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1. Introduction

Conformal �eld theory has been an important tool in theoretical physics during the last

decade. Its origins can be traced back on the one hand to statistical mechanics, and on the

other hand to string theory. Historically the most important impetus came from statistical

mechanics, where it described and classi�ed critical phenomena. Mainly after 1984 the

subject went through a period of rapid development because of its importance for string

theory. In addition there has been important input from mathematics, in particular through

the work of Kac and collaborators. One can distinguish yet another separate origin of some

ideas, namely from work on rigorous approaches to quantum �eld theory.

At present the subject still continues to develop, though more slowly, and it is still important

in all the �elds mentioned, plus a few additional branches of mathematics.

These notes are based on lectures given for graduate students in Germany and Madrid. No

prior knowledge of string theory or statistical mechanics is assumed, and the presentation is

somewhat more basic than that of other reviews of the subject, such as the excellent one by

P. Ginsparg [1]. I hope some of the additional details provided here are useful for students

starting to learn this subject. The lectures focused mainly on the developments of the second

half of the eighties, because the more recent developments are usually too specialized and

too technical to be covered at this level in the available time. Neither the choice of topics

nor the presentation is especially original, and was largely dictated by time constraints.

My own interest in the subject comes from string theory, not from statistical mechanics.

Even though conformal �eld theory as used in both subjects is mathematically identical, the

presentation and the intuition that practitioners of both �elds bring to the subject tends to

be rather di�erent. This will inevitably manifest itself in these notes, even though I tried to

keep them as \neutral" as possible.

I tried to include references to most relevant papers, but the emphasis was on papers I

consider to be worth reading even today, and not on papers that are mainly of historical

interest. A more detailed account of the history may be found in [1]In addition to the latter

review, other useful general references include the one by J. Cardy from the same proceedings

[2]. Other sources I used are [3] and [4]. Some useful results can be found in books on string

theory, for example [5] and [6]. Standard reviews on Kac-Moody algebras are [7] and [8].

Finally I mention as a general reference the paper by Belavin, Polyakov and Zamolodchikov

[9], which is the starting point of many recent developments.
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2. Classical Conformal Invariance

In this section we study classical �eld theories in an arbitrary number of dimensions. In this

space we have a metric g

��

. Furthermore we de�ne g = jdet g

��

j. We will work in 
at space,

which means that the coordinates can be chosen in such a way that g

��

= �

��

, where the

latter has the form diag (�1; : : : ;�1;+1; : : :+ 1). The number of eigenvalues �1 or +1 is q

and p respectively. Our convention is to use �1 in the time direction. Hence in practice q is

either 0 (Euclidean space) or 1 (Minkowski space).

2.1. Symmetries

General coordinate invariance

Such theories may have a variety of symmetries. One symmetry that we will assume them

to have is general coordinate invariance. Using the action principle this can be used to show

that the energy momentum tensor is conserved. In general, this tensor is de�ned in terms of

the variation of the action S under changes of the space-time metric

g

��

! g

��

+ �g

��

:

Then the de�nition of the energy momentum tensor is

�S =

1

2

Z

d

d

x

p

g T

��

�g

��

: (2:1)

If the theory is invariant under general coordinate transformations one can show that

(T

��

)

;�

= 0 :

Here (as usual in general relativity) ;� denotes a covariant derivative. In 
at coordinates the

condition reads @

�

T

��

= 0.

Weyl invariance

We are not interested in general coordinate invariance, but in a di�erent symmetry which can

also be formulated in terms of the metric and the energy momentum tensor. This symmetry
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is called Weyl invariance. The transformation we consider is

g

��

(x)! 
(x)g

��

(x) ; (2:2)

or in in�nitesimal form

g

��

! g

��

(x) + !(x)g

��

(x) :

The condition for invariance of an action under such a symmetry can also be phrased in

terms of the energy momentum tensor. Substituting �g

��

= !(x)g

��

(x) into (2.1) we �nd

�S =

1

2

Z

d

d

x

p

g T

�

�

!(x) : (2:3)

since this must be true for arbitrary functions ! we conclude that the condition for Weyl

invariance is

T

�

�

= 0 :

Conformal invariance

A conformal transformation can now be de�ned as a coordinate transformation which acts

on the metric as a Weyl transformation. An arbitrary coordinate transformation x! x

0

has

the following e�ect on the metric

g

��

(x)! g

0

��

(x

0

) =

@x

�

@x

0�

@x

�

@x

0�

g

��

(x) ; (2:4)

and we are going to require that the left hand side is proportional to g

��

. Rotations and

translations do not change the metric at all, and hence preserve all inner products v � w �

v

�

g

��

w

�

. They are thus part of the group of conformal transformations. A coordinate

transformation satisfying (2.2) preserves all angles,

v�w

p

v

2

w

2

(hence the name `conformal').

Later in this chapter we will determine all such transformations.

If a �eld theory has a conserved, traceless energy momentum tensor, it is invariant both

under general coordinate transformations and Weyl transformations. Suppose the action

has the form

S =

Z

d

d

xL(@

x

; g

��

(x); �(x)) :

Here � denotes generically any �eld that might appear, except for the metric which we have

indicated separately since it plays a special rôle. We have also explicitly indicated space-time
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derivatives. General coordinate invariance implies that

S = S

0

�

Z

d

d

x

0

L(@

x

0

; g

0

��

(x

0

); �

0

(x

0

))

Here g

0

��

is as de�ned above, and the transformations of a �eld � depends on its spin. If it

is a tensor of rank n one has

�

0

�

1

;:::;�

n

(x

0

) =

@x

�

1

@x

0�

1

: : :

@x

�

n

@x

0�

n

�

�

1

;:::;�

n

(x) (2:5)

If the coordinate transformation x! x

0

is of the special type (2.2) we can use Weyl invariance

of the action to change the metric back into its original form. Then we have

S = S

00

�

Z

d

d

x

0

L(@

x

0

; g

��

(x(x

0

)); �

0

(x

0

)) (2:6)

This is the conformal symmetry of the action. Note that the metric now remains unchanged,

so that we can perform this transformation directly in 
at space, with the action written in

such a way that no metric appears.

For future purposes we write the transformation in yet another form. We leave out the

dependence on the metric (which is now assumed to be 
at, and does not transform), and

re-express �

0

in terms of � using (2.5). For a tensor of rank n the transformation is then, if

x! x

0

(x):

Z

d

d

xL(@

x

; �

�

1

;:::;�

n

(x))!

Z

d

d

x

0

L(@

x

0

;

@x

�

1

@x

0�

1

: : :

@x

�

n

@x

0�

n

�

�

1

;:::;�

n

(x(x

0

))) ;

Note that on the right hand side x(x

0

) is the inverse of the function x

0

(x) used previously

to de�ne the transformation. It should not be confused with the integration variable x on

the left-hand side. To prevent such confusion we introduce a new function f(y) = x(y).

The variable x

0

on the right-hand side is an integration variable, which we may also call

x, if we prefer. Then @

x

0

becomes @

x

=

@f

@x

@

f

. Having done all this, we �nd the following

transformation rule

Z

d

d

xL(@

x

; �

�

1

;:::;�

n

(x))!

Z

d

d

xL(

@f

@x

@

f

;

@f

�

1

@x

�

1

: : :

@f

�

n

@x

�

n

�

�

1

;:::;�

n

(f(x)))

The transformation acts now in the following way on any Lorentz tensor

�

�

1

;:::;�

n

(x)!

@f

�

1

@x

�

1

: : :

@f

�

n

@x

�

n

�

�

1

;:::;�

n

(f(x)) : (2:7)

The transformation of derivatives of �elds is more complicated. A single derivative of a
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scalar still transforms like (2.7),

@

@x

�

�(x)!

@f

�

@x

�

@

@f

�

�(f(x)) ;

but for multiple derivatives or derivatives of tensor �elds the transformation rules inevitably

contain terms with higher derivatives of f . [The analogous problem in general relativity is

solved by introducing a covariant derivative, but since we have here a �xed 
at metric that

would not help.]

Fields that transform like (2.7) are called conformal �elds, or also primary �elds.

2.2. Conformal transformations in d dimensions

In general the right hand side of (2.4) is of course not proportional to the original metric g

��

.

To study when it is, consider the in�nitesimal transformation x

0�

= x

�

+ �

�

(x) (or rather its

inverse, x

�

= x

0�

� �

�

(x

0

) +O(�

2

). Then

@x

�

@x

0�

= �

�

�

� @

�

�

�

;

and

�g

��

= �@

�

�

�

� @

�

�

�

This must be equal to !g

��

. Taking the trace we see then that ! = �

2

d

@ �� (with @ �� � @

�

�

�

),

so that we get the following equation for �

@

�

�

�

+ @

�

�

�

=

2

d

@ � �g

��

(2:8)

Let us now analyze the solutions to this condition. As a �rst step, we contract both sides

with @

�

@

�

. This yields

(1�

1

d

) @ � � = 0

If d > 1 this implies that

@ � � = 0 (2:9)

(for d = 1 (2.8) is satis�ed for any �). Next we contract (2.8) with @

�

@

�

. This yields

@

�

�

�

+ (1�

2

d

)@

�

@

�

@ � � = 0 :

To this we add the same equation with � and � interchanged, we use (2.8) once more and
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�nally (2.9). The result is

(1 �

2

d

)@

�

@

�

@ � � = 0 : (2:10)

We conclude that @

�

@

�

@ �� = 0 if d > 2. The third (and last) step is to take the uncontracted

derivative @

�

@

�

of (2.8). De�ne F

����

� @

�

@

�

@

�

�

�

. This function is manifestly symmetric in

the �rst three indices. Furthermore, by acting with @

�

@

�

on (2.8) and using (2.10) we �nd

(for d > 2)

F

����

= �F

����

: (2:11)

It is now easy to show that a tensor with these symmetries must vanish:

F

����

= F

����

= �F

����

= �F

����

= F

����

= F

����

;

which contradicts with (2.11) unless F

����

= 0.

Hence we �nd that for d > 2 the full, uncontracted third order derivative of � must vanish,

so that it can be of at most second order in x. Therefore we may write

�

�

(x) = �

�

+ �

�

�

x

�

+ 


�

��

x

�

x

�

:

Substituting this into (2.8) and collecting the terms of the same order in x we �nd the

conditions

�

��

+ �

��

=

2

d

�

�

�

g

��




���

+ 


���

=

2

d




�

��

g

��

The �rst one can be solved by splitting �

��

into a symmetric and an anti-symmetric part,

�

��

= !

��

+ S

��

:

There is no condition on the anti-symmetric part !

��

, whereas the symmetric part is found

to be proportional to g

��

, S

��

= �g

��

.
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The equation for the quadratic part is somewhat harder to solve. Using the fact that 


���

is symmetric in the last two indices, we can derive




���

= �


���

� 2b

�

g

��

= �


���

� 2b

�

g

��

= 


���

� 2b

�

g

��

+ 2b

�

g

��

= 


���

� 2b

�

g

��

+ 2b

�

g

��

= �


���

� 2b

�

g

��

+ 2b

�

g

��

� 2b

�

g

��

= �


���

� 2b

�

g

��

+ 2b

�

g

��

� 2b

�

g

��

;

where b

�

= �

1

d




�

��

. Therefore




���

= �b

�

g

��

+ b

�

g

��

� b

�

g

��

;

where b

�

is an arbitrary constant vector.

2.3. The conformal group

Most of the transformations we have obtained can easily be identi�ed

� Translations: x

�

! x

�

+ �

�

� (Lorentz) Rotations: x

�

! x

�

+ !

�

�

x

�

� Scale transformations: x

�

! x

�

+ �x

�

The last transformation is perhaps less familiar and is called a

� Special conformal transformation: x

�

! x

�

+ b

�

x

2

� 2x

�

b � x

These are all still in in�nitesimal form, but it is fairly straightforward to write their global

version. In addition to translations and SO(p; q) Lorentz transformations (or rotations if

q = 0) one has the scale transformation x ! x

0

= �x. The global version of the special

conformal transformation has the form

x

�

! x

0�

=

x

�

+ b

�

x

2

1 + 2b � x+ b

2

x

2

:

One can study the action of the in�nitesimal conformal transformations on a space of func-

tions of x. For each transformation x! x

0

= x+ �(x) one can de�ne a di�erential operator
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O

�

so that the transformation of a function f(x) is f(x) ! f(x) + O

�

f(x). Clearly these

operators are

P

�

= @

�

M

��

=

1

2

(x

�

@

�

� x

�

@

�

)

D = x

�

@

�

K

�

= x

2

@

�

� 2x

�

x

�

@

�

(2:12)

These operators are to be contracted respectively with �

�

, !

��

, � and b

�

. One can write

down the commutators of the operators P;M;D and K, and check that they form a closed

algebra which is isomorphic to SO(p+1; q+1). In this computation one uses [@

�

; x

�

] = �

��

.

2.4. The conserved current

Usually symmetries imply the existence of conserved currents. The current of conformal

symmetry is

J

�

(�) = T

��

�

�

(2:13)

This current is conserved because

@

�

J

�

(�) = (@

�

T

��

)�

�

+ T

��

((@

�

�

�

) ;

which vanishes because of (2.8), and because the energy momentum tensor is conserved and

traceless.

