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1 Spacetime Quantization

Spacetime quantization requires to promote space-
time coordinates (a:l) € ¢ to hermitean operators
2%, which do not commute:
[&,27] =i6Y (1)
where 0% is a real-valued and antisymmetric ma-
trix, of dimensions (length)?. In the case 6% is con-
stant, the commutators essentially define a Heisen-
berg algebra and imply spacetime uncertainty:
ind < Ligi
Az Azt > §|9 7] (2)
Then, a spacetime point is replaced by some ”cell”,
and thus, the spacetime becomes ”fuzzy” at very
short distances (the ”fuzzyness” of size can be
"measured” by the noncommutativity length scale
| = v/6). This is completely analogous to what
happens in quantum mechanics: if 8% « A, in the
quantum phase space points no longer exist and as
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[ii, il } = ih&;-, they are replaced by ”Planck cells”
of size h.

This spacetime quantization poses a real prob-
lem about the geometry of the spacetime. The first
person who analysed it was Jon von Neumann, who
began studying the geometry of quantum mechan-
ics -in his own words, ”a pointless geometry”: a
new branch of mathematics, noncommutative ge-
ometry, was born.

But what is it exactly? Let us motivate the
problem in a mathematical way: consider the
Gel’fand-Naimark duality theorem, a mathemati-
cal theorem which establishes a one-to-one corre-
spondence between topological (Hausdorff) spaces
X and commutative C*-algebras A=C(X), where A
is the algebra of continuous complex-valued func-
tions f : X — C with the pointwise multiplica-
tion (f.g)(z) = f(x).g(z). Generalizing this result
to non-commutative C*-algebras, we obtain a re-
lation between noncommutative algebras and non-
commutative spaces. All geometry we know (dif-
ferential, Riemannian, etc.) is done in a purely op-
erator algebraic framework (originally by Connes,
Woronowicz, Drinfel’d, etc., in the 1980’s) which
enables one to define field theories (in particular
Yang-Mills gauge theories) on large classes of non-
commutative spaces.

Note that in general, the tensor % can depend
on spacetime coordinates x, and even on momenta
p (defining algebras of pseudo-differential opera-
tors).

Why should we do such a radical thing? Let
us now to motivate the problem physically: much
of theoretical physics is based on length scales, and
we know that physical phenomena happen in a huge
range of distances, coming from down at the funda-



5S ~1.6.107%% cm all
the way up to the radius of the observable universe,
lyn ~ 4.4.10" cm ~ 1061lp. We know that quan-
tum field theory (QFT) works well at least down to
the LHC scale I;gc ~ 2.107'8 cm. What happens
for I, < | < lpuc? Experimentally, it won’t be
known for quite some time, so we may speculate on
the types of interactions that may be pertinent at
these length scales. More precisely, there are two
inmmediate motivations:

mental Planck scale I, =

1. The problem of renormalization in QFT: the
notion of spacetime noncommutativity (quan-
tization) is in fact very old and due to Heisen-
berg (1930’s), who suggested it as a means to
tame ultraviolet (UV, short distances) diver-
gences of QFT-just like the Heisenberg uncer-
tainty principle avoids the ultraviolet catastro-
phe of quantum mechanics, replacing points
with spacetime cells could be an elegant alter-
native to lattice or cutoff regulatizations (this
is subtle, as we shall see later on), hence UV di-
vergences can be tamed by spacetime noncom-
mutativity. This idea passed successively from
Heisenberg to Peierls, Pauli, Oppenheimer and
finally Snyder, who first wrote about it in 1947
(Physical Review). !

2. Quantum gravity: classical general relativity
breaks down at Planck scale [,,, where quantum
gravitational effects become important, and
the classical Riemannian geometry of space-
time must be replaced by some other math-
ematical framework. Einstein’s theory im-
plies that gravity is equivalent to spacetime
geometry, hence quantum gravity should quan-
tize spacetime. In fact, some very simple
semi-classical arguments, combining only fun-
damental postulates of general relativity with
quantum mechanics, suggest that spacetime
quantization (and noncommutative geometry)
is expected to be a generic feature of any the-
ory of quantum gravity: if we probe physics
at Planck scale (I = [,), we notice that the
Compton wavelength is less than or equal to
the Planck length, which creates a large mass

m > % in a tiny volume 113,. Then the en-
P

ISnyder algebra (phase space commutation relations) are
far more complex than what we will study here. In particu-
lar, they are Lorentz invariant.

ergy density is large enough to form a black
hole with a huge event horizon, which hides
the information sent out by the probe. This
problem is resolved by postulating spacetime
uncertainty relations of the form (2).

Besides these speculative reasonings, there is a a
deeper interest in spacetime quantization-it governs
the effective dynamics of certain systems in strong
background fields. The prototypical example in
fact arises in a rudimentary quantum mechanical
example, the Landau problem: it deals with a sys-
tem of N non-relativistic, interacting electrons mov-
ing in two-dimensions. The system is subjected to
a constant, external perpendicularly applied mag-
netic field B = B2. The Lagrangian governing the
motion of the system is:

m o e o

L= 50 + C’U.A (3)

where B = Vx A and A (z,y) = L (—y, ). Canon-

ical quantization of this system gives us the fol-

lowing commutation relations for the position and
canonical momenta:

(4)

and so on. The Hamiltonian of the system is
given by: H = %, where @ = mv = p — %/f
is the gauge-invariant kinematical momenta (non-
canonical) and p is the canonical momenta (non-
physical). It shows some non-vanishing quan-
tum commutators, [m,,m,] = ii<2 which tells us
that the physical (gauge invariant) kinematical mo-
menta of electrons in the background magnetic field
live in a noncommutative space. If we rewrite the
quantum momenta 7 in terms of the harmonic os-
cillator creation and destruction operators, the en-
ergy eigenvalues of normal-ordered Hamiltonian are
those of Landau levels E, = hw, (n + %), where
n = 0,1,2... and w, = ;—Ji is the cyclotron fre-
quency. The mass gap between Landau levels is
A ~ hw,., which tends to infinity if B increases too
(when all excited levels decouple from ground state
n =0).

When this last situation happens, all the levels
collapse onto the lowest Landau level (i.e. all the
electrons have quantum numbers n = 0). Let us do
a more accurate analysis to see how a noncommu-

tative space arises: for B > m (B — 00), L tends

[2,pz] = [y, py] =i [2,y] = [pz,py] =0



toL — Ly = —% (zy — yx), a Lagrangian which is
of first order in time derivatives: it turns the coor-
dinate space into a phase space, where (%x, y) is
a canonical pair which sets [z, y] = if, § = <. We
can conclude that noncommuting coordinates arise
in electronic systems constrained to lie in the lowest
Landau level. The present context is, in fact, the
one in which the Peierls substitution was originally
carried out in 1933. If one introduces an impurity,
described by a potential energy function V (z,y),
into the electronic system, one can compute the
first order energy shift in perturbation theory, due
to the impurity, of the lowest Landau level by tak-
ing x and y as noncommuting coordinates.

The Landau problem has some analogue in string
theory with D-branes in background ”magnetic
fields”. Consider a pair of D-branes with open
string excitations which may start and end on
the same brane, or stretch between the two of
them. The low energy limit gives the descrip-
tion of D-brane dynamics as supersymmetric Yang-
Mills theory. The target space geometry is given
by closed string supergravity fields — metric g;;,
Neveu-Schwarz (NS) 2-form B;; (nondegenerate),
... The worldsheet field theory for open strings at-
tached to D-branes is a o-model for fields 3* on the
worldsheet 3. The action is:
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(5)

where B;; is the magnetic field on D-branes, 0, =
% and [ is the intrinsic string length scale. When
B;; =constant, we can integrate the second term
from (5) by parts to get boundary action:

Smm==3 f By 0P W ©)

where g = %Lt

Point particles here are really endpoints of
strings, but there is a consistent low-energy limit
which decouples all massive string modes and
scales away bulk part of string worldsheet dynam-
ics (closed string sector) from boundary: g;; ~ I3 ~
€ — 0, when B;; is fixed. Then, the worldsheet
field theory is described solely by Ssx above, and
canonical quantization of open string endpoint co-
ordinates gives: [y,y7] = 0¥, § = B~ on 9%,

just like in Landau problem. D-brane worldvol-
ume becomes a noncommutative space, and since
point particle limit I, — 0 is taken here, we get
a low-energy effective field theory (in particular, a
Yang-Mills gauge theory) on this noncommutative
space. This is known as a noncommutative field
theory, and the purpose of these lectures is to intro-
duce the basic ideas, techniques and usual results
of these special field theories.

