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1 Why supersymmetry?

When the Large Hadron Collider at CERN takes up operations soon, its main objective,

besides confirming the existence of the Higgs boson, will be to discover new physics beyond

the standard model of the strong and electroweak interactions. It is widely believed that

what will be found is a (at energies accessible to the LHC softly broken) supersymmetric

extension of the standard model. What makes supersymmetry such an attractive feature

that the majority of the theoretical physics community is convinced of its existence?
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First of all, under plausible assumptions on the properties of relativistic quantum field

theories, supersymmetry is the unique extension of the algebra of Poincaré and internal

symmtries of the S-matrix. If new physics is based on such an extension, it must be

supersymmetric. Furthermore, the quantum properties of supersymmetric theories are

much better under control than in non-supersymmetric ones, thanks to powerful non-

renormalization theorems. The latter provide a solution to the problem that has plagued

ordinary grand unified theories (GUTs), namely how to stabilize the large hierarchy of

energy scales, ranging from the electroweak scale (102 GeV) to the GUT scale (1016 GeV)

or the Planck scale (1019 GeV), against quantum corrections that drive the tree-level

masses of bosonic particles to very high values, in contradiction to experimental bounds.1

Let us explain this problem and how it can be overcome by supersymmetry by studying

a simple example. Consider the following Lagrangian for a complex scalar field ϕ(x) and

a Weyl spinor ψ(x) (more about those in the next section):

L = −∂µϕ̄ ∂µϕ− iψ̄σ̄µ∂µψ −m2
ϕ ϕ̄ϕ− 1

2
mψ (ψψ + ψ̄ψ̄)

− g(ϕψψ + ϕ̄ψ̄ψ̄) − µ(ϕϕ̄2 + ϕ̄ϕ2) − λ2(ϕ̄ϕ)2 . (1.1)

As we will show later, the corresponding action is supersymmetric (and known as the

Wess–Zumino model in this case) if the masses and coupling constants satisfy the relations

mϕ = mψ = m , λ = g , µ = mg , (1.2)

but let us not assume these to hold for the time being.

If mψ = µ = 0, i.e., when the tree-level fermionic mass terms and cubic scalar couplings

are absent, the model is invariant under the chiral symmetry

ψ → eiαψ ψ̄ → e−iα ψ̄ , ϕ→ e−2iαϕ , ϕ̄→ e2iα ϕ̄ . (1.3)

This symmetry guarantees that no fermionic masses will be generated by perturbative

quantum corrections. Indeed, for mψ 6= 0 the one-loop correction to mψ arises from the

Feynman diagram

g g

which gives

δmψ ∝ g2

∫ Λ

0

d4k
mψ

(k2 +m2
ψ)(k2 +m2

ϕ)
∝ g2mψ log(Λ2/m2) , (1.4)

1Additional benefits such as gauge coupling unification and natural cold dark matter candidates will

not be covered in these lectures.
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where Λ is an ultraviolet momentum cut-off that regularizes the divergent integral. We

learn that the mass correction is proportional to the tree-level mass and diverges only

logarithmically. It therefore stays small for small mψ and vanishes if the fermions are

massless at tree-level, i.e., when the chiral symmetry is present. In this sense fermion

masses are natural, as no further fine-tuning is needed to keep them small if this property

has been implemented by hand in the classical theory. Small fermion masses are protected

by an approximate chiral symmetry.

The situation is completely different for the scalar masses. Their one-loop corrections

arise from the diagrams

g g +

λ2

+ µ µ

which correspond to

δm2
ϕ ∝

∫ Λ

0

d4k

[

− g2
k2 −m2

ψ

(k2 +mψ)2
+ λ2 1

k2 +m2
ϕ

− 2µ2 1
(k2 +m2

ϕ)
2

]

∝ (λ2 − g2)Λ2 + log. divergent . (1.5)

The squared scalar masses are quadratically divergent and receive large corrections even

if mϕ = 0 at tree-level. This is a problem in GUTs, where initially small Higgs masses are

driven up to the GUT scale unless one carefully fine-tunes the bare masses and coupling

constants to avoid this scenario. For this reason scalar masses are called unnatural.

But the expression for δm2
ϕ suggests a way out: If the Yukawa and quartic scalar coupling

constants are equal, λ = g, the quadratic divergence is absent! Indeed, if all of the

relations (1.2) are satisfied, the logarithmically divergent corrections vanish as well, and

we have δm2
ϕ = 0 at one-loop order! This is no fine-tuning, as these relations are naturally

enforced by supersymmetry. The latter requires an equal number of fermionic and bosonic

degrees of freedom, such that the fermion loop, coming with a minus sign due to the

anticommuting nature of the spinor fields, precisely cancels the boson loops. In this way

supersymmetry can stabilize the small scale of electroweak symmetry breaking against the

much larger scale where grand unification occurs, thereby solving the so-called hierarchy

problem.2

Our argument relied on a one-loop analysis, but the conclusions derived above remain true

to all orders in perturbation theory thanks to the aforementioned non-renormalization

theorems in N = 1 supersymmetry, which will be the topic of the last lecture.

2This argument does not explain where the hierarchy of scales is coming from in the first place. One

should therefore better speak of the naturalness problem.
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2 Weyl spinors in D=4

The superspace approach to supersymmetric theories in four spacetime dimensions is most

conveniently formulated in terms of Weyl spinors. As these are usually not covered in

introductory courses on quantum field theory, we shall briefly list their properties.

In our conventions, the Dirac γ-matrices γµ with µ = 0, . . . , 3 satisfy the Clifford algebra

{γµ , γν} = 2 ηµν1 , (2.1)

where η = diag(−1, 1, 1, 1) is the Minowski metric. A particular representation of this

algebra is the Weyl representation

γµ = i

(

0 σµ

σ̄µ 0

)

. (2.2)

Here, the σ-matrices are given by

σµ = (−1, ~τ ) , σ̄µ = (−1,−~τ ) , (2.3)

where ~τ are the three Pauli matrices. In the Weyl representation, we have

γ5 = −iγ0γ1γ2γ3 =

(

−1 0

0 1) , (2.4)

such that Dirac spinors ΨD decompose into left- and right-handed two-component spinors

with respect to the projectors PL/R = 1
2
(1∓ γ5):

ΨD =

(

χα

λ̄α̇

)

. (2.5)

Dotted and undotted Greek indices from the beginning of the alphabet run from 1 to

2. The Weyl spinors χ and λ̄ form irreducible (and inequivalent) representations of the

universal covering SL(2,C) of the Lorentz group; infinitesimally, we have

MµνΨD = 1
4
[ γµ , γν ]ΨD = −

(

σµν 0

0 σ̄µν

)(

χ

λ̄

)

. (2.6)

Here, we have introduced matrices

σµν = 1
4
(σµσ̄ν − σν σ̄µ) , σ̄µν = 1

4
(σ̄µσν − σ̄νσµ) , (2.7)

satisfying the same commutation relations as the Lorentz generators Mµν , namely

[ σµν , σ̺σ ] = ηµ̺σνσ − ην̺σµσ + ηνσσµ̺ − ηµσσν̺ (2.8)
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and analogously for σ̄µν . Using the SL(2,C)-invariant3 ε-tensors

(εαβ) = −(εαβ) =

(

0 1

−1 0

)

= (εα̇β̇) = −(εα̇β̇) (2.9)

satisfying εαβεβγ = δαγ , we can pull up and down spinor indices,

χα = εαβχβ , λ̄α̇ = εα̇β̇ λ̄
β̇ , (2.10)

and form Lorentz invariants from two Weyl spinors of the same chirality:

χψ ≡ χαψα = εαβχβψα = −εαβχαψβ = −χαψα = ψαχα = ψχ

λ̄ψ̄ ≡ λ̄α̇ ψ̄
α̇ = εα̇β̇ λ̄

β̇ ψ̄α̇ = −εα̇β̇ λ̄α̇ ψ̄β̇ = −λ̄α̇ ψ̄α̇ = ψ̄α̇ λ̄
α̇ = ψ̄λ̄ . (2.11)

Here we have assumed that the spinors anticommute.

Complex conjugation reverses the order of fields and turns left-handed spinors into right-

handed ones and vice versa. For example

(χψ)∗ = (χαψα)
∗ = (ψα)

∗(χα)∗ = ψ̄α̇ χ̄
α̇ = ψ̄χ̄ = χ̄ψ̄ . (2.12)

In the Weyl representation, Majorana spinors are of the form

ΨM =

(

χα
χ̄α̇

)

with χ̄α̇ = (χα)∗ . (2.13)

The free action for a massive Majorana spinor then reads

L0 = −1
2
Ψ̄M(γµ∂µ +m)ΨM = − i

2
χσµ

↔

∂µχ̄− 1
2
m(χχ+ χ̄χ̄) , (2.14)

where Ψ̄M = iΨ†
Mγ

0 = (χα, χ̄α̇) and A
↔

∂µB = A∂µB − ∂µAB.

Numerous identities satisfied by the σ-matrices can be found in appendix A.