2.5. The free boson

A standard example is the free boson. The action is

S /

Z

d

d

x

p

gg

��

@

�

�(x)@

�

�(x) : (2:14)

To compute the energy momentum tensor we need the variation of g

��

and

p

g, given �g

��

.

To get the former, use 0 = �g

��

g

��

to derive �g

��

= �g

��

g

��

�

��

. The second variation is
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derived as follows

�

p

g = �e

1

2

log g

=

1

2

p

g� log(g)

with

� log g = log det (g

��

+ �g

��

)� log det g

��

= log det [�

��

+ g

��

�g

��

] = Tr g

��

�g

��

+O(�

2

) ;

where in the last step the identity det A = expTr logA was used, and the log was expanded

in g

��

�g

��

. In the �rst and second line the arguments of \det" and \Tr" are matrices with

indices (�; �) and (�; �) respectively. Putting this all together, and using (2.1) we get

T

��

= �@

�

�@

�

� +

1

2

g

��

g

��

@

�

�@

�

� :

It is straightforward to check that @

�

T

��

= 0 and that T

�

�

/ (1 �

d

2

), so that the theory is

conformally invariant if (and only if) d = 2. Note that to prove @

�

T

��

= 0 one has to use

equation of motion � = 0, whereas tracelessness for d = 2 holds also if the equation of

motion is not satis�ed.

A theory with classical conformal invariance in four dimensions is Yang-Mills theory (both

abelian and non-abelian). The veri�cation is left as an exercise.

One may also check directly conformal invariance of the free bosonic theory. We simply

write it in terms of a �xed metric �

��

as

S =

Z

d

d

x�

��

@

�

�(x)@

�

�(x) :

Although we have not yet fully analyzed the conformal symmetries in two dimensions, it

should be obvious that they include in any case the d-dimensional transformations, such as

the scale transformation. According to (2.6), the transformed action is

S

0

=

Z

d

d

x

0

�

��

@

0

�

�

0

(x

0

)@

0

�

�

0

(x

0

) ; (2:15)

where @

0

�

� @=@

x

0�

. To show that this is indeed equal to the original action, use �

0

(x

0

) =

�(x), and express @

0

�

in terms of @

�

. The fact that the transformation is a conformal one
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implies that

�

��

@x

�

@x

0�

@x

�

@x

0�

= 
(x)�

��

(2:16)

taking the determinant of both sides tells us that 


d

= det M

2

, whereM is the matrixM

�

�

=

@x

�

@x

0�

. Hence 
 = jdet M j

d

2

(assuming 
 is positive, which it certainly is for in�nitesimal

transformations). If d = 2 this is precisely the Jacobian factor required to turn d

d

x

0

into

d

d

x.

It should be clear that adding a mass term

R

d

2

xm

2

�

2

to the theory breaks conformal

invariance.

2.6. Scale transformations

The scale transformation, x ! �x, in the conformal group is in fact a symmetry of any

action that does not include parameters with the dimension of a mass. This is called \scale

invariance". One simply scales every quantity according to its dimension. Since the action

is dimensionless, it is invariant. In the present case, this would require � to transform as,

�

0

(�x) = �

1�d=2

�(x). However, only for d = 2 is this a conformal transformation. For other

values of d it is not related to Weyl invariance, and because of the derivatives action on � it

cannot be extended to x-dependent transformations in a straightforward way. The presence

of dimensionfull parameters breaks scale invariance, since symmetries are not supposed to act

on the parameters, only on the �elds and the space-time coordinates. Scale invariance (and

hence conformal invariance) also tends to be broken by quantum e�ects. Roughly speaking

this happens because quantum e�ects introduce a mass scale.

2.7. The conformal algebra in two dimensions

In two dimensions the restriction that �(x) is of at most second order in x does not apply.

One can analyze (2.8) directly by writing it out in components. If one does that in Euclidean

space, g

��

= �

��

, one �nds

@

1

�

1

= @

2

�

2

; @

1

�

2

= �@

2

�

1

:

Going to complex variables,

� = �

1

� i�

2

; �� = �

1

+ i�

2

z = x

1

� ix

2

; �z = x

1

+ ix

2

(2:17)
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we �nd

@

z

��(z; �z) = 0; @

�z

�(z; �z) = 0 ;

with @

z

�

@

@z

and analogously for �z. The general solution to these conditions is that � is an

arbitrary function of z (which does not depend on �z) and �� an arbitrary function of �z.

The corresponding global transformation is

z ! f(z); �z!

�

f(�z) ;

where f(z) is an arbitrary function of z.

The generators for the in�nitesimal transformations can be introduced exactly as before:

L

n

= �z

n+1

@

z

(2:18)

generates the transformation

z ! z

0

= z � z

n+1

;

and satis�es the commutation relation

[L

n

; L

m

] = (n�m)L

m+n

:

The same holds for the barred quantities, and furthermore one has then

[L

n

;

�

L

m

] = 0 :

The resulting in�nitesimal transformations are the most general ones that are analytic near

the point z = 0. They may introduce poles at z = 0, but not branch cuts. We will see later

that we will often need contour integrals around z = 0, and this is the justi�cation for this

restriction.

The generator of an arbitrary conformal transformation is thus

X

n

�

�

n

L

n

+ ��

n

�

L

n

�

: (2:19)

This operator generates conformal transformations of functions f(z; �z). If we want this

transformation to respect complex conjugation of z, we must require that ��

n

is the complex
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conjugate of �

n

. In that case we can rewrite (2.19) as

X

n

1

2

�

Re �

n

(L

n

+

�

L

n

) +

1

2

Im �

n

i(L

n

�

�

L

n

)

�

This is in fact the algebra written in terms of the original real coordinates x

1

and x

2

(for

example, L

�1

+

�

L

�1

= @

1

and i(L

�1

�

�

L

�1

) = @

2

).

2.8. Complexification and Wick rotation

Usually this reality condition is dropped, and one treats � and �� as independent complex

parameters. Then the algebra does not map (x

1

; x

2

) 2 R

2

to another point in R

2

, but it is

a well-de�ned map on C

2

. This is justi�ed if we de�ne our �eld theory on a complex instead

of a real space-time. This allows us to treat the two commuting algebras generated by L

n

and

�

L

n

independently (i.e.we may now set ��

n

= 0; �

n

6= 0 or vice-versa). Even if we are

ultimately only interested in the restriction to a real vector space, we can always impose the

reality condition at the end.

Note that the distinction between Euclidean space and Minkowski space become irrelevant if

we complexify the coordinates. The complex coordinate transformation x

0

= �ix

2

changes

�

��

to �

��

[Our convention is to use indices (0; : : : d� 1) in d dimensional Minkowski space,

with x

0

as the time coordinate, and (1; : : : ; d) in Euclidean space, with x

2

= ix

0

(= �ix

0

).

Consequently the indices on � and � have a di�erent range.] This is known as a Wick

rotation.

We are usually interested in conformal �eld theories in Minkowski space, but it is convenient

to make use of the powerful theorems that are available for complex functions. For that

reason one usually makes a Wick rotation to Euclidean space, which in its turn is mapped

to the complex plane. This is not an obviously innocuous transformation though. The Wick

rotation changes (in fact, improves) the convergence properties of quantities such as the

path integral or the propagator in the quantum theory, which is why it is often used in

�eld theory in four dimensions as well. One has to assume or, if possible, prove that the

relevant quantities can indeed by analytically continued to Euclidean space, and if there are

singularities one has to �nd a way to avoid them.
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2.9. The global subgroup

An interesting subalgebra of the algebra is the one generated by L

�1

; L

0

; L

1

and their conju-

gates. This algebra { or rather its restriction to real generators, as discussed above { is iso-

morphic to SO(3; 1), which is precisely the naively expected conformal group SO(p+1; q+1),

if one extrapolates from arbitrary d to d = 2 (in Euclidean space, with p = 2 and q = 0).

The precise identi�cation can easily be derived by transforming back to the standard Eu-

clidean coordinates x

1

; x

2

. The precise relation with the operators de�ned in (2.12) is

P

1

= @

z

+ @

�z

= �(L

�1

+

�

L

�1

)

P

2

= �i(@

z

� @

�z

) = i(L

�1

�

�

L

�1

)

M = �i(z@

z

� �z@

�z

) = i(L

0

�

�

L

0

)

D = z@

z

+ �z@

�z

= �(L

0

+

�

L

0

)

K

1

= �z

2

@

z

� �z

2

@

�z

= L

1

+

�

L

1

K

2

= �i(z

2

@

z

� �z

2

@

�z

) = i(L

1

�

�

L

1

)

(2:20)

The algebra satis�ed by the holomorphic generators is

[L

0

; L

�1

] = L

�1

[L

0

; L

1

] = �L

1

[L

1

; L

�1

] = 2L

0

This is precisely the SU(2) rotation algebra if we identify L

0

with J

z

, iL

1

with J

�

= J

x

�iJ

y

and iL

�1

with J

+

= J

x

+ iJ

y

. The factor i is essential to compensate the sign in [J

�

; J

+

] =

�2J

0

.

The SO(3; 1) generators are the only ones that are globally de�ned on the complex plane

including 1 (this is called the Riemann sphere). Clearly the generator �z

n+1

@

z

is non-

singular at z = 0 for n � �1. To investigate the behavior at in�nity it is convenient to make

a conformal mapping that interchanges the points z = 0 and z =1. A conformal map that

does this is z =

1

w

. Under this transformation the generator L

n

transforms to

�z

n+1

@

z

! �w

�(n+1)

[

dz

dw

]

�1

@

w

= +w

1�n

@

w

This operator is non-singular for n � 1, which combined with the range obtained above

leaves �1 � n � 1. For these values of n the generators are de�ned on the Riemann sphere.
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The in�nitesimal and global forms of the transformations are as follows

generator local transformation global transformation

��L

�1

z! z + � z ! z + �

��L

0

z ! z + �z z! �z

��L

1

z! z + �z

2

z !

z

1��z

Combining these transformations we get

z !

az + b

cz + d

; with ad� bc = 1 (2:21)

Note that there are only three independent transformations, and hence there should be only

three parameters. This is why we can impose the condition ad� bc = 1. Doing it this way

and taking the parameters 2 C, we see that the action is that of the group SL

2

(C)=Z

2

.

The group SL

2

(C) is the set of 2�2 complex matrices with determinant 1. The most general

such matrix is

 

a b

c d

!

with ad� bc = 1 :

To get the transformation shown above we make it act on complex two-dimensional vectors

�

z

1

z

2

�

, with vectors related by an overall complex scale identi�ed. In this space only the ratio

z = z

1

=z

2

is a free parameter, and that parameter is easily seen to transform as in (2.21).

The transformation (2.21) is clearly unchanged if we multiply the matrix by an overall factor.

This freedom is �xed by the determinant condition, except for an overall sign. Therefore the

correct group action is SL

2

(C)=Z

2

rather than SL

2

(C).

In combination with the transformation of the anti-holomorphic sector we get then the group

of transformations SL

2

(C) � SL

2

(C). This contains as a subgroup SO(3; 1), the expected

global conformal group, but in terms of real generators SL

2

(C) � SL

2

(C) is twice as large

as SO(3; 1). The reason is of course that we allow the two SL

2

(C) transformations to act

independently on z and �z. If we impose a reality condition (i.e. �z is the complex conjugate

of z) we reduce the number of generators to that of SO(3; 1).



� 16 �

2.10. Tensors in complex coordinates

Tensors can be transformed to complex coordinates using the transformation formula (2.5).

For a vector we get

V

z

=

@x

1

@z

V

1

+

@x

2

@z

V

2

=

1

2

(V

1

+ iV

2

); V

�z

=

1

2

(V

1

� iV

2

) (2:22)

The generalization to higher rank tensors is obvious.

The metric g

��

= �

��

transforms to g

zz

=

1

4

(g

11

+ ig

12

+ ig

21

� g

22

) = 0 = g

�z�z

, g

z�z

=

1

4

(g

11

+ ig

12

� ig

21

+ g

22

) =

1

2

= g

�zz

. Hence g

z�z

= g

�zz

= 2. The same kind of relation holds

for the energy-momentum tensor. Since T is traceless we have T

11

+ T

22

= 0, and hence

T

z�z

= 0.

The metric allows us to convert every upper index to a lower one (or vice-versa) at the

expense of a simple numerical factor, 2 or

1

2

. One can make use of this freedom to avoid

such counterintuitive quantities as x

z

or @

z

. From now on all tensors and derivatives will

be written with lower indices, and all coordinates with upper indices. The latter will be

denoted as z or �z.

Conservation of the energy momentum tensor now reads (since T

z�z

= 0)

@

�z

T

zz

= @

z

T

�z�z

= 0 ;

which implies that T

zz

is holomorphic and T

�z�z

anti-holomorphic.

?

The conserved current of conformal symmetry is de�ned analogously to (2.13)

J

�

(�) = T

��

�

�

! J

z

= 2T

zz

�

�z

= T

zz

�(z); J

�z

= T

�z�z

��(�z) : (2:23)

Since J

z

is holomorphic and J

�z

anti-holomorphic, this current is manifestly conserved.

? The word \holomorphic" has become standard terminology for \depending only on z, not on �z". It

does not imply absence of singularities. Mathematicians might prefer the word \meromorphic".



