

expectation values F

i

,

� =

0

@

F

1

F

2

F

3

1

A

+

~

�

where the quark masses make the F

i

di�erent. Scalar and pseudoscalar par-

ticles can be identi�ed by decomposing the 
uctuations

~

�,

~

�

ij

= S

ij

+ iP ij = �

1

2

�q

j

(1l + 


5

)q

i

; S = S

y

; P = P

y

By construction L is quadratic in

~

�,

L(F +

~

�) = L(F ) + 0 �

~

�+ L

2

(S) + L

0

2

(P )

All scalars acquire masses via V

0

in L

2

(S), the pseudoscalar part becomes,

V

0

2

(P ) / �F

1

F

2

F

3

�

P

11

F

1

+

P

22

F

2

+

P

33

F

3

�

2

+

X

i

m

i

F

i

P

2

ii

+

X

i 6=j

: : : jP

ij

j

2

The instanton e�ect / � produces a mass in the pseudoscalar sector: �; �

0

.

The other diagonal pseudoscalars, � and K, get M

2

/ (m

1

+ m

2

), the o�-

diagonal ones carry masses anyway (through symmetry breaking).

Generalizing the model to 6 
avours, we make a further simpli�cation,

V

0

(�; �

y

)! �j��

y

� 1lj

2

; � unitary

Now all jF

i

j

2

equal 1, and 
uctuations of the modulus of � cost in�nite energy.

Since the scalars seem not to play a role, their masses were sent to in�nity.

The chiral symmetry,

�

0

= U

L

�U

Ry
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is unchanged. For the other two potential terms we take the straightforward

generalisation of the N

f

= 3 model,

V

m

= �Trm

ij

�

ji

+ h.c.

m

ij

= diag (m

u

;m

d

;m

s

;m

c

; : : : )

V

inst:

= ��det�+ h.c.

Note that the instanton angle may be absorbed in one of the masses,

m

u

! m

u

e

i�

Expanding � now means

� = e

iP

; P = P

y

The second order terms in P are

V

0

2

(P ) / �Trm(1l + iP �

1

2

P

2

+ : : : ) + h.c.� � exp(iTrP ) + h.c.

! �2Tr (m cosP )� 2� cos(TrP )

! Tr (mP

2

) + �(TrP )

2

=

1

2

X

ij

jP

ij

j

2

(m

i

+m

j

) + �(P

11

+ P

22

+ : : :+ P

N

f

N

f

)

2

These expressions refer to two main phenomenological observations. The

�rst fact is that the meson masses squared are approximately linearly pro-

portional to the quark masses,

M

2

(�q

i




5

q

j

) = const (m

i

+m

j

)

From the light pion one now concludes that the up and down quarks are

light, too: m

u

' m

d

/ m

2

�

� �

QCD

.

The instanton produces a mass (only) for the N

f

pseudosinglet �

0

. This

explains the exception to the rule above, namely the mystery of the � and �

0

masses. The Chern-Simons current K

�

(cf (4.9)) is still conserved, hence its

Goldstone boson � could not carry a mass. But K

�

is not gauge-invariant,

it is rather like a ghost. Hence K

�

does not protect �

0

from getting a mass.

Indeed, instantons are the only stable onjects with a non-vanishing value of

the integral (4.8) and they contribute to the �

0

mass.
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Chapter 7

Exercises

(i) Derive a Bogomol'nyi bound for the kink solution by writing

V (�) =

1

2

�

@W (�)

@�

�

2

; H =

1

2

�

@

x

�+

@W (�)

@�

�

2

+ total derivative.

Discuss the function W (�) and its extrema for the cases (a) and (b).

Can the bound always be saturated?

(ii) In case (a) a soliton and an anti-soliton approach each other. Assume

an approximate solution describing a stationary situation.

Why can this `solution' not be exact?

Show that the two Jackiw-Rebbi zero modes for fermions now mix, and

that their energies will no longer vanish. Estimate the amount to which

the energy levels split. Discuss the energy spectrum of the two soliton

system as a result of this e�ect.