Exercise: Use the Schwinger–Dyson equation 〈δS/δφi(x)φj(x)〉 = iδji δ(x−y) in showing

that for the Lagrangian (1.1) subject to the conditions (1.2) the fermion propagators are

given by

〈

ψα(x) ψ̄α̇(y)
〉

0
=

1
� −m2

σµαα̇∂µδ(x− y) ,
〈

ψα(x)ψ
β(y)

〉

0
=

im
� −m2

δβα δ(x− y) .

Verify the tree-level Ward identities

〈

δξ
(

ψα(x) ϕ̄(y)
)〉

0
=
〈

δξ
(

ϕ(x)ψβ(y)
)〉

0
= 0

for the infinitesimal supersymmetry transformations

δξϕ = −ξψ , δξψα = ξα(mϕ̄ + gϕ̄2) − i(σµξ̄)α∂µϕ .

3For M ∈ SL(2, C) it is MεM t = detM ε = ε.
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3 The supersymmetry algebra

Drawing on the Coleman–Mandula theorem, which states that the most general algebra

of bosonic symmetry generators of the S-matrix is given by the direct sum of the Poincaré

algebra and a compact Lie algebra of internal symmetries, Haag, Lopuszanski and Sohnius

proved that the unique4 extension including fermionic generators with anticommutation

relations consists of the supersymmetry (or super-Poincaré) algebra:

{Qi
α , Q̄α̇j} = 2δijσ

µ
αα̇Pµ , {Qi

α , Q
j
β} = εαβZ

ij , {Q̄α̇i , Q̄β̇j} = εα̇β̇ Z̄ij , (3.1)

with indices i, j ranging from 1 to some number N . For N > 1 one speaks of N -extended

supersymmtry. The 4N supercharges Qi
α = (Q̄α̇i)

† are Weyl spinors,

[Mµν , Q
i
α ] = iσµνα

βQi
β , [Mµν , Q̄α̇i ] = −iQ̄β̇ i σ̄µν

β̇
α̇ , (3.2)

cf. (2.6), and translation-invariant:

[Pµ , Q
i
α ] = [Pµ , Q̄α̇i ] = 0 . (3.3)

The so-called central charges Z ij = −Zji = (Z̄ij)
† can occur only for N > 1 and commute

among themselves and with all other generators:

[Z ij , everything ] = [ Z̄ij , everything ] = 0 . (3.4)

The supersymmetry algebra (3.1) has an outer automorphism group U(N), under which

the supercharges and central charges transform according to their index structure:

Qi
α → U i

j Q
j
α , Q̄α̇i → Q̄α̇j (U

−1)ji , Z ij → U i
k U

j
ℓ Z

kℓ . (3.5)

This automorphism group is being referred to as R-symmetry.

Exercise: The graded commutator [A ,B} = AB − (−)|A||B|BA, where |A| = 0 if A is

bosonic and |A| = 1 if A is fermionic, satisfies the Bianchi identities

(−)|A||C| [A , [B ,C}} + (−)|B||A| [B , [C ,A}} + (−)|C||B| [C , [A ,B}} = 0 .

Use this to determine from the supersymmetry algebra the commutator [Mµν , P̺ ].

4 Supersymmetry multiplets

In this section we construct irreducible representations of the super-Poincaré algebra

using Wigner’s method of induced representations. This consists of first constructing

representations of the little group leaving a given momentum vector invariant and then

applying Lorentz boosts to obtain representations of the full super-Poincaré group. Note

4In the massless case it can be further extended to the superconformal algebra.
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that as a consequence of [Q , P 2 ] = 0 states in multiplets of unbroken supersymmetry

are degenerate in mass. We shall treat only massless states in some detail; we briefly

comment on massive states and central charges at the end of this section.

Let us consider one-particle states with fixed light-like momentum pµ = (E, 0, 0, E). The

little group of pµ is generated by the operators

N1 = M10 +M13 , N2 = M20 +M23 , J3 = M12 . (4.1)

They span the algebra E2. N1 and N2 being non-compact generators, they must be

trivially realized in any finite-dimensional unitary representation. Thus, we can classify

states by their J3 eigenvalues λ, the helicities, which are half-integers:

J3 |λ〉 = λ|λ〉 , λ ∈ 1
2
Z . (4.2)

From the commutator

[ J3 , Q̄α̇i ] = −iQ̄β̇ i σ̄12
β̇
α̇ = −1

2
Q̄β̇ i τ

3β̇
α̇ (4.3)

we infer that Q̄1̇i lowers the helicity by 1
2
, while Q̄2̇i raises it by the same amount.

On states with momentum pµ, we have

{Qi
α , Q̄α̇j} = 2E δij (σ

3 − σ0)αα̇ = 4E δij

(

1 0

0 0

)

, (4.4)

implying that Qi
2 and its hermitean conjugate Q̄2̇i must be trivially realized. From (3.1)

it then follows that the central charges Z ij vanish:

{Qi
α , Q

j
β} = 0 , {Q̄α̇i , Q̄β̇j} = 0 . (4.5)

Thus, Q̄1̇i and Qi
1 satisfy the same anticommutation relations as N copies of fermionic

creation and annihilation operators, respectively, familiar from quantum mechanics. We

can build multiplets by successive application of creation operators on a highest weight

state |λ〉 with

Qi
1|λ〉 = Qi

2|λ〉 = Q̄2̇i|λ〉 = 0 . (4.6)

For simplicity, we take |λ〉 to be a singlet of the R-symmetry group. We can then apply

up to N different creation operators Q̄1̇i to |λ〉; monomials of more than N such operators

vanish identically due to their nilpotency. In this way, we obtain the following states:

states helicity # components

|λ〉 λ 1

Q̄1̇i|λ〉 λ− 1/2 N
...

...
...

Q̄1̇i1 . . . Q̄1̇ik
|λ〉 λ− k/2

(

N
k

)

...
...

...

Q̄1̇1 . . . Q̄1̇N |λ〉 λ−N/2 1
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The total number of states is
∑N

k=0

(

N
k

)

= 2N . However, if we want to realize such

a multiplet in a relativistic quantum field theory, we in general have to add the CPT

conjugated states with opposite chiralities in order to achieve CPT invariance. Only when

λ = N/4, which requires N to be a multiple of 2, can the multiplet be CPT self-conjugate.

It appears to be impossible to have interacting massless particles with helicities |λ| > 2,

so we must impose the constraint

4 ≥ λmax − λmin = N/2 ⇔ N ≤ 8 . (4.7)

In four dimensions one can have at most eight supersymmetries, corresponding to 32 real

supercharges. This restriction actually applies in any number of spacetime dimensions.

Let us give some examples. The most important N = 1 multiplets are

| 1
2
〉 , |0〉 ⊕ |0〉 , |− 1

2
〉 ,

|1〉 , | 1
2
〉 ⊕ |− 1

2
〉 , |−1〉 ,

|2〉 , | 3
2
〉 ⊕ |− 3

2
〉 , |−2〉 ,

which correspond to the chiral, vector and supergravity multiplet, respectively. The

construction of interacting quantum field theories for the first two will be the main subject

of these lectures.

N = 1 chiral and vector multiplets can be combined into N = 2 vector multiplets:

|1〉 , | 1
2
〉2 , |0〉 ⊕ |0〉 , |− 1

2
〉2 , |−1〉 ,

where superscripts denote the multiplicities of the states. However, at the field theory

level this is possible only for very specific interactions between the N = 1 multiplets; in

particular, all fields must transform in the adjoint representation of the gauge group.

The largest physically sensible, massless, irreducible representation is the N = 8 super-

gravity multiplet,

|2〉 , | 3
2
〉8 , |1〉28 , | 1

2
〉56 , |0〉70 , |− 1

2
〉56 , |−1〉28 , |− 3

2
〉8 , |−2〉 ,

which is CPT self-conjugate.

Exercise: List the states contained in the massless N = 3 and N = 4 vector multiplets

(with helicities |λ| ≤ 1) and compare them.

To close this section, let us briefly comment on massive multiplets. We can always choose

a frame in which pµ = (m, 0, 0, 0), whence

{Qi
α , Q̄α̇j} = 2mδij δαα̇ . (4.8)

We now have 2N sets of fermionic creation and annihilation operators amd the multiplets

are generically larger than in the massless case: for vanishing central charges they contain

22N states. In general the eigenvalues Zr of the central charges are bounded by |Zr| ≤ 2m.

The multiplets are shorter if for some r this so-called BPS bound is saturated.
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5 Superspace and superfields

We now come to the construction of field theories that realize some of the above multiplets.

We shall restrict ourselves to N = 1 supersymmetry for the remainder of these lectures;

the R-symmetry index i can then be dropped. In particular, this means that there are no

central charges.

Superfields φ(z) live in superspace R4|4, which extends ordinary Minkowski space R4 (with

signature η00 = −1) by Grassmann-odd variables:

zA = (xµ , θα , θ̄α̇) . (5.1)

The latter are related by complex conjugation via (θα)∗ = θ̄α̇. Note the position of

the index of zα̇ = θ̄α̇ as compared to zα = θα; this convention was chosen such that

contractions like zA1 z2A are real, cf. (2.12).