� 17 �

2.11. Free bosons revisited

Let us return to the free boson theories in two dimensions to illustrate a few more aspects

of conformal invariance. As above, we will work in Euclidean space, and we will transform

to complex coordinates z; �z. The action takes the form

S =

Z

dzd�z@

z

�(z; �z)@

�z

�(z; �z) (2:24)

(strictly speaking there should be a prime on � in comparison with (2.14), but we will omit

it henceforth).

According to the de�nition of conformal �elds given earlier, @� is a conformal �eld. In

complex coordinates its transformation properties are

@

z

�(z; �z)!

@f(z)

@z

@

f

�(f(z);

�

f(�z)) :

2.12. Conformal Fields in two dimensions

The components of a tensor � of rank n are of the form �

z;:::z;�z:::;�z

(z; �z). It is easy to see

that under conformal transformations this transforms into

(

@f(z)

@z

)

p

(

@

�

f(�z)

@�z

)

q

�

z;:::z;�z:::;�z

(f(z);

�

f(z)) ;

where p is the number of indices `z', and q = n � p the number of indices �z. A �eld that

transforms in this way is called a conformal �eld of weight (p; q).

This rule was derived here for a tensor �eld, and one may think that p and q should be

integers. However, any real value is in fact (a priori) allowed. Usually the conformal weight

is denoted as (h;

�

h), where the bar does not mean complex conjugation (both numbers are

real), but only serves to distinguish the two numbers. Sometimes h+

�

h is called the scaling

weight, and h�

�

h the conformal spin. As we will see later, these are in fact the eigenvalues

of the dilation operator D = �(L

0

+

�

L

0

) and the SO(2) rotation operator M = i(L

0

�

�

L

0

).
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2.13. Applications of conformal field theory

Before studying conformal �eld theories in more detail, it may be good to know where they

can be applied. Apart from purely mathematical contexts, there are two a priori unrelated

areas in physics where these theories have been used, namely string theory and statistical

mechanics.

Closed bosonic strings are described by means of the bosonic action

Z

d

2

�

p

�gg

��

@

�

X

�

@

�

X

�

;

de�ned on a two-dimensional surface with the topology of a cylinder (for the non-interacting

string, at least). Here X

�

(�

0

; �

1

) is a map from two dimensional space (called the \world-

sheet") to space-time (often called \target space"). This function de�nes the embedding of

the string in space time, as a function of the proper time �

0

, i.e. is speci�es where a point

�

1

along the string is located at proper time �

0

. If we take a 
at two-dimensional metric

g

��

and a Euclidean 
at metric in target space this action is nothing but the action of a

free boson in two dimensions. The conformal invariance of that action plays an important

rôle in the proper quantization of string theory in Minkowski space (note that X

0

appears

then with the \wrong" sign in the two-dimensional action). Furthermore conformal �eld

theory has been used to �nd alternatives to the free boson action that can be interpreted as

consistent string theories.

In statistical mechanics conformal �eld theories occur because they describe two-dimensional

statistical systems at their critical point.

3. Quantum Conformal Invariance

As discussed in the previous chapter, the theories we consider are de�ned in Euclidean space,

usually obtained after a Wick rotation fromMinkowski space. For computational convenience

(in particular because some quantities separate into holomorphic and anti-holomorphic parts)

we then go to the complex plane. It turns out that to simplify things even more it is

convenient to make yet another map, this time a conformal transformation of the complex

plane itself.
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3.1. Radial quantization

Symmetries in the quantum theory are usually generated by charges, which are space in-

tegrals of the zeroth component of a conserved current J

�

, @

�

J

�

= 0. The de�nition of a

charge in a d-dimensional theory is then

Q =

Z

d

d�1

xJ

0

(x; t) :

The two-dimensional analog of this has an integration over x

1

, which becomes rather un-

pleasant when we go to complex coordinates in the linear way (2.17).

The �rst improvement is to make a complex rotation (which is of course a conformal trans-

formation), so that y = iz = i(x

1

� ix

2

) = x

2

+ ix

1

, where z is the variable introduced in

(2.17). Now Euclidean time corresponds to Re y and goes from �1 to 1, whereas space

corresponds to Im y. It is convenient to make the space direction �nite, by imposing peri-

odic boundary conditions in the x

1

direction. This is like regulating a quantum system by

putting it in a �nite box in space. In this case the size of the box will be �xed for convenience

to the value 2�, but since the theory is scale invariant that is irrelevant.

The coordinate y can best be thought of as a coordinate on a cylinder. Quantities de�ned in

this space must satisfy the boundary condition �(y; �y) = �(e

2�i

y; e

�2�i

�y) in order to have

no branch cuts. The space integral occurring in the de�nition of conserved charges is now

an integral over the phase of y.

The description can be improved further performing a conformal transformation

w = e

y

= e

x

2

+ix

1

= e

i(x

0

+x

1

)

:

Then the surface at the Euclidean time coordinate x

2

= �1 is mapped to w = 0, and the

surface at x

2

= +1 is mapped to the in�nite circle at jwj =1.
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x

2

= �1

x

2

=+1

x

2

x

1

x

1

Charge operators on the cylinder now take the form

Q /

Z

dx

1

J

2

/ dRez(J

z

(z; �z)� J

�z

(z; �z))

/

I

dw

w

J

0

w

(w; �w) +

I

d �w

�w

J

0

�w

(w; �w) ;

where J

0

is the transformed current to be discussed in a moment. The integral over the real

axis becomes a contour integral around the origin. The current has to be transformed to the

new coordinates. Usually the current splits into holomorphic and anti-holomorphic parts, so

that we may write J

z

(z; �z) � J(z) and J

�z

(z; �z) �

�

J(�z). If a vector current has that property,

then it is automatically conserved:

@

�

J

�

= 2(@

z

J

�z

(�z) + @

�z

J

z

(z)) = 0 :

If furthermore the current is a conformal �eld, it transforms as

J(y)! J

0

(w) = (@w=@y)

h

J(w) = w

h

J(w) ;

and analogously for the quantities with bars. Here we allowed arbitrary h for future purposes;
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for a vector current h = 1. Substituting this we get

Q =

1

2�i

I

h

dww

h�1

J(w) + d �w �w

�

h�1

�

J( �w)

i

(3:1)

Overall factors have been dropped, since we can normalize the charge directly on the cylinder,

in some convenient way. The contours are taken counter clockwise. According to Cauchy's

theorem we have thus

1

2�i

I

dww

n�1

= �

n;0

:

The result of the contour integration depends, obviously, on the poles inside the contour.

Such poles can arise in the quantum theory when one considers the product of two or more

operators.

In the following all complex variables z, w or y refer to the complex plane de�ned by the

exponential map, except when another de�nition is given explicitly.

3.2. Radial ordering

Products of operators only make sense if they are radially ordered. This is the analogue of

time ordering for �eld theory on the cylinder. In the classical theory the ordering of �elds or

charges in a product is of course irrelevant. In the quantum theory they become operators

and we have to specify an ordering. The product of two operators A(x

a

; t

a

) and B(x

b

; t

b

)

can be written, with the help of the Hamiltonian H of the system as

A(x

a

; t

a

)B(x

b

; t

b

) = e

iHt

a

A(x

a

; 0)e

�iHt

a

e

iHt

b

A(x

b

; 0)e

�iHt

b

The factor e

�iH(t

a

�t

b

)

becomes e

�H(�

a

��

b

)

when we Wick-rotate (here t corresponds to x

0

,

� to x

2

). Usually the Hamiltonian is bounded from below, but not from above. Then

if �

a

< �

b

the exponential can take arbitrarily large values, and expectation values of the

operator product are then not de�ned. Hence in operator products one always imposes time

ordering, usually denoted as

TA(t

a

)B(t

b

) =

(

A(t

a

)B(t

b

) for t

a

> t

b

B(t

b

)A(t

a

) for t

a

< t

b

After mapping from the cylinder to the plane, the Euclidean time coordinate is mapped to
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the radial coordinate, and time ordering becomes radial ordering

RA(z; �z)B(w; �w) =

(

A(z; �z)B(w; �w) for jzj > jwj

B(w; �w)A(z; �z) for jzj < jwj

:

A correlation function in �eld theory on the cylinder has the form

h0j T (A

1

(t

1

) : : : A

n

(t

n

)) j0i

where j0i and h0j are \in" and \out" states at t = �1 and t = +1 respectively. After the

conformal mapping, the correlation functions are

h0jR (A

1

(z

1

; �z

1

) : : : A

n

(z

n

; �z

n

)) j0i

where j0i and h0j are states at z = 0 and z =1 respectively.

3.3. The generator of conformal transformations

Returning now to charge operators, let us consider the generator of the conformal transforma-

tions. As we have seen in the previous chapter, the current for an in�nitesimal transformation

is T (z)�(z). For the corresponding charge we may then write

Q

�

=

1

2�i

I

dz�(z)T (z) (3:2)

We would expect Q

�

to generate the conformal transformation with the global form

�(w; �w)! �

0

(w; �w) =

@f(w)

@w

h

�(f(w); �w) ;

with f(w) = w + �(w). Note that any �eld � will in general depend on both w and �w, but

that we are treating w and �w as independent variables, which can therefore be transformed

independently. The in�nitesimal form of this transformation is

�

�

�(w; �w) = h@

w

�(w)�(w; �w) + �(w)@

w

�(w; �w)

Consider now the quantum version of this transformation. We may expect the following
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relation to hold

�

�

�(w; �w) = [Q

�

; �(w; �w)] (3:3)

Let us try to evaluate the commutator on the right hand side. Naively we have

[Q

�

; �(w; �w)] =

1

2�i

I

dz�(z) [T (z)�(w; �w)� �(w; �w)T (z)] : (3:4)

But we have just seen that the �rst term is de�ned only if jzj > jwj, whereas the second one

requires jzj < jwj. Note however that z is an integration variable, and that the de�nition

of Q did not include any prescription for the precise contours to be used. Classically Q

�

is in fact independent of the contour due to Cauchy's theorem, because the integrand is a

holomorphic function. Classically the factor �(w; �w) is irrelevant for the evaluation of the

integral, and in fact classically the commutator vanishes. In the quantum theory we have to

be more careful. As one usually does, we use the freedom we have in the classical theory in

order to write the quantity of interest in such a way that it is well-de�ned after quantization.

Nothing forbids us to use di�erent contours in (3.4), so that we get

[Q

�

; �(w; �w)] =

1

2�i

I

jzj>jwj

dz�(z)T (z)�(w; �w)�

1

2�i

I

jzj<jwj

dz�(z)�(w; �w)T (z) :

This can be written as

[Q

�

; �(w; �w)] =

1

2�i

2

6

4

I

jzj>jwj

�

I

jzj<jwj

3

7

5

dz�(z)R(T (z)�(w; �w)) :

Now we deform the contours as indicated in the following �gure

- = 
w 

w 
w 

0 0 0 

z z z 
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The result is

[Q

�

; �(w; �w)] =

1

2�i

I

dz�(z)R(T (z)�(w; �w)) ; (3:5)

where the integration contour encircles the point w. Clearly the integration only makes sense

if the radially ordered product is analytic in the neighborhood of the point w. We may thus

assume that it can be expanded it in a Laurent series around w

R(T (z)�(w; �w)) =

X

n

(z � w)

n

O

n

(w; �w) ;

where the coe�cients O

n

are { in general { operators. It is now easy to verify that the

contour integral will produce the desired result if (and only if) the radially ordered product

equals

R[T (z)�(w; �w)] =

h

(z � w)

2

�(w; �w) +

1

z � w

@

w

�(w; �w) + power series in (z � w) : (3:6)

The last terms are free of poles at z = w, and hence do not contribute to the integral.

The property (3.6) (plus the corresponding one for the anti-holomorphic quantities) de�nes

what we mean by a conformal �eld.

Often one simpli�es the notation by omitting the radial ordering symbol (which however is

always implied) and dropping the �nite terms.

3.4. Quantization of the free boson

Now we return to the free boson, in order to look at a few concrete examples of the foregoing,

rather abstract discussion. On the cylinder the action is

S =

1

8�

Z

d

2

x

X

i

@

�

�

i

@

�

�

i

where a convenient normalization is chosen for future purposes. The fact that the �elds �
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live on a cylinder implies that they satisfy periodic boundary conditions:

�

i

(x

0

; 0) = �

i

(x

0

; 2�)

Any �eld satisfying these boundary condition can be Fourier expanded

�

i

(x

0

; x

1

) =

1

X

n=�1

e

inx

1

f

i

n

(x

0

)

The classical equation of motion for � is

[@

2

0

� @

2

1

]�

i

(x

0

; x

1

) = 0

For the Fourier modes of a classical solution this implies

@

2

0

f

i

n

(x

0

) = �n

2

f

i

n

(x

0

) :

The solution is

f

i

n

(x

0

) = a

i

n

e

inx

0

+ b

i

n

e

�inx

0

; n 6= 0

and

f

i

0

(x

0

) = p

i

x

0

+ q

i

:

Putting all this together, and introducing a few convenient factors, we may write the result

as

�

i

(x

0

; x

1

) = q

i

+ 2p

i

x

0

+ i

X

n6=0

�

1

n

(�

i

n

e

�in(x

0

+x

1

)

+ ~�

i

n

e

�in(x

0

�x

1

)

)

�

; (3:7)

Now we quantize this �eld using canonical quantization. The canonical momentum is

�

i

=

1

4�

@

0

�

i

We impose on it the following commutation relations

�

�

i

(x

0

; x

1

);�

j

(x

0

; y

1

)

�

= i�

ij

�(x

1

� y

1

)

�

�

i

(x

0

; x

1

);�

j

(x

0

; y

1

)

�

= 0

�

�

i

(x

0

; x

1

);�

j

(x

0

; y

1

)

�

= 0 :

(3:8)

These relations can be expressed in terms of modes by taking Fourier moments of these
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conditions with respect to x

1

and x

01

. The result is

h

�

i

k

; �

j

l

i

=

h

~�

i

k

; ~�

j

l

i

= k�

ij

�

k+l;0

h

�

i

k

; ~�

j

l

i

= 0

(3:9)

and

�

q

i

; p

j

�

= i�

ij

(3:10)

Now transform � to the complex plane. Then we get

�

i

(z; �z) = q

i

� i(p

i

log(z) + p

i

log(�z)) + i

X

n6=0

1

n

�

�

i

n

z

�n

+ ~�

i

n

�z

�n

�

Note that �

i

can almost be written as the sum of holomorphic and anti-holomorphic func-

tions. Almost, because log(z) is not a holomorphic function. However, if we take a derivative

of �

i

we do get purely holomorphic functions, namely @

z

�

i

(z) and @

�z

�

i

(�z).