Note: as for the Landau problem, these noncom-
mutative field theories emerge here as a effective
description of the string dynamics-nevertheless, the
noncommutative setting is very natural and both
conceptually and computationally useful, and it is
from this formulation that the true Planck scale
physics of string theory (a most promising candi-
date of a unified field theory, including quantum
gravity) may be captured by quantum field the-
ory. As we will see, field theories on noncommuta-
tive spaces seem to retain some of the nonlocality
of string theory. They also emerge in many other
scenarios related to quantum gravity, such as dou-
bly special relativity and spin foam models of 2+1-
dimensional quantum gravity.

2 Noncommutative Spaces

and Star-Products

We will start by introducing in detail the noncom-
mutative spaces that we shall deal with, and thor-
oughly develop the necessary tools for dealing with
field theories defined thereon.

2.1 Moyal spaces

A Groenewold-Moyal space (or simply Moyal space)
is a deformation of spacetime where coordinates
T = (wz) € R? are promoted to hermitian oper-
ators ' which obey Heisenberg commutation re-
lations. Define the algebra R¢ as the associative
algebra generated by &' [ii,ij] = 6%, where
0 = (9”) is a positive constant, invertible, anti-
symmetric d x d matrix (thus d = 2n, since 6 is of
maximal rank). We always should think of these
coordinates as operators acting on some separable,
necessarily infinite-dimensional Hilbert space (like
we do in quantum mechanics).

Translations in &% are generated by outer deriva-



tions d;, following;:

(0iy2:] = o] (7)
(like conjugate momenta). We do not require ;
to be commuting operators - we will need a more
general case where:

5.5 -

where B = (B;;) is a constant, antisymmetric ma-
trix of maximal rank. If we regard B as a "back-
ground” magnetic field (but which we allow to be
freely varying) then this defines the algebra of mag-
netic translation operators (like 7 in the Landau
problem).

What is the meaning of B;;? Let us define d; =
0; + i(0 1) a0
become:

[é;,fcj}zo [al,éj}_ —i(Bij + (071).) (9)

)

Bz] (8)

The commutation relations now

and here we can consider three special cases:

o 0 = we get a commutative theory. We
cannot define 9, like above but we can de-
fine (9; = 31 — %Bij{fj, and then, [éz,.fj] = (SZJ,
[6;, (%] = 0, being éj proportional to canonical
momenta. This is the familiar case of charged
particles in background magnetic field B (as
the Landau problem before) with &; the or-
dinary derivative and 8 the gauge-covariant
derivative.

e B = 0: we get an ordinary noncommutative
theory with commutative derivatives.

e B = —0~!: this is the "self- dual point” in
parameter space. In this case, 8 commutes
with both coordinates &7 and with themselves
Thus it is a constant, that we can take null.
Then, #' = i#%9;. The "phase space” algebra
generated by 2, 3j becomes degenerate. If we
consider a quantum system based on this al-
gebra (phase space), then the wave functions
are not functions of all z’s, but only of half of
them. This choice arises in the Landau prob-
lem of charged particles constrained to the low-
est Landau level, where the wave functions de-
pend on only half of the position coordinates.

It will be used later on in the reformulation of
noncommutative field theories as matrix mod-
els.

Now, let us set up a map: there exists a one-
to-one correspondence between a noncommutative
algebra of operators and the algebra of fields f (z)
on R?. We restrict ourselves to fields on R¢ in
an appropiate Schwartz space of functions of suf-
ficiently rapid decrease at the infinity. Then, any
function (or field) f (z) may be described by its
Fourier transform:?

F = [ ata @) etes (10)
Given such a function f (z) and its corresponding
Fourier transforms, we introduce its Weyl symbol

b d4k
W[f]—/()df()ka

where we have chosen the symmetric ordering pre-
scription. If f(z) is real-valued, the Weyl symbol
is hermitean, and it is also possible to write (11) as

(11)

Wi = [alaf@A@ (2
where p
o d%k .. /-
Az :/—elk'(””—:”) 13
@)= [ G (13)
is the "quantizer”. Note that in the commuta-

tive case 6 = 0, (13) reduces to a delta-function:
6P (2 — x). It is straightforward to show that:

[0, A0)| = ~8iA @) (14)
with 0; = (%“ which leads to
0. W) =W io.f] (15)
It also follows that translation generators can be
represented by unitary operators e %, v € R?
with o _
e’ %A () eV Vo =A(z+v) (16)

(16) implies that any cyclic trace Tr defined on
the algebra of Weyl operators has the feature that

2Notation k= (k
k0K =

)€ (RN 2R, ko = Z‘ii:l kizt,

4 kiIE].



Tr (A (x)) is independent of z € R Let us set
the normalization
Tr (A (:v)) =1 (17)
Hence,
W)= [def@ )

It can be easily derived that

A@)A(y) =

1 d_ A —2i(z—2).0" . (y—=2)
7ﬂ'd|d€t9|/d zA(z)e (19)

with the help of the Baker-Campbell-Hausdorff for-
mula,

) ;.
ik 2" ik, 2"

e et = e_%eijkik; ei(kJrk,)iii (20)
This product of ”quantizers” shows us that
T(A@AW)=d@-y @

i.e. that the ”quantizers” form an orthonormal
set. (21) and (11) imply that the transformation
f(x) — WIf] is invertible with inverse given by
the so-called Wigner distribution function:

S @)y =w ]
=T (W[f]A ()

- / ((21;];

The product of two Weyl operators defines
the (Groenewold-Moyal) star product of functions
(fields):

(22)

7zk.x

W IfIW [g] = W [f * g] (23)

with

(f ) (z) = Tr (W [f]W[g]A<x>)

d4yd?
d|dew|// yd*zf (v
d?k a9k

7117 1Cl)Z
g(2)e 2i(x—y)0~  (r—=z)

= f(x)exp (%36‘5) g (x)
= [(z)g(x)
+Z:1 (%)n %eﬂnﬂ Oy 05, f () 0j, ...05,9 (x)

(24)
Notice that for # = 0, we reobtain the ordinary
product of fields. The star product is associative,
but noncommutative:

il — ka2t =Y

(25)

A useful extension of the star product formula is:

fl (,Tl)* -'*fN (LL'N):
[Texp (2 321 9”%) fr(@1)..fn (zn)  (26)
a<b T

Note that by cyclicity of the operator trace, the
integral

T (W [f2] W [fx]) :/dd:cfl*...*fN (27)

is invariant under cyclic (but not arbitrary) permu-
tations of the functions f,. In particular,

/ dlaf (z) % g () = / daf (2)g(x)  (28)

which follows upon integration by parts over ¢ for
Schwartz functions.

Thus, we can see that spacetime noncommutativ-
ity is encoded in the ordinary product of noncom-
muting Weyl operators, or equivalently through
deformation of product on commutative algebra
of functions on R to the noncommutative star-
product.



2.2 Noncommutative torus

Consider now a ”compactification” of R¢ to a d-
dimensional torus 7% = %Td with T' ~ Z4 a lattice or
rank d acting by (integer) translations in %¢. The
"tilting” of T is specified in terms of its period
matrix, (¥ : Z¢ — T') € GL(d,R), with {v;} the
canonical basis of Z%. The fields on this lattice are
periodic, ie. f (2! 4+ X%,) = f(2%), i = 1,...,d.
Smooth functions on the torus must be single val-
ued, which implies that the corresponding Fourier
momenta k are quantized as k = 27 (271) m,
where m = (mq,...,mq) € Z% The quantizer is
given in this case as:

A 1 —2rimEI "tz
A =T5ts mgd ¢
a N (29)
[T (2)" [Temme
i=1 i<j

where Z' are the unitary operators of the Weyl ba-
818,

Za _ e2m‘(2*1)m@i (30)
which generate the algebra of functions
72170 = e=2mi0Y Zi gi (31)
where .
@=2r(x7") 057! (32)

is the corresponding dimensionless noncommuta-
tivity parameter matrix. The derivations J; obey,
I NN

{61', ZJ] = 2m (E )ji Zj (33)

This basis has the required properties: first, the
periodicity of the quantizer operator,
A (2" + X%0,) = A(z?) (34)

and second,
[0, A)] = -5A (@) (35)

Notice that the torus has SL(d,Z) modular in-
variance, and thus, if H € SL(d,R), the following
transformations are immediate:

YN H !

d
N ~ N\ Hij
Zl' — | | (ZJ) !
j=1

© > HO.HT

(36)

3 Noncommutative Perturba-
tion Theory and Renormal-
ization

We will take now a look at the perturbative ex-
pansion of noncommutative quantum field theory,
including a discussion of renormalization. We will
throughout these lectures work only in Euclidean
spacetime signature, ignoring the complications
arising in the Minkowski case. Some other fun-
damental problems, e.g. the loss of Lorentz invari-
ance, will also not be dealt with here.