One can regard superspace as a coset space of the super-Poincaré group divided by the

outer automorphism group SL(2,C)×U(1). The variables zA parametrize coset elements

as

g(z) = e−ixµPµ+iθαQα+iθ̄α̇Q̄
α̇

. (5.2)

A supersymmetry transformation with Grassmann-odd parameters ξα, ξ̄α̇ corresponds to

a motion in superspace induced by the left-multiplication

g(0, ξ, ξ̄) g(z) = g(z′) , (5.3)

which can be easily worked out using the Baker–Campbell–Hausdorff formula

eA eB = eA+B+ 1

2
[A ,B ]+... . (5.4)

Recall that the additional terms in the exponent on the right-hand side vanish if [A , B ]

commutes with both A and B, which is the case here. Infinitesimally, we find for δξz
A =

z′A − zA that

δξx
µ = i(θσµξ̄ − ξσµθ̄) , δξθ

α = ξα , δξ θ̄α̇ = ξ̄α̇ . (5.5)

Superfields φ(z) = g(z)φ(0)g−1(z) transform as scalars under such motions:

φ′(z′) = φ(z) . (5.6)

Infinitesimally, we then have

δξφ(z) = φ′(z) − φ(z) = φ′(z′ − δξz) − φ(z) = −δξzA∂Aφ(z) . (5.7)

Plugging in the transformations of the coordinates and collecting terms proportional to ξ

and ξ̄, respectively, it follows that

δξφ(z) = i(ξαQα + ξ̄α̇Q̄
α̇)φ(z) (5.8)
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with the supersymmetry charges being represented by differential operators

Qα = i
∂
∂θα

+ (σµθ̄)α∂µ , Q̄α̇ = −i
∂
∂θ̄α̇

− (θσµ)α̇∂µ . (5.9)

They satisfy the anticommutation relations5

{Qα , Q̄α̇} = −2i ∂αα̇ , {Qα , Qβ} = 0 = {Q̄α̇ , Q̄β̇} , (5.10)

where the momentum operator is represented on superfields as Pµ = −i∂µ. The commu-

tator of two supersymmetry transformations yields a translation in x-direction:

[ δξ , δζ ] = aµ∂µ with aµ = 2i(ξσµζ̄ − ζσµξ̄) . (5.11)

We will find that superfields in general describe reducible multiplets. In order to obtain

irreducible representations, we have to impose suitable constraints on the superfields.

These must neither restrict their spacetime dependence nor break supersymmetry. The

latter is preserved if we formulate the constraints in terms of supercovariant derivatives

Dα =
∂
∂θα

+ i(σµθ̄)α∂µ , D̄α̇ = − ∂
∂θ̄α̇

− i(θσµ)α̇∂µ (5.12)

of the superfields. These are constructed such that they anticommute with Qα and Q̄α̇

and therefore map superfields into superfields:

δξDαφ(z) = Dαδξφ(z) = iDα(ξQ+ ξ̄Q̄)φ(z) = i(ξQ+ ξ̄Q̄)Dαφ(z) .

They satisfy the same algebra as the supercharges:

{Dα , D̄α̇} = −2i ∂αα̇ , {Dα , Dβ} = 0 = {D̄α̇ , D̄β̇} . (5.13)

Since the θ’s anticommute and spinor indices take only two different values, third and

higher powers vanish,

θαθβθγ = 0 , θ̄α̇ θ̄β̇ θ̄γ̇ = 0 . (5.14)

Thus, superfields are polynomials in these variables. Using the identities

θαθβ = −1
2
εαβθγθγ ≡ −1

2
εαβθ2 , θ̄α̇ θ̄β̇ = −1

2
εα̇β̇ θ̄γ̇ θ̄

γ̇ ≡ −1
2
εα̇β̇ θ̄

2 , (5.15)

we find that the most general superfield is of the form

φ(z) = ϕ(x) + θψ(x) + θ̄χ̄(x) + θσµθ̄Aµ(x) + θ2F (x) + θ̄2G(x)

+ θ2 θ̄λ̄(x) + θ̄2 θη(x) + θ2 θ̄2D(x) . (5.16)

Note that φ may carry unwritten spacetime, spinor, and gauge indices. The x-dependent

coefficient functions in the θ-expansion of a superfield constitute a supersymmetry multi-

plet. They can be regarded as the lowest components of superfields obtained by applying

5We are using the notation Vαα̇ ≡ σµ
αα̇Vµ for arbitrary vectors Vµ here.
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appropriate polynomials in supercovariant derivatives to φ(z). For φ(z) as above we have

for instance

ϕ(x) = φ(z)|θ=θ̄=0 , ψα(x) = Dαφ(z)|θ=θ̄=0 , Aαα̇(x) = 1
2
[Dα , D̄α̇ ]φ(z)|θ=θ̄=0 .

(5.17)

Their supersymmetry transformations are obtained from the θ-expansion of the trans-

formed superfield:6

δξφ(z) ≡ δξϕ(x) + θ δξψ(x) + θ̄ δξ χ̄(x) + θσµθ̄ δξAµ(x) + . . . . (5.18)

The fact that the supercovariant derivatives differ from the supersymmetry generators

−iQα and −iQ̄α̇ only by θ-dependent terms allows us to replace the latter by Dα and

D̄α̇, respectively, under the projection to θ = θ̄ = 0. We can therefore determine the

transformations of the components (5.17) by applying the operator −(ξD + ξ̄D̄) under

the projection and then using the commutation relations to express the result in terms of

the other components. For example, we find in this way that

δξϕ(x) = i(ξQ+ ξ̄Q̄)φ(z)|θ=θ̄=0 = −(ξD + ξ̄D̄)φ(z)|θ=θ̄=0 = −ξψ(x) − ξ̄χ̄(x)

and

δξψα(x) = −(ξD + ξ̄D̄)Dαφ(z)|θ=θ̄=0

= 1
2

(

εαβ ξ
βD2 + ξ̄α̇ [ D̄α̇ , Dα ] + ξ̄α̇{D̄α̇ , Dα}

)

φ(z)|θ=θ̄=0

= −2ξαF (x) − (σµξ̄)α(Aµ + i∂µϕ)(x) .

From the lowest component ϕ(x) = φ(x, 0, 0) of a superfield the latter can be recovered

by exponentiating component supersymmetry transformations with θ’s as parameters:

φ(z) = exp(−δθ)ϕ(x) =
4
∑

n=0

1
n!

(−δθ)nϕ(x) . (5.19)

More generally, from every supersymmetry multiplet superfields may be constructed by

applying the operator exp(−δθ) to any component field.

6 Superspace integration

Just like translation-invariant actions can be constructed from spacetime integrals over

scalar Lagrangians, we obtain supersymmetric actions from integrals of superfield La-

grangians over superspace. These will automatically be invariant if the superspace inte-

gral is invariant under supertranslations. This is the case for the Berezin integral: any

6Note the abuse of notation here: the operator δξ on the left-hand side acts on superspace variables,

whereas δξ on the right-hand side does not. We refrain from using two different symbols in the hope that

no confusion arises.
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function of a single Grassmann variable θ can be expanded as f(θ) = f0 + θf1, where the

components may depend on additional bosonic and fermionic variables. We then define
∫

dθ f(θ) ≡ f1 =
∂
∂θ

f(θ) . (6.1)

This integral has the curious property that it acts just like differentiation. It is indeed

invariant under translations in θ:
∫

dθ f(θ + ξ) =

∫

dθ
(

f0 + θf1 + ξf1

)

= f1 .

If we define measures d2θ and d2θ̄ such that
∫

d2θ θ2 = 1 ,

∫

d2θ̄ θ̄2 = 1 , (6.2)

then the integration over θα and θ̄α̇ projects to the highest component of a superfield. For

φ(z) as in (5.16), we have
∫

d2θ φ(z) = φ(z)|θ2 = F (x) + θ̄λ̄(x) + θ̄2D(x) ,
∫

d2θ d2θ̄ φ(z) = φ(z)|θ2θ̄2 = D(x) . (6.3)

The integral of an arbitrary superfield over the full superspace
∫

d8z φ(z) ≡
∫

d4x d2θ d2θ̄ φ(z) (6.4)

is manifestly supersymmetric thanks to its translation invariance:

δξ

∫

d8z φ(z) = −
∫

d8z δξz
A∂Aφ(z) = −

∫

d8z
(

δξx
µ∂µ + ξα

∂
∂θα

+ ξ̄α̇
∂
∂θ̄α̇

)

φ(z) = 0 .

Since the highest component of a real superfield integrand is usually denoted by D, this

invariant is often called a D-term.