3.5. The free boson propagator

The �rst quantity of interest is the product �

i

(z)�

j

(w). The quantum equivalent of this

classical product is R(�

i

(z)�

j

(w)), and we would like to know the behavior of this product

as z approaches w. A simple way to probe the short distance behavior is to take expectation

values of the operator between two states, for example the vacuum. To compute this we �rst

have to know how the various mode operators act on the vacuum.

Classically the �eld �

i

is real. Consequently, in (3.7) q

i

and p

i

are real, and �

i

n

= (�

i

�n

)

�

.

The quantum equivalent of this statement is that q

i

and p

i

are represented by Hermitean

operators, whereas �

i

�n

is the Hermitean conjugate of �

i

n

. Reality conditions are best im-

posed on the cylinder and in terms of Minkowski coordinates. The complex Wick rotation

and subsequent conformal mappings can make reality properties less manifest.

We see now that the commutation relation [�

i

k

; �

j

l

] = k�

ij

�

k+l;0

; k > 0 is the same as that for

a set of harmonic oscillators, apart from the factor k, which can be absorbed in the normal-

ization of the operators (note that the commutator for k < 0 contains no new information).

Indeed, apart from the \zero mode" q

i

; p

i

the free boson is nothing but an in�nite set of

harmonic oscillators.
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By the usual reasoning for harmonic oscillators, the vacuum satis�es

�

i

k

j0i = 0 for k > 0

The algebra of the operators p

i

and q

i

is also a well-known one, namely the Heisenberg

algebra. Hence the vacuum must satisfy

p

i

j0i = 0

This is all we need to compute the vacuum expectation value. A convenient technique for

computing vacuum expectation values is normal ordering. We reorder the oscillators in such

a way, using the commutators, that creation operators are always to the left of annihilation

operators. Then the vacuum expectation value of normally ordered terms always vanishes

for every term that contains at least one harmonic oscillator, and we only have to take into

account the contributions picked up from the commutators.

Normally ordered products of oscillators are denoted as

: �

k

1

: : : �

k

n

:� �

i

�

k

�(i)

;

where �(i) is a permutation of the labels such that k

�(i)

< k

�(j)

if i < j (re-ordering positive

and negative labels among each other has no e�ect, but does not hurt either). Note that

oscillators within the normal ordering signs behave as if they are classical. They can be

written in any order, since the right hand side is always the same.

The only terms in the product �

i

(z)�

j

(w) that does not contain oscillators is the zero mode

contribution. These terms require some special attention. We de�ne normal ordering of p

i

and q

i

in such a way that p

i

is always to the right of q

i

.

Using these rules we get, when jzj > jwj,

R(�

i

(z; �z)�

j

(w; �w)) =: �

i

(z; �z)�

j

(w; �w) : �i[p

i

; q

j

](log z + log �z)

+ (

"

i

X

n>0

1

n

�

i

n

z

�n

; i

X

m<0

1

m

�

j

m

w

�m

#

+ ( anti-holomorphic terms))

The commutator yields

�

X

n>0;m<0

1

nm

nz

�n

w

�m

�

n+m;0

;
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so that we get

: �

i

(z; �z)�

j

(w; �w) : +�

ij

(�log(z�z) +

X

n>0

1

n

�

w

z

�

n

+

X

n>0

1

n

�

�w

�z

�

n

) :

The sum converges for jzj > jwj. Since the product was radially ordered, this is satis�ed.

The result is

R(�

i

(z; �z)�

j

(w; �w)) =: �

i

(z; �z)�

j

(w; �w) : ��

ij

[log(z � w) + log(�z � �w)] :

This is not quite what one usually gets when evaluating an operator product. Normally the

result consists of holomorphic and anti-holomorphic parts, whereas here there is a logarithmic

singularity. A more standard result is the operator product @

z

�

i

(z; �z)@�

j

(w; �w), which can

be obtained from the above by di�erentiation (the notation @ is short-hand for either @

z

or

@

w

, depending on what it acts on).

R(@

z

�

i

(z; �z)@

w

�

j

(w; �w)) = ��

ij

1

(z � w)

2

+ : @

z

�

i

(z; �z)@

w

�

j

(w; �w) :

since @

z

�

i

(z; �z) depends only on z we usually omit the second argument. Furthermore @

z

is usually written as just @, if no confusion is possible. Furthermore the radial ordering is

usually not explicitly written, and the �nite terms are usually omitted as well. Since the

objects within normal ordering signs behave as classical quantities, these are in particular

�nite as z approaches w. Using all this short-hand notation, the result is then written as

@�

i

(z)@�

j

(w) = �

�

ij

(z � w)

2

:

3.6. The normally ordered energy momentum tensor

This result shows that we have to be careful with the de�nition of the quantum energy mo-

mentum tensor, which classically is T (z) = �

1

2

P

i

@

z

�

i

(z)@

z

�

i

(z), plus the anti-holomorphic

term. If we naively quantize �

i

the product of the two operators is singular. For this reason

one de�nes

T (z) � �

1

2

:

X

i

@

z

�

i

(z)@

z

�

i

(z) := �

1

2

X

i

lim

z!w

[@�

i

(z)@�

i

(w) +

�

ii

(z � w)

2

] :

This amounts to subtracting an in�nite constant from the energy momentum tensor. This

sets the energy of the vacuum to zero.
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3.7. Operator products for free bosons

We are now ready to compute the operator product of the energy momentum tensor with

various operators in the theory. Let us �rst consider T (z)@�

i

(w). To compute this operator

product we normal order all harmonic oscillators and the zero-mode operators q

i

and p

i

.

The operators within T (z) are already normal ordered, and hence the only ordering to worry

about is between T (z) and @�

i

(w). We may write this as

�

1

2

: @�

i

(z)@�

i

(z): @�

j

(w) = �

1

2

: @�

i

(z)@�

i

(z)@�

j

(w): �@�

i

(z)

�

�

�

ij

(z � w)

2

�

Note the factor of two in the last term, because there are two factors @�

i

(z) to order with

respect to @�

j

(w).

To get the operator product in the desired form we wish to express the remaining factor

@�

j

(z) in terms of @�

j

(w). This is simply a Taylor expansion, @�

j

(z) = @�

j

(w) + (z �

w)@

2

�

j

(w) +

1

2

(z � w)

2

@

3

�

j

(w) + : : :. The �nal result may thus be written as

T (z)@�

j

(w) =

1

(z � w)

2

@�

j

(w) +

1

z � w

@

2

�

j

(w) ;

where as usual we drop all �nite terms, and all operators appearing on the right hand side

are normally ordered. It follows that @�

j

(w) is a conformal �eld with conformal weight 1.

In a similar way one may check that @

2

�

i

(z) is not a conformal �eld. This is not a surprise,

because we have seen before that it is not a conformal �eld classically.

Now consider the energy momentum tensor itself. It is a simple exercise to compute

T (z)T (w) =

c=2

(z �w)

4

+

2

(z � w)

2

T (w) +

1

z �w

@

w

T (w) (3:11)

Here c equals the number of bosons �

i

. If the �rst term were absent, T (z) would be a

conformal �eld of weight 2, the classical value. In this case quantum e�ects yield an extra

term, an anomaly. This is called the conformal anomaly.
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3.8. The Virasoro algebra

The operator product (3.11), derived here for free bosons, has a completely general validity.

Under quite general assumptions, one may show that the operator product of two energy

momentum tensors of a conformal �eld theory must have the form (3.11).

In (2.23) a current for conformal symmetry was introduced, J

�

(z) = T (z)�(z). Since �(z) is

an arbitrary holomorphic function, it is natural to expand it in modes. The precise mode

expansion one uses depends on the surface one is working on. On the Riemann sphere we

require �elds and transformations to be continuous on contours around the origin. This was

also the surface for which the classical mode expansion (2.18) was written down. We expect

thus that J

�

(z) generates the transformation z ! z

0

= z�z

n+1

if we choose �(z) = z

n+1

. We

then get an in�nite series of currents J

n

(z) = T (z)z

n+1

. The correctly normalized operators

are in fact

L

n

=

1

2�i

I

dzz

n+1

T (z) : (3:12)

This relation can be inverted:

T (z) =

X

n

z

�n�2

L

n

:

To check that the normalization and the sign are correct one may compare the quantum

algebra with the classical algebra. The commutator of L

n

and L

m

can be evaluated using

contour integrals, as was already done earlier. One �nds then the Virasoro algebra (the paper

by Virasoro [10], to which this algebra owes its name, contains the generators of the algebra

as "constraints", but not the algebra itself)

[L

n

; L

m

] = (n�m)L

m+n

+

c

12

n(n

2

� 1)�

n;�m

(3:13)

Not surprisingly, a term proportional to c appears. If that term were absent, the quantum

algebra would be identical to the classical one. Strictly speaking, such a constant term is not

allowed in an algebra. The commutator of any two elements of the algebra must again be

an element of the algebra. We are thus forced to view c not as a number, but as an operator

which commutes with any element of the algebra. It follows then that on any representation

of the algebra this operator has a constant value, which is also denoted by c, just as the

operator itself. Such operators that appear only on the right hand side of commutators are

usually called central charges.
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Note that the SL(2;C) subalgebra generated by L

1

; L

0

and L

�1

is not a�ected by the extra

term. It remains thus meaningful to speak of the conformal weight of T (z).

Because of the central term the classical symmetry is not preserved in quantum mechanics.

In particular, the central term prohibits the vacuum to have the full symmetry, because we

cannot impose the condition L

n

j0i = 0 for all n, without getting a contradiction with the

algebra. This is analogous to the position and momentum operators in quantum mechanics,

which also cannot simultaneously annihilate the vacuum.

Nevertheless we still have all the generators of the Virasoro algebra at our disposal, and

they still play a useful rôle. In those cases where conformal invariance is really crucial this

is not su�cient though. Presumably this is true in string theory, although there have been

attempts to make sense of it without conformal invariance. The simplest string theory, the

bosonic string, is constructed out of D free bosons, where D is the number of space-time

dimensions. One might think that this is always anomalous, because c = D in this case.

However, there is an additional ghost contribution (the ghost is related to gauge �xing for

two-dimensional gravity) of �26. This leads to the well-known concept of a critical dimension

D = 26.

4. Virasoro representation theory

Given any algebra, it is usually important to try and �nd its representations. The best

known example is probably the angular momentum algebra.

In that case all �nite dimensional unitary representations are labelled by an integer or half-

integer j. The algebra consists of three generators, J

�

, J

+

and J

3

. All states in a repre-

sentation are labelled by a J

3

eigenvalue, which is lowered by J

�

and increased by J

+

. The

representation can be built up by starting with the state with maximal J

3

eigenvalue, which

is therefore annihilated by J

+

. Mathematicians call such a state the highest weight state.

The other states are obtained by acting on the highest weight state (denoted jji) with J

�

.

This can only be done a �nite number of times if j is integer or half-inter, because one �nds

that the norm of the state (J

�

)

2j+1

jji is zero. Such states are called null states or null

vectors. The representation space is de�ned by setting such states equal to zero.

This is the procedure we wish to mimic for the Virasoro algebra. In general, one starts with

determining a (preferably maximal) set of commuting operators (like J

2

and J

3

for angular

momentum). A convenient choice is L

0

and the central charge, c.
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The Virasoro algebra has many more representations than will be considered here. As is the

case for SU(2), the representations of interest are those satisfying a number of physically

motived conditions. The ones we will consider here are the so-called unitary highest weight

representations.

4.1. Unitarity

A representation of the Virasoro algebra is called unitary if all generators L

n

are realized as

operators acting on a Hilbert space, with the condition that L

y

n

= L

�n

. The latter condition

implies in particular that T (z) is a Hermitean operator. This is most easy to see on the

cylinder, where we have, classically

1

2

[T

11

(x

0

; x

1

) + T

00

(x

0

; x

1

)] =

X

n

L

n

e

�in(x

0

+x

1

)

+

�

L

n

e

�in(x

0

�x

1

)

;

and

1

2

[T

12

(x

0

; x

1

) + T

21

(x

0

; x

1

)] =

X

n

L

n

e

�in(x

0

+x

1

)

�

�

L

n

e

�in(x

0

�x

1

)

;

Reality of T

��

leads to the requirement that L

�

n

= L

�n

(and

�

L

�

n

=

�

L

�n

), which naturally leads

to the quantum condition given above. On the complex plane the hermiticity condition looks

less natural, because the \in" and \out" states play an asymmetric rôle, and also because

we have complexi�ed the coordinates.