3.1 Noncommutative Perturbation

Theory

Consider a massive Euclidean ¢* scalar field theory,
in a space of d = 2n dimensions. To transform stan-
dard commutative (or ordinary) scalar field theory
into a noncommutative field theory, we may use
our quantization prescription in terms of the Weyl
symbols. The action is:

R 2 2 2

S[o] =Tr <% 0. Wl + Wl + LW w)

(37)
where ¢ is a real scalar field on R®¢. The path
integral measure is taken as D¢ = [[,cpa do(x)
(it’s the ordinary Feynman measure dictated by e.g.
string theory applications- other choices possible!).
We may rewrite this action in coordinate space as

52 2

2 (38)

+ 50 6 () 6 () % 6 ()

We have used the property of the invariance under
cyclic permutations, which implies that noncom-
mutative field theory and ordinary field theory are
identical at the level of free fields. The bare propa-
gators are unchanged in the noncommutative case.
We notice the changes in the interaction terms,
which in our case can be written as:

T (W [0]') = I / gif)ilé (ka)

(2m)* 57 (Z ka> V (K, ... ka)

' (39)




where the interaction vertex in the momentum
space is

Vv (kl, ceey ]€4) = H e*%ka.é’.kb
a<b

(40)

The phase factor is non-local, but local to each
fixed order in 6. The non-locality in terms of non-
polynomial derivative interactions is responsible for
many novel effects (including ”stringy” ones). At
tree-level, this reduces to standard ¢* field theory
in d-dimensions at # = 0. The noncommutative en-
ergy scale is ||0]| =%, where ||0]| := maxi<; j<a |0%].

3.2 Planar Feynman-Filk diagrams

Due to momentum conservation, the interaction
vertex is only invariant up to cyclic permutations
of the momenta k., and because of this, one needs
to carefully keep track of the cyclic order in which
lines emanate from vertices in a given Feynman
diagram. But there is an analogous situation in
which we have some experience-large N expansion
(’t Hooft) of U(N) gauge theory. Indeed, noncom-
mutative field theories can be formally regarded as
matrix models, in the sense that the fields are oper-
ators on a separable Hilbert space. Later on we will
derive this fact in a less formal way. We thus ” fat-
ten” lines in graphs and consider ribbon graphs that
can be drawn on a Riemann surface of particular
genus ("stringy” )- these are called noncommutative
Feynman diagrams or Filk diagrams.

Let us consider first the structure of planar
graphs - graphs which can be drawn on the sur-
face of the plane or the sphere (for generic scalar
field theory). For an L-loop (planar) graph G, let
ki, ..., ks be the cyclically ordered momenta enter-
ing a vertex V through s propagators. By intro-
ducing an oriented ribbon structure to the prop-
agators of the diagram, we label the index lines
of the ribbons by the "momenta” [y, ...,ls41 such
that ko = lm, — lm, ., where m, € {1,...,s + 1}
with l,,,,, = lm,. Because adjacent edges in rib-
bon propagators have oppositely flowing momenta,
this construction automatically enforces momen-
tum conservation at each of the vertices. Given
these decompositions, a noncommutative vertex V
will decompose as

V — H e*%lma.e.lma+1 (41)
a=1

i.e. it will decompose into a product of phases, one
for each incoming propagator. However, the mo-
menta associated to a given line will flow in the
opposite direction at the other end of the propa-
gator, so that the phase associated to any internal
propagator is equal in magnitude and opposite in
sign at its two ends. As an example, consider the
2-loop planar diagram:
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(b)

The decomposed vertices are:

(I3.0.15 + 11.0.15 + 13.9.11))

Vi =exp (—%

Va = exp (—% (.01 +15.0.15 — 12.9.13)) =Vt
(42)

Thus, the total phase factor associated with any
planar Feynman diagram is:

7
Ve, (p1,.-Ds) = H exp <—§pa-9-pb) (43)
a<b

where p1,...,ps are the cyclically ordered external
momenta of the graph. The global phase factor is
completely independent of the details of the inter-
nal structure of the planar graph. We can see that
the contribution of a planar graph to the noncom-
mutative perturbation series is just the correspond-
ing # = 0 contribution multiplied by the global
phase factor.

At 6 = 0, divergent terms in the perturbation ex-
pansion are determined by products of local fields,
and the global phase modifies these terms to the



star-product of local fields. We conclude that pla-
nar divergences at 0 %= 0 may be absorbed into re-
definitions of the bare parameters if and only if the
corresponding commutative quantum field theory is
renormalizable. This dispells the naive expecta-
tion that the Feyman graphs of noncommutative
quantum field theory would have better ultravio-
let behaviour than the commutative ones. Note
that here the renormalization procedure is not ob-
tained by adding local counterterms, but rather the
counterterms are of an identical non-local form as
those of the bare Lagrangian. In any case, at the
level of planar graphs for scalar fields, noncommu-
tative quantum field theory has precisely the same
renormalization properties as its noncommutative
counterparts.

3.3 Non-Planar Feynman-Filk Dia-
grams

Non-planar graphs have propagators that cross

each other in internal lines. Let us motivate the

problem with an example of a 1-loop diagram in
noncommutative ¢*:

: k

i :k
Introduce positive and negative crossings in non-
planar graphs Gp:

+ ka ka

What is the global phase factor or this diagram? It
can be easily proved that the total noncommutative
phase factor for a general graph which generalizes
the planar result is given by:

—iI, .0.
’ps)He 24abPa-Y.Po

a<b

VGL (pla "'7ps) = VGL (pla cee

(44)
where I,;, is the signed intersection matrix of the
graphs which counts the number of times that the
a-th (internal or external) line crosses over the b-
th line. Therefore, the # dependence of non-planar

graphs is much more complicated and we expect
them to have a much different behaviour than their
commutative counterparts. In particular, because
of extra oscillatory phase factors which occur, we
expect these diagrams to have an improved ultralm—

violet behaviour, at an energy scale of ~ |02
when internal lines cross in an otherwise divergent
graph, the phase oscillations provide an effective
cutoff Agpp = ||0]|7=.

Now, let us illustrate these results with an ex-
plicit computation. Our example will be the 1-
loop mass renormalization in the noncommutative
¢* theory in four dimensions. For this, we will eval-
uate the one-particle irreducible two-point function

I (p) = (¢ (p) (—p))1pr = »_ g*"TI™ (p) (45)

n>0

to one loop order. The bare two-point function is
IO (p) = p*> + m?. At the one-loop order there
is (topologically) one planar and one non-planar
Feynman-Filk graph, II! (p) = H;lnl + H}wl. The
symmetry factor for the planar graph is twice that
of the non-planar graph, and they lead to the re-

spective Feynman integrals

(1) 1 d4k 1
i S . 46
o () 3/(2w)d k2 + m?2 (46)
1 [ Ak ek0p
™ (p) = = / ar 47
nt(P) = 2m)? k2 + m2 (47)

The planar contribution (46) is proportional to the
standard one-loop mass correction of commutative
¢* theory, which is quadratically ultraviolet diver-
gent in d = 4. The non-planar contribution is ex-
pected to be generically finite, because of the rapid
oscillations of the phase factor e?* %P at high ener-
gies. In the case of p = 0, not only we got the rela-
tion Hl(jl) = 21_[51117) (p = 0), but also the non-planar
graph inherits the usual ultraviolet singularities,
but now in the form of a long-distance divergence.
The effective cutoff for 1-loop graph in momentum
space is (—p.92.p)*%—the non-planar graph inherits
usual UV singularities, but now in form of long-
distance divergences (i.e. at small momenta). So
turning on noncommutativity 8% replaces standard
UV divergence with a singular IR behaviour-this is
the notorious UV/IR mixing problem of noncom-
mutative field theory: an exotic mixing of the ultra-
violet and infrared scales in noncommutative field
theory.