According to (5.12), integration over θα may be expressed in terms of the supercovariant

derivatives:
∫

d2θ =
1
2

∫

dθ1dθ2 =
1
4
εαβ

∂
∂θα

∂
∂θβ

= −1
4
DαDα + . . . , (6.5)

and analogously for θ̄α̇, where the ellipsis denotes terms that involve derivatives ∂µ. Upon

integration over spacetime, these can be neglected,
∫

d4x d2θ d2θ̄ =
1
16

∫

d4xD2D̄2 . (6.6)

Note that the order of D2 and D̄2 does not matter here, for their commutator is a total

derivative:

[D2 , D̄2 ] = −4i ∂µ σ̄
µα̇α[Dα , D̄α̇ ] . (6.7)

The above equations also imply that partial integration of a supercovariant derivative is

always possible, since there is no “boundary term”:
∫

d4x d2θ Dαφ(z) = 0 =

∫

d4x d2θ̄ D̄α̇φ(z) . (6.8)
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7 Chiral superfields

An important example for an N = 1 supersymmetry multiplet is the so-called chiral

superfield. It is a complex field φ(z) that satisfies the constraint

D̄α̇φ(z) = 0 . (7.1)

φ(z) need not be Lorentz-scalar, it may carry unwritten indices. Indeed, in the next

section we shall encounter a chiral spinor superfield. In supersymmetric extensions of the

standard model matter such as quarks and leptons is described by chiral scalar superfields,

however.

If we introduce a complex composite bosonic coordinate

yµ = xµ + iθσµθ̄ (7.2)

and express the supercovariant derivatives in terms of the new coordinates (y, θ, θ̄),

Dα =
∂
∂θα

+ 2i(σµθ̄)α∂yµ , D̄α̇ = − ∂
∂θ̄α̇

, (7.3)

we see that the general solution to (7.1) is given by superfields which depend on θ̄α̇ only

via the combination yµ:

φ(z) = φ(y, θ) . (7.4)

The space C4|2 parametrized by (y, θ) is being referred to as the “chiral superspace”.

Functions on this space have a shorter θ-expansion than full superfields:

φ(y, θ) = ϕ(y) + θψ(y) + θ2F (y) . (7.5)

Thus, a chiral scalar multiplet comprises a complex scalar ϕ(x), a left-handed Weyl spinor

ψα(x), and what will turn out to be an auxiliary complex scalar F (x). From (7.5) we

obtain the expansion of φ(z); using the identity7

f(y) = exp(iθσµθ̄ ∂µ) f(x) =
(

1 + iθσµθ̄ ∂µ + 1
4
θ2θ̄2

�
)

f(x) , (7.6)

we find

φ(z) = ϕ(x) + θψ(x) + θ2F (x) + iθσµθ̄ ∂µϕ(x) + i
2
θ2 θ̄σ̄µ∂µψ(x) + 1

4
θ2 θ̄2

�ϕ(x) . (7.7)

Expressed in terms of supercovariant derivatives of φ(z), the components are given by

ϕ(x) = φ(z)|θ=θ̄=0 , ψα(x) = Dαφ(z)|θ=θ̄=0 , F (x) = −1
4
D2φ(z)|θ=θ̄=0 . (7.8)

Their supersymmetry transformations can be determined as explained above:

δξϕ(x) = −(ξD + ξ̄D̄)φ(z)|θ=θ̄=0 = −ξψ(x)

7The σ-matrix identities imply that θσµθ̄ θσν θ̄ = − 1

2
θ2 θ̄2ηµν .
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δξψα(x) = −(ξD + ξ̄D̄)Dαφ(z)|θ=θ̄=0 = −2ξαF (x) − 2i(σµξ̄)α∂µϕ(x)

δξF (x) = 1
4
(ξD + ξ̄D̄)D2φ(z)|θ=θ̄=0 = −i ξ̄σ̄µ∂µψ(x) . (7.9)

The first two we had already computed; the one of F follows simply by noting that third

powers of Dα vanish and that on chiral superfields it is

D̄α̇D
2φ = [ D̄α̇ , D

2 ]φ = −2Dα{D̄α̇ , Dα}φ = 4i ∂αα̇D
αφ .

Exercise: Compute the commutator [ δξ , δζ ] of two supersymmetry transformations on

the components of the chiral scalar multiplet.

We note that since D̄α̇ is a derivation, sums and products of chiral superfields are again

chiral. Moreover, since the D̄α̇ anticommute, D̄2Σ(z) is chiral for arbitrary superfields

Σ(z). Complex conjugation of a chiral superfield φ(z) gives an antichiral superfield φ̄(z)

satisfying the constraint Dαφ̄(z) = 0.

To determine an invariant action for the chiral scalar multiplet, let us consider the highest

component of the real composite superfield φ̄φ build from φ and its complex conjugate:

φ̄φ =
1
4
θ2 θ̄2

(

− 2 ∂µϕ̄ ∂
µϕ+ ϕ̄�ϕ+ ϕ�ϕ̄− iψσµ

↔

∂µψ̄ + 4F̄F
)

+ . . . . (7.10)

Thus, we obtain the free field Lagrangian by projection to the θ2 θ̄2 component of this

expression, the D-term, and the manifestly supersymmetric action is simply

S0 =

∫

d8z φ̄φ =

∫

d4x
(

− ∂µϕ̄ ∂
µϕ− i

2
ψσµ∂µψ̄ + F̄F

)

. (7.11)

We find that there is no kinetic term for the complex scalar F — it is an auxiliary field,

whose purpose it is to equalize the numbers of bosonic and fermionic components and

allow for a linear representation of the supersymmetry algebra that closes off-shell, see

below. That no derivatives of F can occur in a renormalizable action also follows from the

fact that F has mass dimension 2 if we assign mass dimension 1 to ϕ.8 F has an algebraic

equation of motion and can therefore be eliminated by inserting its solution back into the

action. In the free case, this simply sets F = 0.

There are two kinds of self-interactions for chiral scalar multiplets. First, we may replace

the integrand φ̄φ of S0 by a more general real function K(φ, φ̄) of several9 chiral and

antichiral superfields φi and φ̄i without spoiling supersymmetry. This then gives rise to

supersymmetric non-linear sigma models (NLSM):

∫

d8z K(φ, φ̄) =

∫

d4x
(

− ∂2K(ϕ, ϕ̄)

∂ϕ̄i ∂ϕj
∂µϕ̄

i ∂µϕj + . . .
)

.

8From (5.12) and (5.13) it immediately follows that supercovariant derivatives and θ’s carry mass

dimension 1/2 and −1/2, respectively.
9The index i that counts chiral scalar fields is not to be confused with the R-symmetry index in

N -extended supersymmetry.
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K(φ, φ̄) is called a Kähler potential, because the target space geometry of the NLSM is

that of a complex Kähler manifold. We shall not consider target spaces other than Cn,

as these would correspond to non-renormalizable theories.

The second way of introducing interactions is via a so-called superpotential. This method

relies on the fact that we can build supersymmetry invariants by integrating a (composite)

chiral superfield over chiral superspace C4|2: For any chiral superfield φ(z) we have

δξ

∫

d4x d2θ φ = −
∫

d4x d2θ (ξD + ξ̄D̄)φ = −
∫

d4x d2θ ξα
∂
∂θα

φ = 0 .

Here we have used that Q and iD differ only by a spacetime derivative and that φ satisfies

the constraint (7.1). This provides a means of introducing supersymmetric mass terms

and interactions by integrating over chiral superspace a polynomial W(φ) of the chiral

scalar superfields in the theory:

SW =

∫

d6z W(φ) + c.c. . (7.12)

d6z ≡ d4x d2θ denotes the measure on C4|2. Note that W(φ) can only depend on the

φi, not on their antichiral complex conjugates — in this sense the superpotential is a

holomorphic function. By the chain rule satisfied by the supercovariant derivatives, it is

itself chiral:

D̄α̇W(φ) = D̄α̇φ
i ∂W
∂φi

= 0 . (7.13)

As the θ-integration picks out the F -component of the chiral integrand, this action is

often being referred to as an F -term.

To determine the component Lagrangian of SW , we epress the chiral superfields as func-

tions of (y, θ), expand W(φ) about the lowest component ϕ(y) of φ(y, θ), and pick out the

part proportional to θ2. A translation in spacetime, under which the integral is invariant,

then takes us back from y to x:
∫

d6z W(φ) =

∫

d6z W(ϕ+ θψ + θ2F )

=

∫

d6z
[

W(ϕ) + (θψi + θ2F i)Wi(ϕ) + 1
2
θψiθψjWij(ϕ)

]

=

∫

d4x
[

F iWi(ϕ) − 1
4
ψiψjWij(ϕ)

]

. (7.14)

Here we use the notation

Wi1...in(ϕ) =
∂nW(ϕ)

∂ϕi1 . . . ∂ϕin
. (7.15)

If we add SW to the free action S0,

L = −∂µϕ̄i ∂µϕi − i
2
ψiσµ∂µψ̄

i − 1
4
ψiψjWij(ϕ) − 1

4
ψ̄iψ̄jW̄ij(ϕ̄)

+ F̄ iF i + F iWi(ϕ) + F̄ iW̄i(ϕ̄) , (7.16)
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which we can do since both are independently supersymmetric, the equations of motion

for the auxiliary fields are no longer trivial:

δS
δF i

= 0 ⇔ F̄ i = −Wi(ϕ) . (7.17)

Plugging the solutions back into the action, we obtain a salar potential (L = . . .− V )

V (ϕ, ϕ̄) = F̄ iF i =
∑

i

|Wi(ϕ)|2 . (7.18)

Being a sum of squares, the potential is non-negative, which will turn out to play an

important role in the discussion of spontaneous supersymmetry breaking.