In the following we will consider unitary representations. Non-unitary representations have

also been studied, in particular in statistical mechanics. Such representations still consist of

states in a Hilbert space (in particular having positive norm), but the requirement L

y

n

= L

�n

is dropped.

4.2. highest weight representations

By de�nition, a highest weight representation is a representation containing a state with a

smallest value of L

0

. Not all representations have that property, but it is reasonable to

expect this in a physical theory, since L

0

+

�

L

0

is the Hamiltonian, which is usually bounded

from below. The term \highest weight" for a state with lowest energy is perhaps somewhat

confusing, but has become standard terminology.
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It follows from the structure of the algebra that L

n

decreases the eigenvalue of L

0

by n,

L

0

L

n

j i = (L

n

L

0

� nL

n

) j i = (h� n)L

n

j i ;

if L

0

j i = h j i.

If jhi is a highest weight state, then obviously jhi is annihilated by all generators L

n

with

n > 0:

L

n

jhi = 0; for n � 1

Suppose the operator L

0

acting on the highest weight state jhi creates a state jhi

0

. Then

the Virasoro algebra tells us that L

n

jhi

0

= 0 for n � 1, i.e. L

0

maps highest weight states

to highest weight states. Since L

0

is hermitean we can diagonalize it on the highest weight

states, so that we may assume that L

0

jhi = h jhi (labelling the state only by its L

0

eigenvalue

is inadequate in case of degeneracies, but we will not worry about that now).

The negative modes L

n

; n < 0 can be used to generate other states in the representation.

Usually such states are referred to as descendants.

We have in fact already seen an example of a representation that is not a highest weight

representations, namely the adjoint representation, de�ned by the action of the algebra on

itself. The commutator

[L

0

; L

n

] = �nL

n

tell us that in this representation the eigenvalue of L

0

can take any integer value, whereas

[c; L

n

] = 0 tells us that the adjoint representation has central charge 0. It is in fact a unitary

representation.

4.3. The vacuum

The vacuum of the theory can be de�ned by the condition that it respects the maximum

number of symmetries. This means that it must be annihilated by the maximum number

of conserved charges. In the present context this means that we would like it to satisfy

L

n

j0i = 0 for all n, but because of the central term that is obviously not possible. For

example, if L

2

, L

�2

as well as L

0

annihilate the vacuum, so does the commutator of L

2

and

L

�2

. But this is only consistent with the algebra if c = 0. We will soon see that unitary

conformal �eld theories with c = 0 are trivial.
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The maximal symmetry we can have is

L

n

j0i = 0 ; for n � �1 :

Of course we could also have imposed this for n � 1, but then j0i is a state with maximal

eigenvalue of L

0

rather than one with minimal eigenvalue (a highest weight state).

Because of the commutator [L

1

; L

�1

] = 2L

0

any highest weight state which is annihilated

by L

0

must be annihilated by L

1

and L

�1

(and vice-versa). It will always be assumed that

there is precisely one state in the theory that has these properties.

We also de�ne its Hermitean conjugate h0j. It satis�es h0jL

n

= 0 for n � 1.

4.4. Positivity of c and h

The unitary highest weight representations are labelled by two real numbers, h and c. Since

all generators commute with c, it has a constant value on a representation. On the other

hand L

0

does not have a constant value, but we can de�ne h uniquely as its eigenvalue on the

highest weight state. With these two numbers given, we know the Virasoro representation

completely, since all states can be created by the action of the Virasoro generators on the

ground states, and since the norm of any state can be expressed completely in terms of c and

h. Hence any negative or zero norm condition depends only on c and h. It follows that two

representations with the same value of c and h are equivalent as Virasoro representations.

In the rest of this chapter we will derive restrictions on c and h by requiring absence of

negative norm states. As a modest start we will show that these number are non-negative.

Note �rst of all the following commutator

[L

n

; L

�n

] =

c

12

(n

3

� n) + 2nL

0

Hence we have

kL

�n

j0i k = h0j (L

y

�n

L

�n

j0i = h0jL

n

L

�n

j0i = h0j [L

n

; L

�n

] j0i =

c

12

(n

3

� n)

For n � 2 this implies that c � 0 (this follows from the requirement that we work in a Hilbert

space, so that all states must have non-negative norm; furthermore zero norm implies that

the state vanishes.)



� 35 �

Using the algebra just like we did for the vacuum we �nd for any other highest weight state

kL

�n

jhi k = hhjL

n

L

�n

jhi = hhj [L

n

; L

�n

] jhi =

�

c

12

(n

3

� n) + 2nh

�

hhjhi

We may assume that hhjhi 6= 0, since otherwise we would not consider jhi a state in our

theory. If the norm of the highest weight state does not vanish this tells us once again that

c � 0 (since the �rst term dominates the second for large n), while for n = 1 we see that

either h > 0 or h = 0 and kL

�1

jhi k = 0, i.e. jhi = j0i.

If c = 0 in a unitary theory the vacuum representation contains just one state, j0i itself,

since the foregoing argument shows that L

�n

j0i = 0 for n > 0. (To rule out non-trivial

representations with c = 0 and h > 0 requires a more sophisticated argument, which we will

present later.)

4.5. States and conformal fields

There is a simple connection between highest weight states and conformal �elds. Consider

a conformal �eld �(z; �z) with weights h and

�

h. Now de�ne

�

�

h;

�

h

�

= �(0; 0) j0i ;

where of course it is assumed that �(z; �z) j0i is well-behaved at the origin. Now compute

L

n

�

�

h;

�

h

�

. We �nd

[L

n

; �(w; �w)] =

1

2�i

I

z

n+1

T (z)�(w; �w)

= h(n+ 1)w

n

�(w; �w) + w

n+1

@

w

�(w; �w) ;

(4:1)

which vanishes if w = 0 and n > 0. Hence L

n

, n > 0 commutes with �(0; 0) and it follows

that

�

�

h;

�

h

�

is a highest weight state. It is also a highest weight state with respect to the

anti-holomorphic sector.

For n = 0 we �nd [L

0

; �(0; 0)] = h�(0; 0), so that the state

�

�

h;

�

h

�

indeed has L

0

-eigenvalue

h, as the notation suggests.
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4.6. Descendant fields

Ground states of Virasoro representations are generated from the vacuum by conformal

�elds, which are also known as (Virasoro) primary �elds. [The addition \Virasoro" is added

in more general context, where other algebras are being considered. One can then have a

distinction between Virasoro primaries and primaries with respect to other algebras. The

name \conformal �eld" will be used here only in the strict sense of Virasoro primary, which

is equivalent to (4.1) being satis�ed.]

One can also consider �elds that generate descendant states from the vacuum. They are,

quite naturally, called descendant �elds. They can be de�ned by means of the operator

product with the energy momentum tensor

T (z)�(w; �w) =

X

k�0

(z � w)

k�2

�

(�k)

(w; �w) :

We may project out a term from this sum by

�

(�k)

(w; �w) =

I

dz

2�i

1

(z � w)

k�1

T (z)�(w; �w)

Clearly

�

(�k)

(0; 0) j0i =

I

dz

2�i

1

(z)

k�1

T (z)�(0; 0) j0i = L

�k

�(0; 0) j0i ; (4:2)

so that �

(�k)

does indeed generated the L

�k

descendant of

�

�

h;

�

h

�

. To get descendant states

obtained by two Virasoro generators one has to consider operator products of T (z) with

�

(�k)

, etc.

Descendant �elds are of course not conformal �elds, but it is interesting to see what the

deviation is. It turns out that they behave like conformal �elds when commuted with L

0

or

L

�1

(scalings, rotations and translations), but not with L

1

(special conformal transforma-

tions). Hence one can assign a conformal weight to them, which is of course equal to the L

0

eigenvalue of the state �

(�k)

(0; 0) j0i they create from the vacuum. This weight is (h+ k;

�

h),

where (h;

�

h) are the conformal weights of �.

For example, the �rst non-trivial descendant operator of the identity is T (z) itself. It gener-

ates a state with h = 2, T (0) j0i = L

�2

j0i.

Note that the �rst non-trivial descendant of any conformal �eld � with non-zero conformal

weight is @�.
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4.7. The Kac determinant

So far we have derived some necessary conditions for the positivity of norms of states. But

we have only looked at norms of states L

�n

jhi. At a given excitation level (i.e. at a given L

0

eigenvalue n+h ) there are in general many other descendants, which are linear combinations

of states

L

�n

1

: : : L

�n

k

jhi ;

X

i

n

i

= n : (4:3)

Because of the commutation relations of the Virasoro algebra we may in fact assume that

the generators are ordered, n

i

� n

j

if i < j, since any incorrectly ordered product can be

expressed in terms of ordered ones. The collection of states (4.3) for all n � 0 is called the

Verma module of jhi. Its de�nition does not make use of any norm on the space of states.

If one does have a norm, one can ask whether all states in the Verma module (i.e. all linear

combinations of the states (4.3)) have positive norm. In general that will not be the case.

Note that the set of states in the Verma module is closed with respect to the action of the

full set of Virasoro generators, i.e. acting with any Virasoro generator on any state in the

set produces a linear combination of states in the set. There is no need to include positively

moded Virasoro generators, since they can always be commuted to the right where they

annihilate jhi.

At the �rst excited level, the only state one can have is L

�1

jhi. We have already seen that

this state has positive norm for h > 0 and norm zero for h = 0.

At the second level one can have L

�2

jhi and (L

�1

)

2

jhi. It is not su�cient to check whether

each of these states separately has positive norm, because there could be linear combinations

that have zero or negative norm. To deal with this problem in general we consider the matrix

K

2

=

 

hhjL

y

�2

L

�2

jhi hhjL

y

�2

L

�1

L

�1

jhi

hhj (L

�1

L

�1

)

y

L

�2

jhi hhj (L

�1

L

�1

)

y

L

�1

L

�1

jhi

!

This matrix is clearly Hermitean. Suppose it has negative or zero determinant. Then there

exists an eigenvector ~v = (�; �) with zero or negative eigenvalue, i.e. ~vK

2

~v

T

� 0. The left

hand side is equal to the k�L

�2

jhi + �L

�1

L

�1

jhi k, and we conclude that this quantity is

not positive.
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At the n

th

level there is an analogous matrix K

n

. The determinant of the matrix K

n

is

called the Kac determinant. Of course it does not tell us precisely how many positive, zero

and negative eigenvalues there are. Even if det K > 0 there could be an even number of

negative eigenvalues. Usually one studies the behavior of the Kac determinant as a function

of parameters (such as h and c), starting in an asymptotic region where we know that all

eigenvalues are positive.

Of special interest are the null vectors, the eigenvectors of zero norm. The vanishing of the

norm corresponds to the equality vK

n

v

T

= 0, where ~v is a set of coe�cients of the basis

states at level n. But if v is a vector in the zero eigenspace of the Hermitean matrix K

n

, it

is clearly also true that wK

n

v

T

= 0 for any vector w, not just w = v. It follows that the

state de�ned by the vector v is orthogonal to any state at level n. Furthermore, since the L

0

eigenspaces are all orthogonal, it follows that a null state is orthogonal to any other state in

the Verma module. Then in particular, if jxi is a null state kL

n

jxi k = 0 for all n, since this

relation can be interpreted as the orthogonality relation between jxi and the Verma module

state L

�n

L

n

jxi. Thus the Virasoro generators take null states to null states or annihilate

them. If we act with positively moded Virasoro generators it must happen that after a �nite

number of steps we encounter a state jx

s

i which is annihilated by all positive L

n

's, since jhi

has positive norm. The state jx

s

i is at the same time a descendant of jhi (as are all states

in the Verma module) as a primary, since it is annihilated by all positive L

n

's. Such states

are called singular states or (more frequently) singular vectors. (Note that the de�nition of

a singular vector (in contrast to a null vector) does not require a norm.)

Consider now the states obtained by action with all Virasoro generators on the singular

state jx

s

i. Clearly they form a closed subset of the states in the Verma module of jhi. This

implies that if we remove all these states we will still have a non-trivial representation of the

Virasoro algebra. In other words, suppose that jx

s

i is generated from the ground state jhi by

a combination of Virasoro generators L, jx

s

i = L jhi. Then we can de�ne a representation

of the Virasoro algebra on the subspace of the Verma module obtained by removing jx

s

i

(and all its descendants) by imposing the condition L jhi = 0. This corresponds in SU(2) to

the condition J

�

j�ji = 0 in a representation with spin j. Obviously we can only remove a

descendant if it has zero norm; otherwise the norms of the left-hand side and the right-hand

side of L jhi = 0 contradict each other.

We see thus that we can systematically remove all null states from the Verma module by
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removing all sub-representations whose highest weight states are the singular vectors. On

the other hand, negative norm states cannot be removed. If we wish to obtain unitary

representations, we are obliged to consider only ground states jhi for which no negative

norm states appear at all. This turns out to be very restrictive, at least for c < 1.