Now we will try to quantify this phenomenon
explicitly. To evaluate the Feynman-Filk inte-
grals (46) and (47), let us introduce the Schwinger
parametrization:

1 oo
= / dae= @k +m?) (48)
0

k2 +m?

Introducing this parametrization, and doing the
Gaussian momentum integration, we get:

1 da P 92 1
H(l) / —am?y29°p v
wt (P) =5 ™ J, ar *
ne1 4 (1—n)
m
- (e
6(2m)" (A2 p-up )
K, 1 <m B P 92.p>
(49)

where d = 2n, K,(x) is the irregular modified
Bessel function of order v and A is an ultravio-
let cutoff on the o = 0 singularity of the Schwinger
integral. The complete 1-loop renormalized propa-
gator is:
I (p) = p* +m?+ 2921_[51113[ (0) +92H( ) (p)+0 (g%)
(50)
Now K, () ~2"7'T' (v)a¥ 1 4. forx — 0, v # 0
(Ko(z) ~ —logz + ... for # — 0), so in d=4 the 45
expansion yields leading singular behaviour:

A2,
<Aeff m@’) +... (51)

2 _ \
where A7, = B —

cutoff. Notice that in the limit A — oo the non-
planar one-loop graph remains finite, being effec-
tively regulated by the noncommutativity of space-
time; i.e. Ag. 7 m. Nevertheless, we have
again the ultraviolet divergence when p = 0. In this
zero momentum or infrared limit, we recover the
standard mass renormalization of ¢* theory in four
dimensions. On the other hand, in the ultraviolet
limit A — oo, the corrected propagator assumes
a complicated, non-local form that cannot be at-
tributed to any (mass) renormalization. Thus, we
can conclude that the ultraviolet limit and the in-
frared limit do not commute, and noncommutative
quantum field theory exhibits an intriguing mix-
ing of the ultraviolet and infrared regimes. These

W
oyt (P) = 967r2

is the effective ultraviolet

—_ —

effects of the ultraviolet modes on the infrared be-
haviour have no analogs in conventional quantum
field theory.

3.4 The Trouble with UV/IR Mix-
ing

At energies E < ||0]|” 2, noncommutative quantum
field theory is nothing hke conventional (commu-
tative) quantum field theory. This is due to their
inherent non-locality-very low-energy processes can
receive contributions from high energy virtual par-
ticles (e.g. pole at p = 0 in propagator for a ¢ field
comes from high momentum region of integration
(A — 00)). In particular, if we impose a UV cut-
off A, this induces an effective IR cutoff Ag = ﬁ.
This immediately casts a shadow of doubt on the
renormalization of these models-standard renor-
malization schemes, such as the Wilsonian renor-
malization group (RG) approach, require a clear
separation of energy scales. In fact, although the
non-planar graphs are finite, their amplitude grows
beyond any bound when internal momenta become
exceptional, i.e. p.f = 0. When inserted as sub-
graphs into higher-loop graphs, these exceptional
momenta are obtained in the loop integration and
result in (horrible) divergences for any number of
external legs.

For example, we saw above that the non-planar
graph is well-defined. But when inserted into
higher order graphs these subgraphs suddenly be-
come ill-defined. In such graphs, the products of
Fourier transforms of the usual QFT distributions
(AL, O, etc.) are well-defined. However, this is not

true for:
0= [
- / (27:)9

Thus, @(p) = A(6.p) A(p) in momentum space,
so Fourier transform of u (z — y) contains both A
and A itself. In d dimensions, products A (z)" are
ill-defined for n > d — 2, due to the well-known sin-
gularity at « = 0- here it appears at p = 0 (IR). If
u appears > d — 2 times in a graph, we get an un-
controllable divergence. These divergences increase

ddk ddp e—tk-0.p oip. (z—vy)
(2m)* k2 +m? p? + m?

A(HP)A( ) et (emv)
(52)



with the order of the perturbation theory, and all
correlation functions are affected and diverge. The
field theory cannot be renormalized.

Thankfully, there is a modification of noncommu-
tative field theory which gives a way out. To help
motivate this modification, it is useful to take a
look at the physical origin of UV/IR mixing: recall
from the Baker-Campbell-Hausdorff formula that
= 67%
_ eiq.(m—@.k)

ezk.x % T *efzk.x k.G.qez(kJrq).m *efzk.x

(53)

By Fourier transformation, this gives for arbitrary
fields f (x) on R<:

eF Ty flx) % e T = f(z—0.k) (54)
Multiplication by a plane wave generates a non-
local spacetime translation of fields by z = x —60.k.
This exhibits the nonlocality of the theory- large
momenta lead to large nonlocality. Here a plane
wave eP% corresponds not to a particle (as in com-
mutative QFT) but rather to a ”dipole”: an ex-
tended, oriented, rigid rod whose length or electric
dipole moment Az’ grows with its center of mass
momentum p; as:

Az’ = 0"p, (55)
(Analogous to electron-hole bound states in a
strong magnetic field (e.g. in Landau problem)).
Dipoles interact by joining at their ends.

With usual QFT relation p = hk between wave
number and momentum, translation rule r = = —
0.z above follows.

Whence the IR dynamics are governed by quanta
which behave like non-local dipoles (for F <«
16]|72). On the other hand, the UV dynamics
(for E > ||0||~ 2 where effects of noncommutativity
are negligible) are governed by quanta created by
the elementary quantum fields ¢ themselves, with
pointlike momenta k;. Consequently, we can inter-
pret the UV/IR mixing as an asymmetry between
UV and IR quanta.

From here, we can have the following idea: there
is a UV/IR duality suggested which relates dynam-
ics in the 2 regimes- UV/IR mixing is then due to
the asymmetry between supports of fields on ex-
tended and pointlike degrees of freedom in the dif-
ferent regimes. We seek a ”covariant” version of
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QFT model which makes UV and IR regimes in-
distinguishable, and hence makes this UV/IR du-
ality into a true symmetry. Covariantization turns
UV degrees of freedom into extended objects by re-
placing their (pointlike) momenta with ”Landau”
momenta:

ki — K; = k; + Bij:vj (56)

)

where B;; is the “magnetic” background (con-
stant, nondegenerate, generically independent of
9% ), generating a ”noncommutative momentum
space”

(K, K] = 2iB;; (57)

(assuming canonical pairs [z, k;] i6%). This
then restores the desired symmetry. As we’ll see,
this will also restore the exponential decay of corre-
lation functions (for m # 0), which is spoilt by the
long-range position space correlations which decay
algebraically for small g due to UV/IR mixing.

3.5 Duality covariant noncommuta-
tive field theory

To make the above formulation more precise, con-
sider now charged scalar fields ¢ (z) € C on Eu-
clidean R¢:

Siél= [ s (61 (DF 4 m?) 6+ 901 x 6w 61 0)
(58)

where 1

%(—iaj + Bijz')

and d = 2n. A lengthy but straightforward compu-

tation shows that this action is invariant under a

duality transformation of order 2 (generating cyclic
ZQ):

¢ (z) = ¢ (x) = \/det (B)¢ (B.x)
0= 0=—-4B 19 1B"!
g=§=2"|det(BO)| g

Di = (59)

(60)

0 = 2B~ is a "self-dual point” (6 =0, § = g).
Essentially, there is a symmetry k; < B;jz7 be-

tween position and momentum spaces, ® hence no

distinction between what is meant by UV or IR.

3For # = 0, the interaction vertices in position and mo-
mentum spaces are very different:
o Position: 8¢ (z1 — 2 + 23 — x4) 6% (x1 — x4) 8¢ (x2 — 3)
(fully) local



This establishes the duality symmetry at the
classical level. The quantum field theory is defined
formally by the generating functional for connected
Green’s functions:

G (J) = —log (%) (61)

where

Z[J] = /beDaﬁT exp (—S[(b] —/ddaz (¢U+¢JT))

(62)
Path integral measure D¢D¢' is defined so that:

G (J)|g=0 = //dd:vddyﬂ () C(x,y) J (y)
(63)
where C' (z,y) = (z| m ly) is a free 2-point func-
tion. Using Parseval ildentity:

/ Azt (z) J (x) = / Akt (k) J (k) (64)

and formal invariance of measure under ¢ = ¢E, we
get the quantum duality:

G (J; B,g.0) =G (J: B,3,0) (65)
To substantiate this, we need to make sense of the
functional integral, by finding a duality invariant
regularization G = G which cures all possible di-
vergences.