If we require the theory to be power-counting renormalizable, then the superpotential

W(φ) can be an at most cubic polynomial in φ. This follows from a dimensional analysis:

The mass dimension of d6z is −3, therefore the one of W(φ) is 3. As a chiral scalar

superfield has mass dimension 1, coupling constants of negative dimension would occur

for quartic and higher powers of φ. Thus, the most general renormalizable superpotential

reads

W(φ) = λiφ
i + 1

2
mijφ

iφj + 1
3
gijkφ

iφjφk (7.19)

with in general complex totally symmetric parameters λi, mij , and gijk of mass dimension

2, 1, and 0, respectively. The action then takes the form

L = −∂µϕ̄i ∂µϕi − i
2
ψiσµ∂µψ̄

i − 1
4
mijψ

iψj − 1
4
m̄ij ψ̄

iψ̄j

− 1
2
gijkϕ

iψjψk − 1
2
ḡijk ϕ̄

iψ̄jψ̄k −
∑

i

|λi +mijϕ
j + gijkϕ

jϕk|2 . (7.20)

This is the Wess–Zumino model. As long as the scalars ϕi have vanishing vacuum expec-

tation values, the parameters mij set the masses of the fields while the gijk correspond to

Yukawa couplings.

Exercise: Show that the supersymmetry Noether current of the Lagrangian (7.16) is given

by the spinorial vector

Jµα = −∂νϕ̄i(σν σ̄µψi)α + i(σµψ̄i)αW̄i(ϕ̄) , (7.21)

and compute the action of the corresponding supercharge Qα on ϕi using the canonical

commutation relations. Hint: the current can be read off from the result δξ(x)L = ∂µK
µ +

∂µξJ
µ + ∂µξ̄ J̄

µ of a local supersymmetry transformation of the Lagrangian.

If we replace the F i in the supersymmetry transformations (7.9) of ψi by their on-shell

expressions,

δξψ
i = 2ξW̄i(ϕ̄) − 2iσµξ̄ ∂µϕ

i , (7.22)

the commutator of two such transformations closes into a translation only for spinor fields

that satisfy their equations of motion:

[ δξ , δζ ]ψiα = aµ∂µψ
i
α + E ijαα̇

δS

δψ̄jα̇
with E ijαα̇ = 4δij (ζα ξ̄α̇ − ξα ζ̄α̇) . (7.23)
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The right-hand side, being the commutator of two symmetry transformations, must be a

linear combination of symmetry transformations even off-shell. Indeed, the extra term is

a special case of a so-called trivial symmetry

δtrivφ
I = E IJ(φ, x) δS

δφJ
with E IJ = −(−)|φ

I ||φJ |EJI (7.24)

for an arbitrary set of fields φI that can be bosonic (|φI | = 0) or fermionic (|φI | = 1).

These obviously leave the action S invariant thanks to the graded antisymmetry of E IJ :

δtrivS[φ] =

∫

δtrivφ
I δS
δφI

=

∫

E IJ(φ)
δS
δφJ

δS
δφI

= 0 .

Such trivial symmetries typically appear only for fermions, since supersymmetry transfor-

mations are at most linear in derivatives whereas field equations of bosons are of second

order.

As can be seen from (7.22), after elimination of the auxiliary fields the free action and the

superpotential terms are no longer separately invariant, only the sum is supersymmetric.

It is one of the great advantages of an off-shell formulation with auxiliary fields that one

can add invariants to obtain new ones as the symmetry transformations do not depend

on the choice of the action.

8 Supersymmetric gauge theories

We shall now couple the matter fields contained in chiral multiplets to gauge fields. In

order to preserve supersymmetry, the latter have to be embedded into supersymmetry

multiplets as well. Recall that under gauge transformations with spacetime-dependent

parameters εa(x) matter fields ϕ transform as

ϕ(x) → ϕ′(x) = eiεa(x)Taϕ(x) , (8.1)

where the Ta are hermitean representation matrices of the compact Lie algebra of internal

symmetries with real structure constants:

[Ta , Tb ] = ifab
c Tc . (8.2)

As long as the Ta commute with the supercharges, all components of a chiral superfield

must carry the same gauge charge. It is therefore tempting to simply implement gauge

transformations of chiral superfields by extending the above to φ′(z) = eiεa(x)Taφ(z). But

for arbitrary parameters εa(x), φ′(z) is no longer chiral, D̄α̇φ
′(z) 6= 0. To preserve this

constraint, we have to promote the gauge parameters to full chiral multiplets themselves:

φ(z) → eiΛ(z)φ(z) , Λ(z) = Λa(z)Ta , D̄α̇Λa(z) = 0 . (8.3)

We will later have to fix the gauge transformations involving the additional bosonic and

fermionic parameters contained in Λ(z).
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The antichiral matter fields obtained by complex conjugation transform as

φ†(z) → φ†(z) e−iΛ†(z) , (8.4)

where Λ†(z) = Λ̄a(z)Ta is antichiral as well. As expected, the integrand φ†φ of the free

superfield action then is not gauge-invariant:

φ†φ→ φ† e−iΛ†

eiΛφ 6= φ†φ . (8.5)

We need to couple to a gauge connection whose transformation compensates for those of

the matter fields. The action
∫

d8z φ† e2Vφ with V (z) = V a(z)Ta = V †(z) (8.6)

is supersymmetric and gauge-invariant if the real superfields V a(z) transform such that

e2V (z) → eiΛ†(z) e2V (z) e−iΛ(z) . (8.7)

This includes the inhomogeneous term characteristic of a connection:

V → V − i
2
(Λ − Λ†) − i

2
[V , Λ + Λ† ] + . . . . (8.8)

Hermiticity of V (z) implies that its expansion in terms of Grassmann coordinates is given

by

V (z) = C + iθχ− iθ̄χ† + i
2
θ2M − i

2
θ̄2M † + θσµθ̄Aµ

+ θ2 θ̄(λ† − 1
2
σ̄µ∂µχ) + θ̄2θ(λ+ 1

2
σµ∂µχ

†) + 1
2
θ2 θ̄2(D + 1

2
�C) , (8.9)

where we have shifted λ and D by derivative terms for convenience. Comparison with

i
2
(Λ − Λ†)(z) = i

2
(ϕ− ϕ†) + i

2
θψ − i

2
θ̄ψ† + i

2
θ2F − i

2
θ̄2F † − 1

2
θσµθ̄ ∂µ(ϕ+ ϕ†)

− 1
4
θ2 θ̄σ̄µ∂µψ + 1

4
θ̄2θσµ∂µψ

† + i
8
θ2 θ̄2

�(ϕ− ϕ†) , (8.10)

where for simplicity we denote the components of the chiral superfields Λ with the same

symbols as for chiral matter, shows that in the abelian case

Ca → Ca + Imϕa , χa → χa − 1
2
ψa , Ma →Ma − F a ,

Aaµ → Aaµ + ∂µ Reϕa , λa → λa , Da → Da . (8.11)

In the non-abelian case these transformations are augmented by nonlinear (indeed non-

polynomial) terms. It is now apparent that we can gauge away the fields Ca, χa, and Ma

using the degrees of freedom contained in Imϕa, ψa, and F a, which leaves us with the

usual gauge transformation of Aaµ involving the parameters Reϕa that we identify with

the above εa. This choice of gauge is called Wess–Zumino (WZ) gauge.
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Apart from a minimal field content, consisting of gauge fields Aaµ, so-called gauginos λa,

and auxiliary scalar fields Da, this gauge has the major advantage that the action (8.6)

is polynomial in the fields. This follows immediately from the fact that in WZ gauge the

lowest component of V (z) already contains two θ’s,

VWZ(z) = θσµθ̄Aµ + θ2 θ̄ λ̄+ θ̄2θλ + 1
2
θ2 θ̄2D , (8.12)

and therfore third and higher powers of VWZ vanish identically:

V 2
WZ(z) = −1

2
θ2 θ̄2AµA

µ , V n
WZ(z) = 0 for n ≥ 3 . (8.13)

Using gauge invariance of the action (8.6), we can evaluate it in WZ gauge and find

∫

d8z φ† e2VWZφ =

∫

d8z φ† (1 + 2VWZ + 2V 2
WZ)φ

=

∫

d4x
[

−Dµϕ
†Dµϕ− i

2
ψ†σ̄µDµψ + F †F +Daϕ†Taϕ

− ϕ†Taψλ
a − λ̄aψ†Taϕ

]

. (8.14)

Here, Dµ = ∂µ − iAaµ Ta denotes the gauge-covariant derivative, giving rise to couplings

of the gauge fields to matter currents in the usual way. Moreover, we have obtained

Yukawa interactions involving the gauginos. We will find below that the term linear in

the auxiliary fields Da contributes to the scalar potential.