4.8. The Kac determinant at level 2

The �rst evidence for that is seen at the second level. The explicit expression for K

2

is

K

2

=

 

4h+

1

2

c 6h

6h 4h + 8h

2

!

hhjhi (4:4)

For large values of c and h the diagonal terms dominate, and the eigenvalues are positive.

The determinant is

det K

2

= 2

�

16h

3

� 10h

2

+ 2h

2

c+ hc

�

hhjhi

2

:

This can be written as

det K

2

= 32(h � h

11

)(h� h

12

)(h � h

21

)hhjhi

2

;

where we introduce for future purposes

h

pq

=

[(m+ 1)p �mq]

2

� 1

4m(m+ 1)

; (4:5)

with

m = �

1

2

�

1

2

r

25 � c

1� c

(4:6)

Note that choosing the + or the � sign has the e�ect of interchanging m with �m�1, which

amounts to interchanging p and q.

The determinant is proportional to h (in the second form this is slightly less manifest, but

note that h

11

= 0). This is due to that fact that the norm of L

�1

jhi is proportional to h.

Any state built on top of L

�1

jhi will have a norm proportional to the norm of L

�1

jhi, and

hence det K

2

is also proportional to h.
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The vanishing lines in the (h; c) plane are as follows

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2

1.

1.

(1,2)

(2,1)

(1,1)

h

c

Note that the branches h

1;2

and h

2;1

join smoothly at c = 1. The branch h

11

coincides with

the c-axis, as explained above. Since there are two positive eigenvalues for large c and h,

we move into a region with precisely one negative eigenvalue when we cross one of the lines.

Apart from the region h < 0, which was already ruled out, this eliminates the dashed area

to the left of the curve. If h and c are within that area the corresponding representation of

the Virasoro algebra has negative norm states. Points on the border of the two regions are

acceptable since we can remove the zero norm states present there.

From the second row of K

2

(see (4.4)) we can read o� that the null state { if it exists { is of

the form

�

L

�2

�

3

2(2h + 1)

L

2

�1

�

jhi (4:7)

The �rst row then gives us an expression for c in terms of h.

4.9. The Kac determinant at level 3 and 4

At the third level we have to consider the states L

�3

jhi, L

�2

L

�1

jhi and (L

�1

)

3

jhi, etc. A

general formula for the Kac determinant can be derived [11,12], namely

det K

n

= �

n

�

pq�n

(h � h

pq

)

P (n�pq)

hhjhi

n

;

The function P (N) gives the number of partitions of N , i.e. the number of ways of writing
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N as a sum of integers. For example P (0) = 1; P (1) = 1; P (2) = 2; P (3) = 3 and P (4) = 5,

etc. This is equal to the number of states at level N , including null states.

The following picture shows the curves for the third level, together with those for the second

one.

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

22.

1.

1.

(1,3)

(3,1)

(1,2)

(2,1)

A

B

C

At level 2 we had ruled out regions B and C. The Kac determinant at level 3 tell us that

regions A and C are ruled out. It says nothing about region B, since we have to pass two

vanishing curves to get there, so that the determinant is positive there (but of course there

are in fact two negative eigenvalues in this region). But region B was already ruled out. The

entire area to the left of the two curves contains negative norm states, and is thus ruled out.

At level 4 we get the following picture

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2

1.4

1

1

1
2

1
2
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Now an even bigger region gets ruled out, but it should also be clear that the picture at level

n always contains all vanishing lines from lower levels.

4.10. The discrete series of minimal unitary Virasoro models

Strictly speaking one can never exclude these lines by looking at the determinant alone. A

more detailed argument [13] shows that of the entire region 0 < c � 1; h � 0 only a discrete

set of points remains. These points are at the following c and h values:

c = 1 �

6

m(m+ 1)

; m � 3

with

h =

[(m+ 1)p �mq]

2

� 1

4m(m+ 1)

; p = 1; : : : ;m� 1; 1 � q � p :

The last formula looks quite similar to that for the vanishing curves, whereas the inverse of

the �rst formula gives m in terms of c exactly as in (4.6). The main di�erences are that

m is now restricted to integer values and that the range of p and q is limited. This result

implies that these values of h and c occur on an in�nite number of vanishing lines, i.e. they

are intersection points of an in�nite number of lines. The �rst such intersections, occurring

for c =

1

2

and h =

1

16

and h =

1

2

, can be seen at level 3 and 4.

For c = 0 most h-values are now eliminated, except for a few discrete points where the

vanishing lines reach the h axis. These can be taken care of by considering the set of states

L

�2n

jhi and L

2

�n

jhi for su�ciently large n [14].

Arguments of this kind can of course only rule out points. To show that conformal �eld

theories with these representations actually exist, the easiest thing to do is to construct

examples. We will return to this later.

For c � 1 unitary representations exist for any positive value of h. For integer values of c,

c = N , it is quite easy to construct such representations explicitly using free bosons.
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5. Correlation functions

The objects we want to calculate in �eld theory in general, and in conformal �eld theory in

particular are the correlation functions (it is common practice to use statistical mechanics

terminology here; in �eld theory language we would speak of Green's functions). If we know

all correlation functions, we can say that we have completely solved the theory; we are then

able to compute any scattering amplitude. In four-dimensional �eld theory this is a very

hard problem that we can only address in perturbation theory. In two-dimensional �eld

theory we can go much further.

In path-integral formulation we are interested in expressions of the form

Z

D�O

1

(�(z

1

)) : : : O

n

(�(z

n

))e

�S(�)

; (5:1)

where � stands generically for any �eld in the theory (possibly including ghosts), O

i

is some

function of the �elds, and S is the action, which one continues to Euclidean space to improve

convergence.

When computing such an integral one has to specify the two-dimensional surface on which

the �elds � live. This can be the plane, but it can be any other two-dimensional surface

as well. Locally, any such surface looks like a plane, but globally they can have di�erent

topologies. In two dimensions, there is a complete classi�cation of the di�erent topologies one

can have, the theory of Riemann surfaces. They are classi�ed in terms of a single number,

the Euler index, or the genus. The genus g simply counts the number of handles on the

surface, with the sphere having g = 0, the torus g = 1, etc (the Euler index � is equal to

2(1 � g)). The cylinder is a surface with boundaries, but if we make it in�nitely long and

at the points at 1 and �1 we may think of it topologically as a sphere (with two special

points). Similarly the complex plane is topologically a sphere, if we add the point jzj =1.

If one tried to do any of this in four dimensions one would quickly be lost, since there does

not exist a corresponding classi�cation of four-manifolds. Nearly all four-dimensional �eld

theory is done on the four-dimensional plane. The possible rôle of other topologies and even

how to take them into account properly is still very poorly understood.

In statistical mechanics one usually considers only correlation functions on the plane and the

torus. In any case the two-dimensional topology is �xed, and determined by the problem one

is studying. If one imposes periodic boundary conditions in space and time directions, one
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works on the torus. The correlation functions one computes are directly related to quantities

one measures in experiments.

In string theory the computation of two-dimensional correlation functions is part of the

computation of scattering amplitudes in space-time. The prescription (due to Polyakov

[15]) is to sum over all two-dimensional surfaces that satisfy given boundary conditions.

These boundary conditions are a consequence of the external particles for which one wants

to compute the scattering amplitude.

?

The surfaces of interest have a certain number of

handles, with tubes sticking out that correspond to the external particles. If we propagate

these particles to in�nity, and project on a single particle, we may replace these external

lines by single points, just as we did in mapping the cylinder to the sphere. The process of

interest is then described by (5.1), where the functions \O

i

" operators describe the emission

of a certain particle state from the point z

i

on the surface. The corresponding operators are

known as vertex operators.

The topology of the surface corresponds to the order of string perturbation theory. The

sphere gives us all tree diagrams, the torus all one-loop diagrams, etc. Note that there is

only one diagram for each order of perturbation theory. To get the full space-time scattering

amplitude to arbitrary order in perturbation theory, we have to sum �rst over all topologies,

and then integrate over all di�erent surfaces of given topology, as well as over the points z

i

.

These integration variables are called the moduli of the surface.

5.1. Correlation functions on the Riemann sphere

Now we turn to the simplest surface, namely the sphere. As before, we represent it as the

complex plane, with in�nity added as a single point. This is known as the Riemann sphere.

In this case the path-integral can be expressed as a vacuum-to-vacuum amplitude, or vacuum

expectation value,

h0jO

1

(�(z

1

; �z

1

)) : : : O

n

(�(z

n

; �z

n

)) j0i ; (5:2)

where O

i

are the quantum mechanical operators representing the functions in (5.1), and

radial ordering is implicitly understood. The relation between (5.1) and (5.2) is completely

? There are also open string theories, which have non-trivial boundary conditions in the spatial direction

in two dimensions. They are thus de�ned on two-dimensional strips instead of the cylinder. When

they interact they may form, under certain circumstances, non-orientable surfaces like M�obius strips.

These theories are not considered here; we restrict ourselves to closed, orientable manifolds.
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analogous to the more familiar relation in �eld theory between the path integral and time-

ordered perturbation theory.

Conformal invariance puts strong constraints on correlators. Let us �rst consider correlation

functions of primary �elds (here we omit for simplicity the dependence on �z

i

)

h0j�(z

1

) : : : �(z

n

) j0i ;

and investigate the consequence of invariance under the SL

2

(C) subgroup of the conformal

group. We focus on this subgroup �rst to distinguish the extra information we get in two

dimensions from that of conformal invariance in arbitrary dimensions. We have

h0jL

i

= h0jL

y

i

= h0jL

�i

= 0; for i = 0;�1

Therefore we can derive (for i = 0;�1)

0 = h0jL

i

�(z

1

) : : : �(z

n

) j0i

=

X

j

h0j�(z

1

) : : : �(z

j�1

) [L

i

; �(z

j

)]�(z

j+1

) : : : �(z

n

) j0i

+ h0j �(z

1

) : : : �(z

n

)L

i

j0i

The last term vanishes, and the commutator with L

i

generates the in�nitesimal conformal

transformation �

i

. Hence we get

X

j

h0j �(z

1

) : : : �(z

j�1

)�

i

�(z

j

)�(z

j+1

) : : : �(z

n

) j0i = 0

Now we may use the fact that the �elds �

i

are conformal �elds. Then

�

�

� = �@�+ h@��

If we restrict L

i

to SL

2

(C), � can be 1, z or z

2

.
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5.2. Two-point functions

Consider for example the two-point function (propagator)

G(z

1

; z

2

) = h�

1

(z

1

)�

2

(z

2

)i

We �nd that this function satis�es the di�erential equation

[�(z

1

)@

1

+ h

1

@�(z

1

) + �(z

2

)@

2

+ h

2

@�(z

2

)]G(z

1

; z

2

) = 0 ;

with � as above. Let us look at each of these choices. The case i = �1 (� = 1) yields the

equation

(@

1

+ @

2

)G(z

1

; z

2

) = 0 ;

which implies that G depends only on the di�erence of z

1

and z

2

, and not on the sum. Hence

G(z

1

; z

2

) � G(x), x = z

1

� z

2

. Then the equation with i = 0 can be written as

[x@

x

+ h

1

+ h

2

]G(x) = 0 :

The solution is (up to a normalization)

G(x) = x

�h

1

�h

2

:

Finally we can substitute this solution in the equation for i = 1. This yields

(h

1

� h

2

)(z

1

� z

2

)G(z

1

; z

2

) = 0 ;

so that h

1

must be equal to h

2

, or else the propagator vanishes. The �nal result is thus that

G(z

1

; z

2

) = C(z

1

� z

2

)

�2h

; h = h

1

= h

2

:

As usual, we have dropped the anti-holomorphic part, which would have given rise to an

additional factor (�z

1

� �z

2

)

�2

�

h

. The coe�cient C has no physical relevance, as it can be set

to 1 by changing the normalization of the primary �elds.
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5.3. Three-point functions

To get the three-point function

G

(3)

ijk

= h0j �

i

(z

1

)�

j

(z

2

)�

k

(z

3

) j0i

we argue in a similar way. Translation invariance shows that it must be a function of the

di�erences z

ij

= z

i

� z

j

(this holds in fact for an arbitrary n-point function. Rotation (L

0

)

invariance leads to the equation

[z

1

@

1

+ z

2

@

2

+ z

3

@

3

+ h

1

+ h

2

+ h

3

]G

(3)

(z

12

; z

23

) = 0

The correlator is a function of two independent variables instead of three, since z

13

= z

12

�z

23

.

If we write the solution as

G

(3)

(z

12

; z

23

) =

X

ab

D

ab

z

a

12

z

b

23

;

we �nd the condition a+ b = �h

1

� h

2

� h

3

. Finally we use L

1

. The solution is

G

(3)

ijk

(z

12

; z

23

; z

13

) = C

ijk

z

h

3

�h

1

�h

2

12

z

h

1

�h

2

�h

3

23

z

h

2

�h

3

�h

1

31

;

where we have introduced the redundant variable z

13

to get the solution in a more symmetric

form. The coe�cients C

ijk

depend on the normalization of the two-point function, and we

will assume that the latter has been set equal to 1. Again one should multiply this expression

with the anti-holomorphic factors.