For this, rather than expanding in the usual
plane wave basis of momentum space (not conve-
nient here because of the explicit x-dependence in
the propagator), we expand the fields in a conve-
nient "matrix basis” fi; € L? (3?2), k,l=0,1,..0f
Landau wavefunctions (here d = 2 for simplicity):

¢ (@) =D fra (x) b (66)
ol

with  Ej fr D? fr

2B (k+ %) fri;
D?|p=_Bfii = Eife. .

e Momentum: §¢ (k1 — k2 + k3 — ka) nonlocal

This is a novel property of interaction vertices in noncom-
mutative QFT.

2

‘D} + Dilp=-p = —0} + (B.x);

7, where —822 corre-
spond to high-momentum modes and (Bx)? to long distance

modes.
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Pick a smooth cutoff function F' (s) such that
F(s)=1for0<s<1and F(s) =0 for s > 0.
Then replace the free propagator:

C (k1) = = Cy (k1)

1
I 2
T )
Symbolically, any Feynman diagram is of the form:

S
H Ch (kj,1;) (interaction vertices)
kil ksyls =1
(68)
Here, this quantity is different from zero only for
Ew, + E;, = 2B(kj +1; +1) < 2A? (notice that
there are finitely many k;, [; for A finite).

All Feynman graphs are represented by finite
sums in this basis (hence so are all position space
Green’s functions by multiplying with Landau basis
wavefunctions fx, ., (z;), fr, 1, (y;) and summing
over kj, ZJ)

In particular, this reformulates the QFT as the
N = oo limit of an N x N complex matrix model
in an external field:

N
Zn[0] = / 11 dék.de] e

k=1

There is no analog of such mappings and natural
matrix regularizations in commutative QFT!

This matrix model representation is the key fea-
ture of the duality covariant model, and it is ob-
tained from a remarkable ”projector” property of
the Landau wavefunctions. For simplicity, set § =
2B~! > 0 (the self-dual point), d = 2, and consider
the explicit construction of the basis set fi; ().
Set:

- % (%m \/Ez) (69)
b= \/% <%5+ \/Ez> (70)

with z = 2zl +i22, 0 = a?ci —ia%z = 01 —10y. These

define 2 decoupled 1-D harmonic oscillators:

[a,aw = [b, bT] =1
[a,b] = [a,bT] =0



such that

D? =  (aa' + da'a) (73)

N~

1
D2 peop=t (0 10 (74)

Then the Landau wavefunctions are given by
frq () = (z|k,1) where

(a))" (o1)° 0,0)

VEL VI

al0,0) = b/0,0) = 0. These are 2-particle number
basis Fock space states.

These functions can be computed explicitly via
their generating function:

|k, 1) = (75)

tl

> k
s
Fy;(x) := g — T 76
7t( ) kl:om\/ﬂfkﬁl( ) ( )
such that fr; = g_:kaa_,:st,t- Standard oscillator

algebra from quantum mechanics gives us:

B =
Fs,t (JJ) — ;e—B|z|2+\/§(sz+tZ)e—st (77)

Basic formulas for star-products of Gaussian
wavepackets yields:

es't
F‘S *Fs/ /:—FS / 78
it it /10 it (78)
which by differentiation implies
1
Jeax firy = ——=—=0uk fr1r (79)
476

ie. fr,; can be identified with the Wigner distri-

butions of the rank-1 operators fi; = |k)(I| on the

1-particle Fock space H (generated by a, for exam-
212

ple). One also has foo (z) = ﬁe |

-5 (that solves
differential equations afo,0 = bfo0 = 0) and

/ A2 fiy * frr = OO (80)

with fk,l = fi.x. Moreover from the oscillator rep-
resentation above, one can show:

(a! — ix2)*k 9¢— 7 (@' +27) (z' + ix?)*

fri ()

TR

11 (20)
(81)
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One then can show that the matrix model action
above is given by:

Slo) =T (6'Bo+m2sTo + ¢* (¢70)°)  (82)
with ¢ = (¢x1), Bry = 07" (k+ 3) Or.

3.6 The Grosse-Wulkenhaar Model

Let us now go back to the real noncommutative
¢*-theory that we started with. In this theory we
can’t couple real (uncharged) scalar fields ¢ to a
magnetic background, but we can couple them to
the operator D? + D? |p_ _p, which just adds an
oscillator potential to the standard kinetic term:

W2
0} = 0 + 5 (83)
where &; := 260’27 in d = 4 (or otherwise)- this

is known as the Grosse-Wulkenhaar model and its
main feature is the following:

Theorem: ”The Euclidean quantum field theory
with action containing an additional harmonic po-
tential

1 - 2 -
Sl = [ (300500 + 5 (@0) » (3'9)
m2 2
+ S ox o+ Tokdxono) (84)
where z; = 291-;1:1# , is covariant under the po-

sition/momentum space duality p; < Z;, and is
renormalizable to all orders in ¢2”.

The confining harmonic oscillator potential
serves as an IR cutoff, and is the unique one with
the UV/IR duality symmetry that makes the field
theory just renormalizable. The key feature is the
structure of the new propagator, which involves the
Mehler kernel in the Schwinger parametric repre-
sentations (rather than the usual heat kernel), and
is bounded by exponential decay e~ (const-)lz—yl*,
The corresponding new RG corresponds to a com-
pletely new mixture of standard UV and IR no-
tions.

At w =1, field strength renormalization compen-
sates coupling constant renormalization such that
g?¢* remains invariant. Thus the coupling con-
stant RG flow is bounded, and the field theory

is asymptotically safe (rather than asymptotically



free). In particular, there is no Landau ghost (con-
trary to the usual ¢* field theory), and hence a
non-perturbative completion is believed to be pos-
sible. This can (and in fact already has) shed light
on helping to tackle ordinary QFT problems with
noncommutative QFT techniques-problems which
look untractible in the ordinary geometry language
may do so simply because they correspond in that
geometry to non-perturbative and non-local effects
(e.g., quark confinement or behaviour of systems
under influence of strong magnetic fields).

4 Noncommutative Yang-

Mills Theory

Now we will analyze the nature of gauge interac-
tions on noncommutative spacetime. As we will
see, gauge symmetries in noncommutative field the-
ory are extremely rich and contain a beautiful mix-
ture of spacetime and internal symmetries, with
some rather surprising physical, technical and al-
gebraic features.

4.1 Action and star-gauge symmetry

Let A; () = A? ® t, be a hermitean U (N) gauge
field on N9, where tr (totp) = dup, a,b = 1,..., N2,
and [tq,ts] = it (this last relation gives us the
Lie algebra of U (N)). An hermitean operator cor-
responding to A; (z) can be introduced by:

A= / dlzA (2) ® A; () (85)

If we introduce the corresponding gauge-covariant
derivatives V; = 0; — iA; whose curvature is given
by:

Vi, V,] = =i (B + By) (86)
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(where ﬁ'ij = [(%AJ] - [@,AZ] +1 [AZ,AJ}) the
Yang-Mills action may be defined as:

d

1 A A 72
SYM = —4—2TI' Z [V“VJ}
g ij=1
1 d
=———Tr Y (Fy+ Bjj)?
492 iJZ:1 J J (87)
1 d
=gz [ T Y (B @)+ By)
i,j=1
* (Fij (x) + Bij)
with
Fij =0;A; —0;A;i —i(AixAj — Aj % Ay)
= Oy — ;A — i [Ai, 4] + )

1
+ 59“ (8kAi81Aj — 8kAj81Ai) + O (92)

which is the so-called noncommutative field
strength tensor of gauge field A; ().

Thus A; (z) € R ® Matn«n (C)-note intertwin-
ing of "spacetime” and ” colour” degrees of freedom
here (this will be a running theme for the remain-
der of the present lectures). Notice also that ”non-
commutative electrodynamics”-the rank one case
N = 1- is an interacting field theory. The global
minimum is at {@Z, @J} =0& ﬁ'ij =—B,;; #0 (in
general) which is the (non-trivial) vacuum.