This action is not invariant under the linear supersymmetry transformations generated

by the Q’s, as these are broken by adopting the WZ gauge. This may be seen for instance

by inspecting the susy transformation of χα,

δξχα = −ξαM − (σµξ̄)α(∂µC − iAµ) , (8.15)

which does not vanish in WZ gauge where χα itself vanishes. We must augment the susy

transformation by a compensating gauge transformation that restores the WZ gauge:

δWZ
ξ = δξ + δΛ with Λ(z) = 2i θσµξ̄Aµ(y) + 2i θ2 ξ̄λ̄(y) . (8.16)

Exercise: Show that the WZ gauge-preserving susy transformations of a chiral multiplet

are given by

δWZ
ξ ϕ = −ξψ , δWZ

ξ ψ = −2ξF − 2iσµξ̄Dµϕ , δWZ
ξ F = −iξ̄σ̄µDµψ − 2ξ̄λ̄ϕ , (8.17)

and that the commutator of two such transformations yields in addition to a translation

a gauge transformation with field-dependent parameter:

[ δWZ
ξ , δWZ

ζ ] = aµ∂µ − (aµAaµ)δa . (8.18)
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In order to make the gauge multiplets dynamical, we need to construct a supersymmetric

extension of the Yang–Mills action. Recall that the gauge fields enter the latter through

gauge-covariant field strengths

F a
µν = ∂µA

a
ν − ∂νA

a
µ + AbµA

c
νfbc

a . (8.19)

A superfield constructed out of V (z) that transforms covariantly under the gauge trans-

formations (8.7) is given by

Wα(z) = −1
8
D̄2(e−2VDαe2V ) . (8.20)

Note that it is a chiral spinor: D̄α̇Wα = 0.

Exercise: Show that the gauge transformation of Wα(z) is given by

W ′
α = eiΛWα e−iΛ , (8.21)

implying that tr(W αWα) is gauge-invariant.

Using the identity10

e−X
aTa∂ eX

bTb = ∂Xa

∫ 1

0

ds (eisX·f)a
b Tb with (X ·f)a

b ≡ Xcfac
b , (8.22)

which holds for arbitrary fields Xa and derivations ∂ and shows that the expression on

the left-hand side is Lie algebra-valued, we find that

e−2V [Dα , e2V ] = 2DαV
a(δba + iV cfac

b + . . .)Tb . (8.23)

Thus, in WZ gauge the field strength superfield (8.20) reads

W a
α = −1

4
D̄2
(

DαV
a + iDαV

b V cfbc
a
)

WZ
. (8.24)

The effect of the second, non-linear term is to turn the derivatives of Aaµ and λa appearing

in the θ expansion of W a
α into gauge-covariant field strengths. The calculation is most

easily performed in chiral superspace (y, θ), where the operator −D̄2/4 =
∫

d2θ̄ simply

picks out the θ̄2 component. We obtain

W a
α (z) = λaα(y) + θαD

a(y) + i(σµνθ)αF
a
µν(y) − iθ2(σµDµλ̄)aα(y) , (8.25)

where

Dµλ̄
a = ∂µλ̄

a + Abµ λ̄
cfbc

a . (8.26)

We observe that the gauginos transform in the adjoint representation.

10This follows from the identities f(X) =
∫ 1

0
ds ∂sf(sX) for differentiable functions satisfying f(0) = 0

and e−X·T Ta eX·T = (eiX·f)a
b Tb.
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Let us list the supersymmetry transformations of the physical component fields in WZ

gauge:

δWZ
ξ Aµ = ξσµλ̄+ λσµξ̄ ,

δWZ
ξ λα = −ξαD − i(σµνξ)αFµν ,

δWZ
ξ D = iDµλσ

µξ̄ − iξσµDµλ̄ . (8.27)

The transformations of the covariant components of Wα can be inferred from those given

in (8.17) by noting that only the chirality of φ was used in deriving the latter, a property

shared by Wα. Comparing the expansions ofWα and φ suggests to make the identifications

ϕα = λα, ψαβ = εαβD − iσµναβFµν , and Fα = −i(σµDµλ̄)α, which gives rise to the above

equations and the transformation of the Yang–Mills field strength:

δWZ
ξ Fµν = 2D[µλσν]ξ̄ + 2ξσ[νDµ]λ̄ . (8.28)

As shown in the previous section, integrating a chiral superfield over chiral superspace

yields a supersymmetric action. In particular, this applies to the composite chiral scalar

W αWα = θσµνσ̺σθ FµνF̺σ − 2i θ2λσµDµλ̄+ θ2D2 + . . .

= 2θ2
(

− 1
4
FµνF

µν − i
8
εµν̺σFµνF̺σ − iλσµDµλ̄+ 1

2
D2
)

+ . . . . (8.29)

We recognize the Yang–Mills term in this expression. We still need to divide by g2,

the coupling constant (the canonical normalization of the fields is restored by rescaling

the vector multiplet by a factor g, which then also appears in the matter action). We

would also like to keep the second term in the above expression, despite its being a total

derivative and therefore of no consequence in perturbation theory:

1
2
εµν̺σFµνF̺σ ≡ Fµν F̃

µν = ∂µK
µ . (8.30)

It does contribute non-perturbatively through instanton configurations, though, for which

the boundary term

− 1
32π2

∫

d4xF a
µν F̃

µνa = n ∈ Z (8.31)

is non-zero. We can introduce separate parameters for the two field strength bilinears

through the complex coupling

τ =
ϑ
2π

+
4π i
g2

. (8.32)

The correctly normalized super Yang–Mills action is then given by

SsYM =
1
8π

Im

∫

d6z τ W αaW a
α

=

∫

d4x
[

− 1
4g2

F a
µνF

µνa − ϑ
32π2

F a
µν F̃

µνa − i
g2
λ̄aσ̄µDµλ

a +
1

2g2
DaDa

]

. (8.33)
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There is another renormalizable supersymmetric action that can be constructed from

vector multiplets, provided the gauge group contains abelian factors. In this case we

infer from (8.27) that the corresponding Da transform into total derivatives. Thus, the

so-called Fayet–Iliopoulos term

SFI =
2
g

∫

d8z κaV
a =

1
g

∫

d4xκaD
a (8.34)

is supersymmetric and gauge invariant for arbitrary real parameters κa that may be non-

zero for U(1) generators Ta.

Finally, we can add a superpotential if W (φ) is gauge-invariant,

δaW (ϕ) = −i(Taϕ)iWi(ϕ) = 0 . (8.35)

The most general renormalizable, supersymmetric, and gauge-invariant action for chiral

and vector multiplets is then given by

S =
1
8π

Im

∫

d6z τ W αaW a
α +

2
g

∫

d8z κaV
a+

∫

d8z φ†e2V aTaφ+2 Re

∫

d6z W(φ) . (8.36)

The corresponding Lagrangian for the component fields reads

L = − 1
4g2

F a
µνF

µνa − ϑ
32π2

F a
µν F̃

µνa −Dµϕ
†Dµϕ+

1
2g2

DaDa + F †F

− i
g2
λ̄aσ̄µDµλ

a − i
2
ψ†σ̄µDµψ − ϕ†Taψλ

a − λ̄aψ†Taϕ

+ g−1Da(κa + gϕ†Taϕ) +
(

F iWi(ϕ) − 1
4
ψiψjWij(ϕ) + c.c.

)

. (8.37)

The F i and Da are auxiliary fields with algebraic equations of motion:

δS
δF i

= 0 ⇔ F̄ i = −Wi(ϕ) (8.38)

δS
δDa

= 0 ⇔ g−1Da = −κa − gϕ†Taϕ . (8.39)

Plugging the solutions back into the action, we obtain the salar potential (L = . . .− V )

V (ϕ, ϕ̄) = F †F +
1

2g2
DaDa =

∑

i

|Wi(ϕ)|2 +
1
2

∑

a

(κa + gϕ†Taϕ)2 . (8.40)

Being a sum of squares, the potential is non-negative. We shall study some properties of

this theory in the next section.

9 Supersymmetry breaking

Unless supersymmetry is broken somehow, the masses of the fermions and bosons con-

tained in each multiplet are degenerate. This is not what we observe in experiments,
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so we have to study the mechanisms that can lead to supersymmetry breaking. Due to

time constraints we shall confine ourselves to spontaneous symmetry breakdown here,

even though an explicit breaking that occurs softly, i.e., without introducing quadratic

divergencies, is more attractive from a phenomenological point of view.

Let us first consider some general properties of spontaneously broken N -extended super-

symmetry before specializing to the N = 1 theory we have constructed in the previous

sections. The Hamiltonian in N -extended supersymmetry is given by

H = P 0 = −1
4
σ̄0α̇α{Qi

α , Q̄α̇i} =
1
4

(

Qi
1Q̄1̇i +Qi

2Q̄2̇i + Q̄1̇iQ
i
1 + Q̄2̇iQ

i
2

)

(9.1)

for each i, that is, we do not sum over i. It follows that its expectation value in any

(normalized) state is a sum of squares and therefore non-negative:

∀ i : EΨ = 〈Ψ|H|Ψ〉 =
1
4

∑

α

(

‖Qi
α|Ψ〉‖2 + ‖(Qi

α)
†|Ψ〉‖2

)

≥ 0 . (9.2)

Hence, normalizable states with vanishing energy are always ground states. Such states

are supersymmetric, since they are annihilated by all supercharges:

EΨ = 0 ⇔ ∀ i : Qi
α|Ψ〉 = Q̄α̇i|Ψ〉 = 0 . (9.3)

On the other hand, if a ground state has non-vanishing positive energy, then supersym-

metry is spontaneously broken, as at least one supercharge for each i does not annihilate

the state. This appears to imply that global supersymmetry cannot be partially broken

— either all supersymmetries are broken, or none of them is. But there is a loop-hole

to this argument: the supersymmetry algebra may contain additional bosonic terms that

do not correspond to symmetries of the S-matrix (and therefore are not excluded by the

Coleman–Mandula theorem) and which can indeed induce partial supersymmetry break-

ing.