The foregoing results can be understood as follows. We have three complex transformations

at our disposal. Using translations, we can move one of three variables z

1

; z

2

and z

3

to any

desired point in the complex plane, for example z

1

= 0. Then, keeping this point �xed we

can use the second symmetry (scalings plus rotations, generated by L

0

and

�

L

0

) to move z

2

to any desired point, and �nally we can do the same with z

3

using L

1

and

�

L

1

, the special

conformal transformation. Actually one can do this separately for the holomorphic and the
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anti-holomorphic variables if one allows separate complex transformations for each. Then it

is simply a matter of requiring that

az

1

+ b

cz

1

+ d

= �

1

;

az

2

+ b

cz

2

+ d

= �

2

;

az

3

+ b

cz

3

+ d

= �

3

;

where �

1

; �

2

and �

3

are three �xed points in the complex plane. Often one chooses z = 0; z =

1 and z =1 for these points. These three equations for the four complex variables a; b; c; d

subject to the determinant condition ad� bc = 1 have a solution if all z

i

are di�erent. Hence

the entire answer is determined if we know the three point function in just three points.

5.4. Four-point functions

This tells us immediately that it cannot work for the four-point function. Indeed, the best

one can do in that case is

G

(4)

(z

i

; �z

i

) = f(x; �x)

Y

i<j

z

�h

i

�h

j

+h=3

ij

�z

�

�

h

i

�

�

h

j

+

�

h=3

ij

;

where f(x) is a function of

x =

z

12

z

34

z

13

z

24

;

which is the only independent ratio which is invariant under the conformal group.

5.5. Conformal Ward identities

So far we have concentrated on the subgroup SL

2

(C). The generalization of the foregoing

discussion is obtained by inserting the generator of in�nitesimal conformal transformations

H

dz�(z)T (z) into the correlation function:

h0j

I

dz

2�i

�(z)T (z)�(w

1

) : : : �(w

n

) j0i ;

where the contour encircles all the points w

i

. By a suitable analytic continuation the contour

can be chosen in such a way that the point z = 0 is avoided.
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w2 

w3 

w1 

w2 

w3 

w1 

We can deform the contour to encircle each w

i

separately; then we get

X

i

h0j�(w

1

) : : :

I

dz

2�i

�(z)T (z)�(w

i

) : : : �(w

n

) j0i

=

X

i

h0j�(w

1

) : : : �

�

�(w

i

) : : : �(w

n

) j0i ;

where the variation of each �eld �(w

i

) with respect to � is represented by a contour integral

around w

i

(cf. (3.3), (3.5)).

Since the foregoing holds for any � we may omit the integral; then we get

h0j T (z)�(w

1

) : : : �(w

n

) j0i

=

X

i

�

h

i

(z � w

i

)

2

+

1

z � w

i

@

@w

i

�

h0j�(w

1

) : : : �(w

n

) j0i :

5.6. Correlators of descendants

Consider the correlator

h0j �

1

(w

1

) : : : �

n�1

(w

n�1

)�

(�k)

n

(w

n

) j0i ;

where �

(�k)

is the k

th

descendant of �. Inserting the de�nition (4.2) and using the conformal

Ward identity we may rewrite the result as

I

dz

2�i

1

(z � w

n

)

k�1

�

h0j T (z)�

1

(w

1

) : : : �

n

(w

n

) j0i

�

n�1

X

i=1

�

h

i

(z � w

i

)

2

+

1

z � w

i

@

@w

i

�

h0j�(w

1

) : : : �(w

n

) j0i

�

In the �rst term the contour runs outside all points w

i

, and hence we can deform it to in�nity.

Then the integral can be transformed to a contour integral around the point z =1, To do
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this explicitly, we can write T (z) =

P

n

L

n

z

�n�2

. Then we transform z to w =

1

z

. This

yields

I

dz

2�i

1

(z � w

n

)

k�1

L

n

z

�n�2

=

I

dw

2�i

�

1

w

2

w

k�1

(1� ww

n

)

k�1

L

n

w

n+2

= �

I

dw

2�i

1

(1� ww

n

)

k�1

L

n

w

n+k�1

Since h0jL

n

= 0 for n � 1 this integral has no singularity inside its contour, and hence it

vanishes. In other words, the contour can be pulled o� the back of the Riemann sphere. The

other terms can be evaluated as follows. The term

L

i

�k

� �

I

w

dz

2�i

1

(z � w

n

)

k�1

�

h

i

(z � w

i

)

2

+

1

z � w

i

@

@w

i

�

is a contour integral around the point w

i

. Using the standard formula

I

w

dz

2�i

1

(z �w)

n

f(z) =

1

(n� 1)!

@

n�1

f(w)

we get

L

i

�k

= �

(1 � k)h

i

(w

i

� w

n

)

k

+

1

(w

i

� w

n

)

k�1

@

@w

i

:

Introducing the operator

L

�k

�

n�1

X

i=1

L

i

�k

we can write the correlation function as

h0j�

1

(w

1

) : : : �

n�1

(w

n�1

)�

(�k)

n

(w

n

) j0i

= L

�k

h0j�

1

(w

1

) : : : �

n�1

(w

n�1

)�

n

(w

n

) j0i

in other words, the correlator of descendant �elds can be expressed entirely in terms of the

correlator of primaries. The same is true for more complicated descendants or for correlators

involving more than one descendant, but the formulas become more complicated.

This is the extra information we get from the additional conformal symmetry speci�c to

two dimensions. As we have seen, SL

2

(C) determines the two-point-functions completely,
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the three-point functions up to constants C

ijk

, the four-point functions up to a function,

etc. In higher-dimensional conformal �eld theories one has an analogous symmetry, and

analogous restrictions. If we had only SL

2

(C) at our disposal, there would still be some

relations between correlation functions, but clearly far more limited, since we could only

use the Virasoro generators L

0

; L

�1

. Sometimes �eld that transform like conformal �elds

under SL(2; C) (or the conformal group in higher dimensions) are called quasi-primary.

Descendant �elds can sometimes be quasi-primary. An example is the energy-momentum

tensor. Due to the conformal anomaly it is not a primary �eld, but since the anomaly does

not a�ect SL

2

(C) it is a quasi-primary �eld.

The extra Virasoro generators beyond SL

2

(C) allow us to organize the �elds in the the-

ory into much larger sets, each consisting out of one primary �eld and in in�nite number

of descendants. The task of computing the correlation functions reduces to doing so for

correlation functions of primary �elds.

5.7. Null state decoupling

There are further constraints on the correlation functions, but they are dependent on the

representation we are considering, and do not hold generically.

The foregoing results have important implications in the special case that a descendant of a

primary �eld is a vector of norm zero, a null state. Since this is not a state in the theory,

it must decouple from all physical amplitudes. For example, we have found in the previous

chapter that certain Virasoro representations { namely those whose c and h values fall on

the second level vanishing curve { have a second level null state

�

L

�2

�

3

2(2h + 1)

L

2

�1

�

jhi = 0 :

It follows that any amplitudes involving the corresponding descendant �eld must vanish.

The descendant �eld is (here � is a conformal �eld with weight h)

�

(�2)

�

3

2(2h+ 1)

@

2

� ;

where we have made use of the fact that the �rst descendant of a �eld is simply the derivative.
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Hence we get

�

X

j 6=i

�

h

j

(w

i

� w

j

)

2

+

1

w

i

�w

j

@

j

�

�

3

2(2h

i

+ 1)

@

2

i

�

h0j �

1

(w

1

) : : : �

n

(w

n

) j0i = 0 ;

where the �rst two terms come from L

�2

, and where we are assuming that �

i

has a second

level null vector. The third term may be expressed in terms of (L

�1

)

2

using the results of

the previous subsection, but that does not simplify the answer.

This is a di�erential equation that any n-point function involving �

i

has to satisfy. Obviously

there are higher order di�erential equations for any other singular state. Thus we see that

all correlation functions satisfy a huge number of di�erential equations.

It is instructive to verify that the two-point and three point functions do indeed satisfy the

equation that follows from the second level descendants.

Note that we have these strong constraints only if there are null states in the Virasoro

representations i.e. only if 0 < c � 1.

?

5.8. Operator products

Consider the three-point function G

(3)

ijk

(z

1

; z

2

; z

3

) in the limit z

1

! z

2

. The leading term is

h0j�

i

(z

1

)�

j

(z

2

)�

k

(z

3

) j0i = G

(3)

ijk

(z

1

; z

2

; z

3

) � C

ijk

(z

1

� z

2

)

h

3

�h

1

�h

2

(z

1

� z

3

)

�2h

3

The last term looks like the propagator of the �eld �

3

, and the expression suggests that

the two primary �elds �

i

and �

j

contain in their product the �eld �

3

, with strength C

ijk

.

The precise statement of this fact is the operator product expansion, which says that the

product of two operators O

i

(x) and O

j

(y) in �eld theory can be expanded in a complete set

of operators O

k

(y) (without loss of generality we can choose our basis of operators at the

point y).

O

i

(x)O

j

(y) =

X

k

C

ijk

(x; y)O

k

(y) :

By translation invariance C

ijk

(x; y) = C

ijk

(x� y).

? The only exception is the null state L

�1

j0i.
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In conformal �eld theory we can take as the basis all primaries and a complete set of descen-

dants. Then the operator product expansion has the form

�

i

(z; �z)�

j

(w; �w) =

X

k

C

ijk

(z � w)

h

k

�h

i

�h

j

(�z � �w)

�

h

k

�

�

h

i

�

�

h

j

�

k

(w; �w) : (5:3)

The sum on the right-hand side contains both primaries and descendants, and h

k

must be

interpreted as the ground state conformal weight plus the excitation level of the descendant.

If i; j; k are primaries, this expression agrees with the result of the three-point function,

and tells us in particular that the coe�cients C

ijk

appearing in the operator product and

the three-point function must be the same. In fact, the operator product holds also if

all three �elds are descendants. The behavior of the coe�cients as a function of z and

w is completely �xed by translation invariance and the scaling properties (\dimensions")

of the �elds involved. Both are good symmetries, even for descendants. We have already

encountered the operator product of the energy momentum tensor (a descendant) with other

�elds.

Since correlation functions involving descendants are related to those of primaries, it should

not be surprising that one can do the same for operator products. Indeed, the operator

product of two primary �elds may be written as

�

i

(z; �z)�

j

(w; �w) =

X

k;p;�p

C

p�p

ijk

(z �w)

h

k

+n

p

�h

i

�h

j

(�z � �w)

�

h

k

+n

�p

�

�

h

i

�

�

h

j

�

p�p

k

(w; �w) ; (5:4)

where �

p�p

k

is a descendant of �

k

at level (n

p

; n

�p

). One can show that the operator product

coe�cients C

p�p

ijk

can be expressed in terms of those of the primary �elds,

C

p�p

ijk

= C

ijk

�

k(p)

ij

�

�

k(�p)

ij

;

where the coe�cients � are determined completely by conformal invariance.
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5.9. Duality

The operator product is a useful tool for the computation of four-point functions. However,

if we consider the correlator

h0j �

i

(z

1

; �z

1

)�

j

(z

2

; �z

2

)�

k

(z

3

; �z

3

)�

l

(z

4

; �z

4

) j0i

it is not obvious for which pairs of �elds we should compute the operator product �rst. If

we combine the �elds in pairs there are three alternatives, namely (i; j)(k; l), (i; k)(j; l) or

(i; l)(j; k). The result should not depend on how we perform the calculation. This is known

as duality (as are many other symmetries). Diagrammatically we may represent this as

j

i

k

l

j

i

k

l

j k

i l

= =m m
m

where in all three cases a sum over the intermediate states is understood. To write the

equations belonging to this picture one de�nes the conformal blocks. First we simplify the

four-point function by �xing all but one coordinate using SL

2

(C)

F

ijkl

(z; �z) = h0j�

i

(z; �z)�

j

(0; 0)�

k

(1; 1)�

l

(1;1) j0i : (5:5)

If we compute this correlator by making the contractions (i; j)(k; l) we can write the result

as

F

ijkl

(z; �z) =

X

m

C

ijm

C

mkl

F

m

ijkl

(z)

�

F

m

ijkl

(�z) ;

where the sum is over all primary �elds. All descendant contributions are taken into account

by the functions F , called the conformal blocks. Since the Virasoro algebra acts chirally

(i.e. splits completely in holomorphic and anti-holomorphic generators) we can factorize the

contribution of each primary into a holomorphic and an anti-holomorphic contribution, as

shown.
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Duality imposes the following condition:

X

m

C

ijm

C

mkl

F

m

ijkl

(z)

�

F

m

ijkl

(�z)

=

X

m

C

ikm

C

mjl

F

m

ikjl

(1� z)

�

F

m

ikjl

(1� �z)

= z

�2h

i

�z

�2

�

h

i

X

m

C

ilm

C

mkj

F

m

ilkj

(

1

z

)

�

F

m

ilkj

(

1

z

)

Note that to go from the �rst to the second (third) line one has to interchange j and k (l).

This implies that the choice of the �xed points 0; 1 and 1 does not agree anymore with the

convention chosen in (5.5), and we have to make a conformal transformation to get back to

our conventional coordinates. In going from the �rst to the second line that transformation

is z ! 1 � z, which interchanges 0 and 1 while leaving 1 �xed. In going from the �rst to

the third we use z!

1

z

, which interchanges 0 and 1 while leaving 1 �xed. Inevitably these

transformations also act on the fourth argument, z, and furthermore they introduce some

conformal factors.