(iii) Consider an SU(2) gauge theory with an I = 1 Higgs �eld �

ab

= �

ba

,

P

a

�

aa

= 0. Assume the potential such that

h�

ab

i

0

= F

0

@

1

2

�3

1

A

Find the (discrete) subgroup of SU(2) that leaves this expectation value

invariant.
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Hint : First write these elements as SO(3) matrices, then, by exponen-

tiation, as SU(2) matrices.

Show that this is a non-Abelian group. Discuss the fusion rules for the

vortices that may occur in this system.

(iv) Consider the three-sphere

P

4

�=1

x

2

�

= 1 and the SU(2) matrices

U(~x) = x

4

1l + i

3

X

a=1

x

a

�

a

x

�

real; �

a

Pauli matrices

Find a gauge transformation such that




U(~x) = 
U


�1

is diagonal,




U =

�

!

1

0

0 !

2

�

. Study the point ~x

�

where your 
(~x) is singular,

and show that one cannot avoid that there is at least one such point

on S

3

.

(v) In the 1+1 dimensional model case (a) with V (�) =

�

4!

(�

2

� F

2

)

2

con-

struct an operator 
(x) such that


(x

1

)�(x

2

) = �(x

2

)
(x

1

)(�1)

�(x

2

�x

1

)

if jx

2

� x

1

j > � > 0

Show that 
(x) is the operator �eld that creates or annihilates a soliton

at x (or at least some sort of kink).

Find an approximate algorithm (or prescription) to compute the prop-

agator hT
(x

1

; t

1

)
(x

2

; t

2

)i

0

in Euclidean space-time. Find its be-

haviour at large j(x

2

; t

2

)� (x

1

; t

1

)j.

Note: We must assume that a local observer can observe j�(x)j, but

not the sign of �(x).

(vi) The magnetic monopole mass reads after the Bogomol'nyi trick (3.6)

E =

Z

d

3

x

�

1

2

(

~

D�

a

�

~

B

a

)

2

+

�

8

(�

2

a

� F

2

)

2

�

+

4�

e

F

Write down the usual ans�atze (3.3), (3.4) for the �elds,

�

a

(x) = x̂

a

�(j~xj); A

a

i

(x) = �

iaj

x̂

j

A(j~xj); j~xj =

v

u

u

t

3

X

i=1

x

2

i
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Find the energy in terms of �(j~xj), A(j~xj), the �eld equations and

boundary conditions at j~xj = 0, j~xj ! 1 for these functions.

Give the Bogomol'nyi equations for �(j~xj) and A(j~xj).

(vii) Consider the candidate instanton solution A

a

�

(x) = �

a

��

x

�

A(jxj); jxj =

P

4

�=1

x

2

�

, where A(jxj) is an arbitrary function of jxj. Compute G

a

��

and �nd the equation for A(jxj) corresponding to

(a) G

��

=

~

G

��

(b) G

��

= �

~

G

��

Use

�

abc

�

b

��

�

c

��

= �

��

�

a

��

� �

��

�

a

��

� �

��

�

a

��

+ �

��

�

a

��

�

a

��

�

b

��

= �

ab

�

��

+ �

abc

�

c

��

Hint : In case (b) one has �

a

��

G

b

��

= 0.

Solve these equations.

The two solutions look entirely di�erent: (a) is an instanton, while (b)

is an anti-instanton. Explain the situation.

(viii) Consider the real scalar �eld �(x) with L = �

1

2

(@

�

�)

2

+

�

4!

�

4

, such that

� has the `wrong sign'.

Show that there is an instanton solution in Euclidean four-space of the

form � = �(jxj), �(jxj ! 1)! 0.

Find the action and give a physical interpretation of this event and the

quantity e

S

inst:

.

(ix) Consider a theory with N kinds of Maxwell �elds: G = U(1)

N

. Let

there exist objects p with electric charges (e

1

; : : : ; e

N

)

p

and magnetic

charges (g

m

1

; : : : ; g

m

N

)

p

.

Write down the Dirac condition for two such objects p and q.

(x) Let there be a monopole coupled to three fermion species  

1

,  

2

,  

3

which are 3-representations of a global SU(3)-symmetry. Each of them

has one Jackiw-Rebbi zero mode solution with the monopole. Suppose

that the `completely empty' monopole is an SU(3)-singlet. There is an

2

3

= 8 -fold degeneracy.

How do the other states transform under SU(3)?
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