Let us define a fermion-number operator:

(−)NF ≡ e2πiJ3 , (9.4)

where J3 = M12 generates rotations about the 3-axis (any axis would do). As boson states

|B〉 are mapped into themselves upon rotations about 2π, while fermion states |F 〉 change

sign, we have that

(−)NF |B〉 = |B〉 , (−)NF |F 〉 = −|F 〉 . (9.5)

Hence

{(−)NF , Q} = 0 , (9.6)

where Q denotes any of the supercharges. Consider now the following trace over one-

particle states with fixed momentum pµ (which form a complete set):

trp
[

(−)NF {Qi
α , Q̄α̇i}

]

= 2 trp
[

(−)NFPαα̇
]

= 2pαα̇ trp(−)NF . (9.7)
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The left-hand side of this equation vanishes thanks to (9.6) and the cyclicity of the trace.

For non-zero momentum pµ we therefore conclude that the trace of the fermion-number op-

erator over the corresponding subspace vanishes, i.e., the number of bosonic and fermionic

positive-energy states is equal:

trp 6=0 (−)NF = nE>0
B − nE>0

F = 0 . (9.8)

Positive-energy states always come in boson-fermion pairs. If we now take the trace over

the entire Hilbert space11, only the zero-energy states contribute:

trH (−)NF = nE=0
B − nE=0

F . (9.9)

This quantity is called the Witten index. If it is non-zero, then there are some states with

vanishing energy, which, as we have just seen, implies that supersymmetry is unbroken.

No statement can be made if the Witten index equals zero. What makes this index

useful is that it is a non-perturbative quantity, independent of the values of coupling

constants (as long as the variation of the parameters in the theory does not change the

asymptotics in field space). It may be evaluated classically and the result will still be valid

when quantum corrections are taken into account. Thus, if a classical calculation gives a

non-vanishing Witten index, supersymmetry will not be broken by quantum effects. For

example, pure super Yang–Mills theories without chiral multiplets all have non-vanishing

Witten indices.

Let us now study spontaneous supersymmetry breaking in N = 1 super Yang–Mills the-

ories. A global continuous symmetry with hermitean Noether charge Q is spontaneously

broken if there is at least one field φ(x) whose symmetry variation has a non-vanishing

vacuum expectation value, 〈0|[Q , φ(x) ]|0〉 6= 0, which is incompatible with Q|0〉 = 0. We

would like to preserve Poincaré symmetry, which is guaranteed if for all fields

〈[ iPµ , φ ]〉 = ∂µ〈φ〉 = 0 ,

〈[ iMµν , φ ]〉 = −(xµ∂ν − xν∂µ)〈φ〉 − Σµν〈φ〉 = 0 , (9.10)

where Σµν denotes the spin representation matrix for the field φ. Thus, only constant vevs

of Lorentz scalar fields leave Poincaré symmetry unbroken. Inspection of the supersym-

metry variations of chiral and vector multiplets shows that it is the vevs of the auxiliary

scalars F i and Da that may break supersymmetry spontaneously, as only those can lead

to a non-vanishing vev of a fermion variation:

〈F i〉 = F i
0 6= 0 ⇒ 〈δξψi〉 = −2ξF i

0 6= 0 ,

〈Da〉 = Da
0 6= 0 ⇒ 〈δξλa〉 = −ξDa

0 6= 0 . (9.11)

11Strictly speaking, this trace is usually ill-defined and needs to be regularized. One may for instance

include in the trace the operator e−βH , where β is a positive real number, and consider the limit β → 0.
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From (8.40), which expresses the potential in terms of a sum of squares of the auxiliary

scalars, we infer that supersymmetry is spontaneously broken if and only if Vmin > 0. The

potential is minimized for constant field values ϕi0 satisfying the equations

∂V
∂ϕi

∣

∣

∣

ϕ0

= −Wij(ϕ0)F
j
0 − (ϕ†

0Ta)iD
a
0 = 0 . (9.12)

Note that in general non-zero ϕi0 break gauge symmetry. Vanishing ϕi0 will leave gauge

symmetry unbroken but break supersymmetry if V (ϕ0) > 0.

Let us expand the action about the vevs ϕi0 and consider the fermion bilinears:

L = −1
4
ψiψjWij(ϕ0) − ϕ†

0Taψλ
a + . . .

= −1
2

(

λa , ψi/
√

2
)

(

0
√

2 (ϕ†
0Ta)j√

2 (ϕ†
0Tb)i Wij(ϕ0)

)

(

λb

ψj/
√

2

)

+ . . .

≡ −1
2
χtMF χ+ . . . . (9.13)

The squared masses of the combined spinors χ are given by the eigenvalues of the her-

mitean matrix M †
FMF . The conditions (8.35) and (9.12) now imply that this mass matrix

has an eigenvector with eigenvalue zero:

MF

(

Db
0 /

√
2

F j
0

)

= 0 . (9.14)

Thus, if this vector doesn’t vanish, which is just the condition for supersymmetry to be

spontaneously broken, there exists a massless fermionic particle — the Goldstino:

χG ∼ (F i
0 ψ

i +Da
0 λ

a) . (9.15)

We have seen that the necessary and sufficient condition for supersymmetry to be broken

is that the equations

F i
0 = −W̄i(ϕ0) = 0 , g−1Da

0 = −κa − gϕ†
0Taϕ0 = 0 (9.16)

admit no solution. In fact it can be shown that, as long as all Fayet–Iliopoulos constants

κa vanish, if there is a solution to the F -equations, then there exits another solution that

also solves the D-equations. It therefore suffices to study only the former.

We can always choose our field basis such that only F 1 has a non-vanishing vev:

〈F 1〉 = −M2 , 〈F I〉 = 0 , I = 2, . . . , n . (9.17)

It can then be shown that the most general renormalizable superpotential that leads to

spontaneous supersymmetry breakdown is given by

W (φ) = M2φ1 + 1
2
mIJφ

IφJ + 1
2
nIJφ

1φIφJ + 1
3
gIJKφ

IφJφK , (9.18)
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where the matrix (m−1)IJnJK must be nilpotent. This condition requires that the number

of chiral multiplets n ≥ 3. For vanishing Da the scalar potential then reads

V (ϕ, ϕ̄) = |M2 + 1
2
nIJϕ

IϕJ |2 +

n
∑

I=2

|mIJϕ
J + nIJϕ

1ϕJ + gIJKϕ
JϕK |2 . (9.19)

The minimum Vmin = M4 > 0 is attained for ϕI = 0. We observe that the vev of ϕ1

is arbitrary — the classical potential has a flat direction. In general the vevs of scalars

whose F -partners break supersymmetry cannot be fixed by the tree-level potential.

The simplest example is obtained for three chiral multiplets with

mIJ = µ

(

0 1

1 0

)

, nIJ = λ

(

0 0

0 1

)

, gIJK = 0 , (9.20)

which gives the superpotential of the O’Raifeartaigh model:

W (φ) = M2φ1 + µφ2φ3 + 1
2
λφ1(φ3)2 . (9.21)

Exercise: For real parameters M , µ, λ with µ2 > M2λ, determine the tree-level masses

of the six real bosonic scalars contained in φi = (Ai + iBi)/
√

2 and of their superpartners

(you can choose ϕ1
0 = 0 for simplicity).

10 Perturbative non-renormalization theorems

In the introduction we had observed the remarkable absence of one-loop corrections to

the masses in the Wess–Zumino model. Here we want to outline, without going into

all the details, a proof12 that there is in fact no renormalization of the parameters in

the superpotential of N = 1 super Yang–Mills theory to any order in perturbation the-

ory. Moreover, gauge coupling constants receive no perturbative corrections beyond one

loop. The arguments used in the proof do not exclude wave function renormalization or

non-perturbative quantum corrections due to instantons, however, and these do occur in

general.

A central ingredient in the non-renormalization theorems is the chiral U(1) R-symmetry

of the N = 1 supersymmetry algebra, which acts on the supercharges as

Qα → e−iαQα , Q̄α̇ → eiαQ̄α̇ . (10.1)

The representation (5.9) then implies that the Grassmann variables transform as θ → eiαθ,

θ̄ → e−iα θ̄. We say a superfield carries R-charge q if its transform is given by

φ′(z) = eiqαφ(x, e−iαθ, eiα θ̄) . (10.2)

12We follow Weinberg in [9], where more details can be found.
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We will be concerned with the R-invariance of the chiral superspace integrals in (a modi-

fication of) the action (8.36). Recalling that Grassmann integration is the same as differ-

entiation, we find that they are invariant if the superpotential W(φ) and the Yang–Mills

super field strength W a
α carry R-charges 2 and 1, respectively.