Concerning gauge symmetry, let us define

§im / dzA (2) @ g (@) € U(o0)  (89)

with 95" = I = 4l & (9xg') (@) = Iy =
(9" *g) (z). We say that the matrix field g : R —
U (00) is star unitary. In general, gt # ¢! for
0 # 0, but a relation order by order in # can be
worked out:

9" =9+ %9”9_1 (9i9) 97" (95971) + O (6%)
(90)
The normal gauge transformation of the Yang-Mills
theory can now be defined as:

(91)
which leads to:

(92)



o Aj— gx A x gt —igxdigt (93)

which is a star gauge transformation.

In particular, noncommutative field strength
transforms as:

Fij = g*Fjxg' (94)
and noncommutative Yang-Mills action is invariant
under star-gauge transformations (by cyclicity of
matrix and operator traces).

The gauge symmetry in the noncommutative
case is special-it unifies spacetime and ordinary
gauge symmetry in a way we will explain in de-
tail. This is evident from the non-trivial mixing
between colour and spacetime transformations con-
tained in star-gauge transformations- for 6 # 0
they cannot be disentangled. In particular, in
general det (g% h) # det(g) * det (h); in contrast
to the commutative case, U (1) and SU (N) sec-
tors of U (N) ~ U (1) x SU (N) do not decouple,
and U (1) "photon” interacts with SU (N) ”glu-
ons” (this problem can be resolved by using SU (N)
envelopping algebra valued gauge fields and gauge
transformations, but that is beyond the scope of
these lectures).

Another crucial point, which will essentially for-
bid the construction of local gauge invariant opera-
tors (observables), is that the gauge group in non-
commutative Yang-Mills theory contains spacetime

translations. For this, consider the basic plane wave
fields for N = 1:

_ eia.Ofl.m

ga (1) (95)
with a € ®¢. From the Baker-Campbell-Hausdorff
formula one can check that they are star-unitary:

T

Jaxgh =9l g4 =1 (96)
From the previous ”dipole” relation (54) it follows
that they implement translations of fields by a €
R

ga (@) % [ (2) gl () = f (x +a)

The corresponding star-gauge transformations are:
(07)

The global transformation of A; leaves field
strength F;; invariant. Therefore, spacetime trans-
lations are equivalent to gauge transformations in

(97)

(98)

al
ij

Ai(x) — A (z+a) —
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noncommutative Yang-Mills theory. The only other
known theory with such a geometrical gauge sym-
metry is gravitation. Thus, noncommutative gauge
theory is a toy model of general relativity.

Gauging translational symmetry gives gauge the-
ories of gravity-so noncommutative Yang-Mills can
provide an alternative approach to the problem of
quantizing gravity (the biggest problem of modern
theoretical physics). This all ties in nicely with
the ”origins” of noncommutative gauge theories as
world-volume effective field theories on D-branes in
string theory with background (magnetic) B-fields,
as discussed before- some of the main interests in
these non-local field theories.

4.2 Gauge-invariant observables

Let C C R? be an oriented, embedded curve with
smooth parametrization ¢ (t) : [0,1] — R?, and
endpoints £ (0) = 0, £(1) = v in R Introduce
the noncommutative parallel transport operator:

U (2:C) = Pexp, <z /C i A; (o + 5))

0 1 1 1
:1+Zi"/ dt1/ dtg.../
n=1 0 tl t7171

£ (ty) ... €M (tn)
Ay (+ &) *...x Ay, (T + & (L))

dtnf 1

(99)

with extended star-product and where P is the path
ordering. This operator is the holonomy of noncom-
mutative gauge field 4; ().

Under gauge symmetry,

U(2;C) — g (z) « U (2:C) % g (z+v)"  (100)
and the operator U (z;C) is an N x N star-unitary
matrix field depending on the line C.

In the traditional commutative use, gauge invari-
ance would force us to close the contour C, setting
v = 0. But in the noncommutative case, gauge
transformations can affect translations of space-
time:

e w g (x) % e T = g (x +v) (101)
where k = #~1.v is the ”total momentum” of path
C (c.f. via Fourier transformation from Baker-
Campbell-Hausdorff formula). Thus a gauge-
invariant observable associated to every (generic)



contour C is given by:

0(C):= /dd:vTr (U (z;C)) * et (102)

with k = 6~ 1.v (we notice here that UV /IR mixing
manifests itself in the property that k¥ — co as v —
00). They are called open Wilson line operators. If
C = C} is the straight line path:

E(t)=(0.k)t (103)
then the open Wilson line operators O (Cy) cre-
ate and annihilate the weakly-interacting, non-local
dipoles, of dipole moment 6.k, describing the ele-
mentary quanta of noncommutative gauge theory
in the IR regime.

Gauge-invariant operators, generalizing the stan-
dard local gauge theory operators in the commuta-
tive limit, are local in momentum space and are
given by a Fourier-type transformation:

O(k):/ddxo (z) % U (2;Cr) x €% (104)

where O () is any local, gauge invariant operator of
ordinary Yang-Mills theory (e.g. O (z) = Fj; (x)).
It attaches O (x) at one end of Wilson line with
non-vanishing momentum k.

In the commutative limit 8§ = 0, v = 0; there
are no gauge-invariant quantities associated with
open lines in ordinary Yang-Mills theory. In that
case, the total momentum of a closed loop is unre-
stricted, and we can replace e’** (the momentum
eigenstate) by an arbitrary function f (z). In par-
ticular, taking f (x) = 6% (z — a) recovers the stan-
dard gauge-invariant Wilson loops of Yang-Mills
theory. But for # # 0, closed loops have 0 mo-
mentum k, and only e?** = 1 is permited in O (C)
above-there is no local star-gauge invariant dynam-
ics, because everything has to be smeared out by
the Weyl operator trace Tr ~ [ d%z. Hence the
gauge dynamics below the noncommutativity scale
is quite different from the commutative case.

Using the Weyl transformation, the Open Wilson
Line Operators can be expressed as:

0(C)=Tr (U () D (0)! eikvf) (105)
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where
U (C)=Pexp (/Cd§ ) (106)
D (C) = Pexp (/Cd§ > (107)
are the Weyl symbols, with
U(C)— U (C) g (108)
D(C)A(z)D (c) Az +v) (109)
( iha A (1) etk = A(x—i—v)) (110)

On a d-dimensional torus T¢, the dipole mo-
ments v are given by:

v==0.k+%Xn (111)

with k = 27X ~"L.m and m,n € Z¢ (for single-valued
gauge fields A; (x) on T9). Here n; are ”wind-
ing numbers” around cycles of 7% Thus there
is now a larger set of line momenta, due to the
ambiguity in identifying the translation vector v
in ek x g () xe”™** = g(x+wv) up to integer
translation of periods of T¢. Thus, open Wilson
lines generalize Polyakov lines in noncommutative
Yang-Mills theory (the only open line obervables
at @ = 0). This justifies their interpretation as
creating electric dipoles, as it generalizes the cre-
ation of electric charges by Polyakov line operators.
Here the electric field operator E, generating trans-
lations A —— A + 27X.n, is modified as:

0
E—EHE—I—HP

where P is the transverse momentum operator,

due to the star-gauge transformations generated by
e27rin.2.w .

(112)

5 Reduced Models and Emer-
gent Phenomena

In this final part we will work out the nonpertur-
bative, constructive definition of noncommutative
Yang-Mills theory. Unlike the commutative case,
this can be completely described in the language
of matrix models (arising here as reduced models).
This will also reveal some beautiful features of the
vacuum structure of noncommutative gauge theo-
ries.



5.1 Background independence

Our goal is to remove derivative operators 0; or
s entirely from the noncommutative gauge theory
action. There is no analog of this manipulation in
ordinary Yang-Mills theory.