Let us now investigate the Wilsonian action S(µ), the local effective action describing the

physics below an energy scale µ that is obtained by integrating out fluctuations of the fields

with momenta above µ. The perturbative corrections to S(µ) are severly constrained by

the following properties/conditions: First of all, as long as supersymmetry is preserved,

the effective action can again be written as the sum of two integrals over the chiral and

the full superspace, respectively. The integrand of the former must be holomorphic in the

chiral superfields φi and W a
α . Moreover, there are selection rules due to global bosonic

symmetries like the R-symmetry above that are preserved in perturbation theory. These

two properties will exclude most quantum corrections in the chiral sector of the effective

action. Last but not least, one can assume that the theory behaves smoothly when going

to weak coupling limits, which enables one to reduce certain calculations to tree-level,

where they can be easily carried out.

Instead of the action (8.36) (without FI terms for simplicity) we consider a more general

microscopic action that depends on two additional gauge-invariant chiral scalar superfields

Y (z) and T (z):

L̂ =

∫

d4θ φ†e2V aTaφ+ 2 Re

∫

d2θ
[

Y W(φ) +
T

16πi
W αaW a

α

]

. (10.3)

This gives a new holomorphic superpotential Ŵ(Y, φ) = Y W(φ) and a field-dependent

gauge coupling. The original action is recovered if we replace the new fields by the

constants Y = 1 and T = τ , which are trivially chiral. Apart from super-Poincaré

symmetry, L̂ has two global continuous symmetries that are preserved in perturbation

theory: An R-symmetry with charge assignments

R(φi) = R(V a) = R(T ) = 0 , R(Y ) = 2 (10.4)

(eq. (8.20) implies that R(W a
α ) = 1), and the Peccei–Quinn shift symmetry

T → T + ǫ , ǫ ∈ R , (10.5)

which only changes the prefactor of the total derivative term (8.31). That the non-

renormalization theorems hold only at the perturbative level is due to the fact that these

two symmetries are broken by instantons: The chiral R-symmetry is anomalous, with the

violation of R-charge conservation being proportional to the instanton number n defined

in (8.31). Likewise, for n 6= 0 a shift of T produces a non-trivial phase factor e2πinǫ in the

path integral.

For the effective action of the theory with extended field content the most general super-

symmetric Ansatz is of the form

L̂(µ) =

∫

d4θK(φ, φ̄, V, Y, Ȳ , T, T̄ ) + 2 Re

∫

d2θ f(φ,W, Y, T ) .
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The functions K and f , which depend on the scale µ, are constrained by the above

symmetries. In particular, since f is holomorphic in the chiral superfields, it cannot

depend on any fields carrying negative R-charge. The perturbative R-symmetry and

SL(2,C) invariance then imply that

f = Y h(φ, T ) +
1

16πi
W αaW b

α kab(φ, T ) .

Furthermore, the shift symmetry (10.5) forbids any T dependence except for a linear

term in the function kab, while holomorphy excludes a φ dependence of the latter since

for Y = 0 each φ must be accompanied by a φ̄. Gauge invariance requires that kab be

proportional to δab, so we arrive at

f = Y h(φ) +
1

16πi
W αaW a

α (kT + 4πiC) .

We can now employ the aforementioned weak coupling limit by first sending Y to zero. The

usual counting of vertices, internal lines and loops in Feynman graphs then leads to the

number of powers of the inverse gauge coupling t = T |θ=θ̄=0 being given by Nt = 1−Nloops.

Hence, the constants k and C correspond to tree-level and one-loop contributions to the

effective action respectively; in particular k = 1. Letting in addition t approach infinity,

only the tree-level superpotential contributes to the term in f proportional to Y , thus

h(φ) = W(φ).

Returning to the original field content by setting Y = 1 and T = τ , we arrive at the

effective action

L(µ) =

∫

d4θ K(φ, φ̄, V ;µ) + 2 Re

∫

d2θW(φ) +
1
8π

Im

∫

d2θ τ(µ)W αaW a
α . (10.6)

The superpotential is given by the tree-level expression, while the gauge coupling constant

g−2(µ) = g−2 + C(µ) has received only a one-loop correction. Its cut-off dependence is

given by
1

g2(µ)
= − b

8π2
log
(

Λ/µ
)

, (10.7)

with intrinsic energy scale Λ that arises through dimensional transmutation. Here, b is

the renormalization scheme-independent coefficient in the one-loop beta function:

µ
dg

dµ
= − b

16π2
g3 . (10.8)

One important conclusion that we can derive from this result is that if there exists a

solution to the equations Wi(ϕ) = 0 (and all Fayet–Iliopoulos constants κa vanish), then

supersymmetry is not broken in any finite order of perturbation theory.

Note that the non-renormalization theorems make no statement about the D-term of the

effective action. In general it is corrected at any order in perturbation theory. Moreover,

both the D- and F -terms receive non-perturbative corrections through instantons. In

particular, the complex gauge coupling has the general form

τ(µ) =
b

2πi
log
(

Λ̃/µ
)

+
∑

n≥1

cn
(

Λ̃/µ
)

nb with Λ̃ = Λ eiϑ/b . (10.9)
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A Sigma matrices

Minkowski metric: η = diag(−1, 1, 1, 1).

(εαβ) = −(εαβ) = (εα̇β̇) = −(εα̇β̇) =

(

0 1

−1 0

)

(A.1)

εαβεβγ = δαγ , εα̇β̇εβ̇γ̇ = δα̇γ̇ , εα̇β̇ = (εαβ)∗ (A.2)

σµ = (−1, τ i) , σ̄µ = (−1,−τ i) , σ̄µα̇α = εα̇β̇εαβσµ
ββ̇

(A.3)

(σµ
αβ̇

)∗ = σµβα̇ , (σ̄µα̇β)∗ = σ̄µβ̇α (A.4)

σµν = 1
2
σ[µσ̄ν] , σ̄µν = 1

2
σ̄[µσν] , (σµνα

β)∗ = −σ̄µνβ̇ α̇ (A.5)

σ0i = −σ̄0i = 1
2
τ i , σij = σ̄ij = − i

2
εijkτk , trσµν = tr σ̄µν = 0 (A.6)

σµναβ = εβγ σ
µν
α
γ = σµνβα , σ̄µνα̇β̇ = εα̇γ̇ σ̄

µνγ̇
β̇ = σ̄µνβ̇α̇ . (A.7)

Identities containing two σ-matrices (ε0123 = 1):

σµαα̇σµββ̇ = −2 εαβ εα̇β̇ , σµαα̇ σ̄
β̇β
µ = −2 δβα δ

β̇
α̇ (A.8)

(σµσ̄ν)α
β = −ηµν δβα + 2σµνα

β , (σ̄µσν)α̇β̇ = −ηµν δα̇
β̇

+ 2σ̄µνα̇β̇ (A.9)

σ
[µ
αα̇σ

ν]

ββ̇
= εαβ σ̄

µν
α̇β̇ − εα̇β̇ σ

µν
αβ (A.10)

1
2
εµν̺σσσ̺ = −iσµν , 1

2
εµν̺σσ̺̄σ = iσ̄µν (A.11)

1
2
εµν̺σσ̺αα̇σσββ̇ = i(εαβ σ̄

µν
α̇β̇ + εα̇β̇ σ

µν
αβ) . (A.12)

Identities containing three σ-matrices:

σµνσ̺ = η̺[µσν] + i
2
εµν̺σσσ , σ̺̄σµν = −η̺[µ σ̄ν] − i

2
εµν̺σσ̄σ (A.13)

σ̄µν σ̺̄ = η̺[µ σ̄ν] − i
2
εµν̺σσ̄σ , σ̺σ̄µν = −η̺[µσν] + i

2
εµν̺σσσ (A.14)

σµναβ σνγα̇ = εγ(β σ
µ
α)α̇ , σ̄µνα̇β̇ σναγ̇ = σµα(α̇ εβ̇)γ̇ . (A.15)

Identities containing four σ-matrices:

σµνσ̺σ = −1
2
(ηµσσν̺ − ηµ̺σνσ + ην̺σµσ − ηνσσµ̺)

+ 1
4
(ηµσην̺ − ηµ̺ηνσ − iεµν̺σ)1 (A.16)

σ̄µν σ̺̄σ = −1
2
(ηµσ σ̄ν̺ − ηµ̺ σ̄νσ + ην̺ σ̄µσ − ηνσ σ̄µ̺)

+ 1
4
(ηµσην̺ − ηµ̺ηνσ + iεµν̺σ)1 (A.17)

σµνα
β σµνγ

δ = δβα δ
δ
γ − 2δδα δ

β
γ , σµνα

β σ̄µν
γ̇
δ̇ = 0 (A.18)

σµ̺α
β σ̺

ν
γ
δ = −1

2
(δβγ σ

µν
α
δ − δδασ

µν
γ
β) + 1

4
ηµν (εαγ ε

βδ + δδα δ
β
γ ) . (A.19)
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A word on the literature: We chose not to cite original papers as all the material

presented in these notes is covered in textbooks by now, many of which include extensive

lists of references. Below we only list a collection of published review articles and books,

many more lecture notes on supersymmetry can be found at [13].
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