Let us introduce covariant coordinates:

Cs

071, & + A (113)
Then C; — gCygT under gauge transformations
(hence the name)- this follows from the very spe-
cial property of the Heisenberg algebra which im-
plies that derivative operators ; can be represented
via the adjoint actions (9*1)” (27, —], ie. d; are
inner derivations of the algebra %g. Then the en-
tire noncommutative gauge theory can be rewritten
in terms of the C'i, which absorb completely the
derivatives §;. In particular, we may rewrite the
covariant derivative as:

Vi =8, —iC; (114)
where 8§, = 8; + i (9*1)” #7. We will momentar-
ily set B = 0 here. Then, using [3;,:?} =0, we
compute:

Fy=i[Vi V| = —i[ci¢) + (671, (116)

and consequently,

%gQTrZ ({Cy,éj] +z'(9*1)1.j)

i#]

2

Sy = (117)

C’j are elements of the abstract algebra R¢ (or
more exactly, R¢ ® Matyxn (C)), so spacetime
derivatives have completely disappeared in this
rewriting of noncommutative Yang-Mills theory.
Since C'j are formally space-independent, this is
just an infinite-dimensional matrix model, with

Ci € Mat (00,C).
Flat connections Fj; = 0 give:

(G G5] = =i (67, (118)

So formally, are like the momentum operators-
10; with B 6~ '- recall that this is the spe-
cial point where derivatives and coordinates were

Ci
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degenerately related. In particular, Xi = Hijé'j
formally represent noncommuting position opera-
tors in the ground state, wherein X? = &’ (/11 =
0). Then the noncommutative gauge degrees of
freedom C’Z are fluctuations around this canon-

ical (Moyal) noncommutative spacetime. More

generally noncommutative spacetimes [X i,f(”} =

SK (X ) are obtained as non-vacuum solutions of

Yang-Mills equations of motion:

[Cy, [Cy,@” =0 (119)
Thus (noncommutative) spacetime emerges as a
dynamical effect in the matrix model. This is the
essence of its relation to the so-called IKKT matrix
model for the non-perturbative dynamics of type
IIB superstrings, and also in the more recent mod-
els of emergent gravity which clarify the origin of
gravity in noncommutative gauge theory. In this
setting, gravity is related to quantum fluctuations
C; of spacetime at the Planck scale, while noncom-
mutative field theory arises from field dependent
fluctuations of spacetime geometry (determined via
0% (z)). In particular, UV/IR mixing arises due to
a non-renormalizable gravitational sector in the IR
(with G ~ A)!!

This large N matrix model is called a
twisted reduced model. The ”twist” is (9’1)ij

(needed to cancel an infinite extra term from
[(0712),,(6722), ). The
spacetime R is effectively hidden in the infinitely-
many degrees of freedom of the large N matrices
C’i, and it reappears from expanding the matrix
model around its classical vacuum (this is a dy-
namical emergence of spacetime). This is just a
special instance of the Eguchi-Kawai reduction of
multi-colour field theories. It is formally gotten
by reduction of ordinary Yangs-Mills theory (with
background flux) to a point (i.e., by making fields
constant)?.

noncommutative

5The (straight) open Wilson line has a particularly simple
form in this matrix model formulation:

0(Cy) == /ddm (U (zj,Cp)) * €% = Treik-0-C (120)
which is manifestly gauge-invariant under Ci — QCA'iQ’l.
This follows easily from:

O (Cy) =Tr (U (Cx) D (Cp)t e“) (121)



5.2 Universal gauge symmetry

There are two remarkable consequences of the back-
ground independence noted above. First, it im-
plies the universality of the noncommutative gauge
group. For simplicity, here we will work in d = 2
spacetime dimensions- the general case follows by
stitching together independent 2 x 2 blocks by
means of an SO (d) transformation of R¢. In this
case:

(122)

where OZ = % (él +i02), ég = % (él — iéz),
and the classical vacuum is now:

A A 1

{CZ’ CZ} 20

(0 > 0). This is just the Heisenberg commutation

relation. Up to unitary equivalence, by the Stone-

von Neumann-Mackey theorem it has a unique ir-

reducible representation, the Schrodinger represen-
tation on Fock space:

(123)

. it
oW = _\;ﬁ (124)
oW =2 (125)

V260

at, @ are the Fock space creation and annihilation
operators obeying [d, dT] =1.

In order to get the general solution, let us make
N > 1 copies of the Fock space, represented by
operators éﬁN), C'ZEN) on the Hilbert space HY =
H ® CV. Recall here the Hilbert hotel argument
HY = H. Regroup the Fock space number basis
states | n), with n = 0,1,2,... into basis vectors
Ip, ), p=0,1,2,..., u=0,1,.... N — 1 of HV as:

In) = [pN + p) = |p, 1) (126)

where p are the Hilbert space labels (spacetime),
and g the CV ”internal” symmetry of U (N). Up
to star-gauge transformation, vacuum state in this
basis in sector of solution space labelled by N is:

. ot
O§N>:—jﬁ®1jv (127)
e = —\/% @1y (128)

with U(Ck) = Peik'9ﬁ7 D (Ck) = Pe—k-0.9,

This configuration has two types of unitary gauge
symmetries: the infinite-dimensional U (H) =
U (00) symmetry acting on Fock space labels (un-
der which Sy s is invariant), and U (N) symmetry
acting by finite-dimensional rotations of u labels.

The quantum field theory decomposes according
to these vacuum configurations, in ”topological”
sectors labelled by N with ”hidden” internal U (N)
gauge symmetry- notice the remarkable emergence
of colour from U (1) gauge fields. We mean ”topo-
logical” in the sense that N cannot be changed by
any local gauge transformation:

N = T [6,60] = dimer 60
(129)

This analytical index is a topological invariant
which detects differential operators hidden in C;
(identifies sectors with a higher-dimensional inter-
pretation in the 0-dimensional matrix model).

Now, any path in field space connecting differ-
ent vacua has infinite action, so the quantum the-
ory about any of these vacua doesn’t mix with the
others. Evaluate path integral as (semi-classical,
finite-action) sum over classical vacuum field con-
figurations:

dC',dCs

_ e SyMm — S
Z_/vol(U ) NZ—:OZN (130)

where the Zy are the partition functions for each
U (N) theory. We can expand: C; = CA'l-(N) + AEN)
and then,

1 1 ;
= —TI‘H@U‘N(—([&@]-N;AZ}"'

S 2g2 V20
|:dT ® 1N7 A2:| ) + |:A27 Azj| )2
(131)
where (/L) is a N x N operator on H defined
. Hy
via

i AN
l (4) o) = APy (132)
But this is just the standard Weyl representation
of noncommutative U (V) gauge theory.
Thus U (1) noncommutative Yang-Mills theory
contains noncommutative U (N) gauge theory for
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all values of N. Here the rank N of the gauge
group emerges as a superselection parameter, la-
belling the individual star-gauge inequivalent vac-
uum sectors of the original quantum Hilbert space.
Noncommutative Yang-Mills theory is a universal
gauge theory, containing all Yang-Mills theories (in-
cluding noncommutative ones).

5.3 The
model

twisted Eguchi-Kawai

We’ll now see how those finite U (V) gauge groups
arise from U (00) gauge symmetry in an alternative
way, which brings us to the second striking conse-
quence of the background independence of noncom-
mutative gauge theory. The twisted reduced model
we found above is intrinsically infinite-dimensional,
because of its ground state (there are no finite-
dimensional representations of the Heisenberg com-
mutation relations). So of course the path inte-
gral is still formal and must be made sense of. We
will now show that there is a finite-dimensional ver-
sion of noncommutative gauge theory that provides
a non-perturbative regularization, and thus estab-
lishes the existence of noncommutative Yang-Mills
theory as quantum field theory within a rigorous
framework. Again, there is no analog of this regu-
larization in the ordinary, commutative case.

A regulated, N x N matrix model of U (1)
noncommutative gauge theory is provided by the
twisted Equchi-Kawai model:

1
STtEK = —4—92 Z ziitr (VZVJVJVJT) (133)
i#]
where V; € U(N), i = 1,...,d, zi; = e~ %> with
Qij = —Qji € Z. Let € be a dimensionful lattice

spacing. Identifying V; = e**“%, the action Strx
becomes the reduced model action above for non-
commutative gauge theory in the limit e — 0, N —
oo with (9_1)1'3‘ = % Thus, the twisted Eguchi-
Kawai model is the natural non-perturbative ver-
sion of noncommutative Yang-Mills theory. This
standard ”trick” is due to Weyl- by exponentiat-
ing the Heisenberg algebra, finite-dimensional rep-
resentations are possible for certain (discrete) val-
ues of 6.

This unitary matrix model originates as the
one-plaquette reduction of ordinary Wilson lat-
tice gauge theory in d-dimensions with multivalued
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gauge fields (and background 't Hooft flux):
1
Sw = 17 > Z tr(U; (2) Uy (x + ev;)
i#]
x U; (z +ev;) U (z)T)  (134)

x

where the sum over x runs through a periodic hy-
percubic lattice, v; are standard basis vectors of R?
and U;(z) € U (N). Periodicity here (and below)
is a non-perturbative form of UV/IR mixing.

Now dimensionally reduce this action to the
point x = 0. Generate gauge fields at other cor-
ners of the plaquette, using multivaluedness, from
U; = U, (0) via the twisted boundary conditions:

Ui (E’Uj) = FJUlF}L (135)

(”large gauge transformations”) where I'; are tran-
sition functions given by twist-eating solutions of
the 't Hooft algebra:

Substitute into reduced Wilson action at z = 0, use
't Hooft algebra and define V; := U;T'; € U (N). We
obtain the action Stk from above.

In the 1980’s, this was originally used as a ma-
trix model which is equivalent to ordinary Yang-
Mills gauge theory in the large N limit. We will
demonstrate that for finite N the model admits
another interpretation, which proves that noncom-
mutative Yang-Mills theory is a twisted large N
reduced model to all orders of perturbation theory.
Some basic properties are:

e Gauge symmetry: V; — QV;Qf, Q € U (N)
e Vacuum: Vi(o) =T (twist eaters for SU (N))

Let us look for the irreducible representations of
twist eaters: rotate 't Hooft matrix Q — STQS,
S € SL(d,Z), Q@ = (Qs;) into canonical skew-
diagonal form:

0 —q1 0 0
g 0 0 0
Q=" : : :
0 0 0 —qgn
0 0 g, O

with g, € Z, a = 1,...,n. Define relatively prime

sets of n integers: N, := m, q, == m



and N := No(Ny...N,) (n is the dimension of
the irreducible representation of Weyl-'t Hooft al-
gebra). Then:

Toge1 =10, ®...0 VN, ®...0 1N, @1y,

(137)
FgaZ:1N1®...®(WNa)qa®...®1Nn®1]v0
(138)
for a =1,...,n where:
01 0 0
0 0 1 0
Vn=1: 1+ "
0 00 ...0 1
0 00 ...00
is a SU (N) shift matrix and
1 0 0
0 % 0
Wy =
6 O 21ri(‘1]\\7771)

a SU (N) clock matrix, with Vy Wy = e¥ Wy Vy.
For simplicity, we now assume that N is odd and
N=L"Le N, d= 2n, Qij = 2Ln71€ij and

e_(eij)_( >®In

Amie;
* now, I'; can be constructed from
L x L clock and shift matrices and hence:

0
1

-1
0

As z;; = e T

)" =1y (139)
5.3.1 Matrix-Field Correspondence
Define N x N unitary unimodular matrices:
d .
D=L [[e % (140)
i=1 i<j
k € 74 with
Jok=Jk=J (141)
T =5 it (142)

By periodicity, there are only N2 = L% indepen-
dent Ji. We interpret k; as momenta on a periodic
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lattice, restricted to a Brillouin zone k € Z¢. Be-
low we’'ll see that Jj, are finite (discrete) versions of
the quantization maps A(:C) from Chapter 2.

Note that

- a
[Jk, Jq] = 2isin N Z kiQijq; | Jhtq  (143)

i<j

which is a trigonometric basis for su(N) (or
gl (N,C)). Taking N — oo with k;, ¢; < VN
and rescaling Ji appropiately, we obtain the W.-
algebra:

(IR0, J3°] = 2mi (kA q) Jiiq (144)
with kA g := 37, ; ki€ijq;. This is the Lie alge-
bra of symplectomorphisms (canonical transforma-
tions) of - this can be used to infer that the gauge
group of noncommutative gauge theory is a certain
”quantum deformation” of the symplectomorphism
group of R? (with its standard symplectic structure
here). This geometrical description of star-gauge
transformations is important for gravitational ap-
plications.

Now we use orthonormality and completeness:

1
Ntr (JkJJ) = Ok,q(modL) (145)

1
N Z (']k);,uj (Jk))\p = 5#;)511)\

kez$

(146)

The set {Ji}rezs is called the Weyl basis for the

linear space gl (N, C). We can thus expand the ma-
trices V; = U,I'; of the twisted Eguchi—Kayvai model
about the classical vacuum as (just like C; before):

1
N2 E Ui (k) Jk
kezd

U; = (147)

where U; (k) = Ntr (UZ-J,Z) are c-number Fourier
coeflicients for expansion of a lattice field, describ-
ing dynamical degrees of freedom in the twisted
Eguchi-Kawai model, on a fuzzy torus:

2nik.x

1
Ui(z) = 53 > Ui(k)e™
kezd

1
N

kezd

(148)

27
2

o (0i])



Here | = €L is a dimensionful extent of a periodic
hypercubic lattice with N2 = L9 sites 2.

In this way, the N2 degrees of freedom of the uni-
tary matrices U; are transformed (absorbed) into
the N2 lattice points z':

UiZ %ZUZ(‘T)

(149)

—27ik.x
et

kezd

which is a finite-dimensional version of the Weyl
symbol in the continuum.
Because of unitarity,
UUl =UIU; = 1x (150)
if and only if
Us (2) xUs (2) = U (2)" % Us () = 1

where the lattice star-product is defined by:
1 P
flx)*g(x) = me(Hy)g(IﬂLZ)e”'e '
Y,z

(152)

(151)

with 91']‘ = 6271‘81']‘.

We are finally ready to interpret the twisted
Eguchi-Kawai model in terms of noncommutative
gauge theory. Substitute V; = U;I';, with U; given
above, into the action Stgk. The key point is that
T'; are lattice shift operators in this picture, i.e., dis-
crete derivatives e (with background B = %)
Using the 't Hooft algebra, the definition of Ji, and

the expansion of U; above, we compute:

1 —27mik.x
Ui+ ev) =+ Dt (rjUir}J,i) e
kezZg
(153)
and then,

1
STEK = _WZZUZ () *Uj (x + ev;)
T iF]
* Ui (z +ev)) "« Uj (2)T (154)

where A = 1/¢2N is the 't Hooft coupling constant.
This is the noncommutative version of U (1) Wilson
lattice gauge theory.

U (N) invariance of unitary matrix model be-
comes local noncommutative gauge invariance of
lattice theory: U; (z) — g (2)*U; (2)*g (z + ev;)'
with g (z) x g (z)" = g(2)" % g(x) = 1. Thus, we
can conclude that the twisted Eguchi-Kawai model
is equivalent to the noncommutative U (1) Yang-
Mills theory.
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5.3.2 Continuum limits

1. N =L" — oo first for finite € (= | — 0), then
e — 0. It implies that § — oo, and only pla-
nar Feynman diagrams of noncommutative lat-
tice gauge theory survive. This is the 't Hooft
limit of ordinary large-N Yang-Mills theory
on the continuum spacetime R¢. Note that
in any noncommutative quantum field theory,
one can show that:

. in 0.
hm0—>oo H e2Pa prconn (ph v
a<b

7pn;9)

_ Gplanar (ph o

conn

,Pn)  (155)
where G.ony is any n-point connected Green’s
function in momentum space. This follows
from the results of sections 3.2 and 3.3, which
can be used to show that nonplanar graphs
tend to zero as § — oo because of rapid oscil-
lations of their Feynman integrands.

2. N — 00, € — 0 with Le? finite. This implies
that | ~ VL = Ni — oo and 6 is finite, hence
we recover noncommutative gauge theory on
flat, infinite space ®¢. Thus there exists a
well-defined, finite-dimensional matrix model
representation of noncommutative Yang-Mills
theory on R¢.

Let us give some remarks about these limits: in the
first case, this result explains, e.g., the remarkable
coincidence of perturbative [-functions in planar
commutative and noncommutative gauge theories.
In the second case, | = Z: finite noncommuta-
tivity in lattice regularization also requires finite-
size of spacetime. This is just a non-perturbative
manifestation of UV /IR mixing in noncommutative
quantum field theory. In this formalism it is partic-
ularly evident that the limits ! — co (noncommu-
tative planar limit) and § — 0 (commutative limit)
do not commute. It also shows that the UV/IR
mixing phenomenon is not merely a perturbative
one.

The above construction can also be extended to
get noncommutative U (r) gauge theory with r >
1 (take U; € U (r) ® U (N)), and also continuum
gauge theory on a noncommutative torus (take L =
n.m, implying that © = X and having a finite
extent em as N — 00).
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