Once the conformal blocks are known, these equations impose strong constraints on the oper-

ator product coe�cients C

ijk

. The conformal blocks are constraint by decoupling equations

for null vectors (assuming there are null vectors). In principle it may be possible to use

these constraints to determine the conformal blocks as well as all the operator product coef-

�cients completely. In practice this is quite hard, although the computation can be carried

out completely for the simplest conformal �eld theory, the one at c =

1

2

(the critical Ising

model).

6. Conformal �eld theory on a torus

Up to now we have seen that a conformal �eld theory is described algebraically by a set of

ground states

�

�

h;

�

h

�

= �

h;

�

h

(0; 0) j0i

on which the left- and right Virasoro algebra acts.

The question which we want to address now is: which combinations of ground states can

actually occur in a conformal �eld theory. Once we know that we have speci�ed the set

of physical states in the theory completely: they consist of the ground states plus all the

descendants generated by the generators of the Virasoro algebra, minus all null vectors.
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6.1. Parametrization of the torus

Intuitively one would expect all the states in a theory to contribute to loop diagrams. Hence

loop diagrams should be a useful tool to answer this question. For this reason we are going

to study conformal �eld theory on the simplest loop diagram, the torus.

The torus is a cylinder whose ends have been sewn together, as shown in the \artists im-

pression" above. The most convenient mathematical description of the torus is in terms of

the complex plane modulo a lattice, as show below

Im

Re0

τ

1

The meaning of this picture is that all points in the complex plane that di�er by a linear

combination of the two basic lattice vectors are considered identical. Identi�cation along

the real axis has the e�ect of rolling up the complex plane to a cylinder; then identi�cation

along the vector labelled � rolls up the cylinder to a torus.

A lot of symmetries have been taken into account already in arriving at the picture. First of

all two-dimensional general coordinate invariance (also called reparametrization invariance

or di�eomorphism invariance) has been used to \straighten" the coordinates so that we get

a lattice; rotational invariance has been used to make one direction point along the real axis;

translation invariance to put a point of the lattice at the origin and global scale invariance

to make the horizontal lattice spacing equal to 1. This means that �nally the entire lattice
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is described by one complex number, � , which can be chosen in the upper half plane.

6.2. The partition function

We would like to compute the path integral

Z

D�e

�S

E

(�)

; (6:1)

where S

E

is the Euclidean action of a given �eld con�guration on the torus, and the integral

is over all �eld con�gurations. This notation is only symbolic. If we have a Lagrangian

description of a conformal �eld theory, � stands for all �elds in the theory. For example,

we could consider free bosonic theories, and in that case the integral is over the bosonic

�elds �

i

. However, in many cases such a Lagrangian formulation is either not available, or

not practically usable. It is therefore more convenient to express the path-integral in terms

of the Hamiltonian of the theory. The Hamiltonian is (related to) L

0

+

�

L

0

, and this is a

quantity we always have at our disposal in a conformal �eld theory.

In ordinary quantum dynamics (in 0+1 dimensions) one can derive the formula

Z

PBC

Dqe

�S

E

(q)

= Tr e

��H

: (6:2)

Here S

E

is some Euclidean action that satis�es certain conditions; those conditions are

satis�ed for example for the harmonic oscillator. The integral is over all paths q(t) that start

at t = 0 and end at t = �, subject to the periodic boundary condition (\PBC") q(0) = q(�).

The derivation can be found in many text books on path integrals.

The path integral we are considering is not in 0+1 dimensions, but in 1+1 dimensions.

Hence the integration variables � have an extra continuous label x

1

. However this is merely

a generalization of (6.2) from one degree of freedom (q) to in�nitely many (�(x

1

)).

In the lattice description of the torus we regard the real axis as the x

1

direction, and the

imaginary axis as the Euclidean time direction. If Re � = 0 we would �nd for the path

integral (6:1), as a straightforward generalization of (6:2)

Z

D�e

�S

E

(�)

= Tr e

�2� Im �H

:

The only small subtlety here is the factor 2�. It appears because the torus as depicted

earlier has a periodicity 1 rather than 2� along the x

1

direction. To make contact with
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earlier conventions we had to scale up the entire lattice by a factor of 2�, so that we get 2��

instead of � .

What happens if Re � 6= 0? In that case we have to twist the torus before gluing it

together again, and the periodic boundary conditions in the Euclidean time direction are

de�ned including such a shift. The operator performing such a shift in the x

1

direction is

the momentum operator P . A shift by an amount 2� Re � is achieved by the operator

e

iP (2� Re �)

The correct result is obtained by inserting this shift operator in the trace, so that we get

Z

D�e

�S

E

(�)

= Tr e

�2� Im �H

e

iP (2� Re �)

: (6:3)

The operators H and P are the time and space translation operators on the cylinder, and

they can be derived from the energy-momentum tensor.

6.3. The cylinder versus the Riemann sphere

Up to now we have de�ned quantum conformal �eld theory, and in particular the energy-

momentum tensor, on the complex plane (Riemann sphere), related to the cylinder via a

conformal mapping. We now want to examine carefully how the energy-momentum tensor

de�ned on the complex plane is related to that on the cylinder.

To do so we need the transformation of the energy momentum tensor itself under conformal

transformations. Since it is not a conformal �eld, we have to work this out explicitly.

In�nitesimal conformal transformations are generated by

Q

�

=

1

2�i

I

dz�(z)T (z) ;

as we have seen before. The in�nitesimal conformal transformation of the energy momentum

tensor is thus

�

�

T (w) = [Q

�

; T (w)] =

1

2�i

I

dz�(z)T (z)T (w) :
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Into this expression we insert the operator product of T (z) and T (w). The result is

�

�

T (w) = �(w)@T (w) + 2@�(w)T (w) +

c

12

@

3

�(w)

The global form of this transformation is

T (w)! (@f)

2

T (f(w)) +

c

12

S(f;w) (6:4)

The factor multiplying

c

12

is known as the Schwartzian derivative,

S(f; z) =

@f@

3

f �

3

2

(@

2

f)

2

(@f)

2

:

It is easy to see that its in�nitesimal form is indeed @

3

� (just substitute f(w) = w + �(w)),

but the exact expression is a bit harder to understand. Note however the following. If we

apply a second conformal transformation, w! g(w), we get in the �rst step (6.4), and after

the second step

(@

w

g(w))

2

h

(@

g

f(g))

2

T (f(g(w))) +

c

12

S(f(g); g)] +

c

12

S(g(w); w)

i

On the other hand, de�ning the function h = f � g (which means h(w) � f(g(w))) we would

expect to get exactly (6.4) with f replaced by h. For the terms involving T this is manifestly

true, since @

w

g(w)@

g

f(g) = @

w

f(g(w) = @

w

h(w), but for the constant terms we get the

non-trivial condition

S(f � g;w) = (@

w

g(w))

2

S(f(g); g) + S(g(w); w)

One may check that the Schwartzian derivative does indeed satisfy this condition.

We are now ready to apply this to the map from the plane to the cylinder. The map we will

use is z = e

w

, where z is the plane coordinate and w the cylinder coordinate. We get

T

cyl

(w) = [@

w

z(w)]

2

T (z(w) +

c

12

S(z;w) = z

2

T (z)�

c

24

(6:5)

Now we can substitute the mode expansion for T (z) on the plane

T (z) =

X

n

z

�n�2

L

n

:
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Then we �nd

T

cyl

(w) =

X

n

e

�nw

(L

n

)�

c

24

;

and analogously for the anti-holomorphic component.

Our next task is to �nd the precise de�nition of H and P . They are derived from the

energy-momentum tensor on the cylinder in the following way

H =

1

2�

�

Z

dImw T

cyl

(w) +

Z

dImw T

cyl

( �w)

�

and

P =

1

2�

�

Z

dImw T

cyl

(w) �

Z

dImw T

cyl

( �w)

�

:

Hence we �nd

H = L

0

�

c

24

+

�

L

0

�

�c

24

;

where we have allowed for the possibility that the holomorphic and anti-holomorphic com-

ponents have di�erent central charges. For the momentum we �nd

P = (L

0

�

c

24

)� (

�

L

0

�

�c

24

) :

Substituting this into (6.3) we get

Z

D�e

�S

E

(�)

= Tr e

2�i�(L

0

�

c

24

)

e

�2�i�� (

�

L

0

�

�c

24

)

� P (�; ��) :

The right hand side of this expression will serve as the de�nition of the partition function for

general conformal �eld theories. As promised, this expression does not require a Lagrangian

formulation, and only uses the Virasoro generators themselves. The trace is over all states

in the Hilbert space (i.e. not including zero norm states).
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6.4. Virasoro characters

The partition function can be expressed in terms of primary �elds and descendants, in the

following way

P (�; �� ) =

X

i;j

M

ij

X

i

(� )X

j

(��) : (6:6)

Here i and j label a certain highest weight states ji; ji. The label i is used for representations

of the holomorphic algebra, and j for the anti-holomorphic algebra. The multiplicity of such

a state is M

ij

, a non-negative integer. The functions X are the (Virasoro) characters of the

representation. They are de�ned as

X

i

(� ) = Tr

desc: of i

e

2�i�(L

0

�

c

24

)

Thus the trace is over all (positive norm) states in the highest weight representation labelled

i. If we know the content of the representation, the missing information is thus contained in

the integers M

ij

.

6.5. Modular invariance

Up to now we had de�ned the torus in terms of a lattice. This lattice was de�ned by two

basis vectors, corresponding to the points \1" and \�" in the complex plane. However, the

same lattice { and hence the same torus { can be described just as well by choosing di�erent

basis vectors. For example the choice \1", \� + 1" clearly describes the same lattice

Im

Re0 1

τ τ+1

This can be generalized further. One should keep in mind that the torus was de�ned by

rotating one basis vector along the real axis in the complex plane, and scaling it to 1. The
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choice of this basis vector is free; we can also choose the direction \�". This has the e�ect of

interchanging the two basis vectors. This rotation, combined with a rescaling the new basis

vector along the real axis, has the e�ect of replacing � by �

1

�

. This is most easily illustrated

by taking � purely imaginary:

1

τ

rotated

rescaled
- 1

τ

The set of such transformations of the torus forms a group, called the modular group. We

have identi�ed two elements of that group, namely

T : � ! � + 1

S : � ! �

1

�

It turns out that these two transformations generate the entire group. The most general

modular transformation has the form

� !

a� + b

c� + d

; a; b; c; d 2 Z; ad� bc = 1 :

This group is isomorphic to SL

2

(Z)=Z

2

. The group SL

2

can be de�ned by the set of 2� 2

matrices

 

a b

c d

!

with determinant 1 (we have already encountered the group SL

2

(C), where the matrix

elements are complex numbers). The group SL

2

contains the element �1. In the modular

transformation this is indistinguishable from the identity, and for this reason the modular

group is actually isomorphic to SL

2

(Z)=Z

2

rather than SL

2

(Z). One may check that the

modular transformations satisfy

(ST )

3

= S

2

= 1 :

It is now natural to ask how the partition function behaves under transformations in the

modular group. If we start with a well-de�ned two-dimensional theory on the torus, in which
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all �elds are periodic along all cycles around the torus, the result of the path-integral should

not depend on how that torus was parametrized. Hence the partition function should be

invariant under modular transformations. For example, if we compute the path integral for

free bosons on the torus, we will automatically get a modular invariant partition function.

6.6. Modular transformations of the characters

On the other hand, if we just choose some multiplicities in (6.6) we will in general not get

a modular invariant partition function. To verify if a partition function written in terms of

characters is modular invariant we need to know how the characters transform. This is easy

for the transformation T :

X

i

(� + 1) = e

2�i(h

i

�

c

24

)

X

i

(� )

This is often written in matrix form,

X

i

(� + 1) =

X

j

T

ij

X

j

(� ) ;

where T is a diagonal matrix of phases. The transformation S is much harder to compute,

and it is not even obvious that one can express the transformed characters in the original

ones. One can, however, and the result is

X

i

(�

1

�

) =

X

j

S

ij

X

j

(� ) ;

where S is a unitary and symmetric matrix.

6.7. Conditions for modular invariance

The conditions for modular invariance of the partition function can now be phrased in the

following simple matrix form

[M;T ] = [M;S] = 0 ;

with

M

ij

2 Z; M

ij

� 0 :

Furthermore this is usually supplemented with the additional physical requirement that the

vacuum is present in the theory, and is unique. If we label the vacuum by "0", we get thus
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the condition

M

00

= 1 :

6.8. The diagonal invariant

These conditions have a trivial solution

M

ij

= �

ij

:

This is called the diagonal invariant. Consider for example a conformal �eld theory with

central charge

1

2

. We have seen that at this value for c there are just three Virasoro repre-

sentations, with h = 0;

1

2

and

1

16

. A modular invariant partition function of this system is

thus obtained by choosing the three ground states j0; 0i ;

�

�

1

2

;

1

2

�

and

�

�

1

16

;

1

16

�

. Corresponding

to these ground states there are three primary �elds that create the ground states from

the vacuum, often denoted as 1,  and � respectively. We have now speci�ed the theory

completely. It is known as the Ising model.

6.9. Integration over moduli

As remarked above, it is not hard to construct partition functions that are not modular

invariant. Usually these are rejected. We have already argued that they can not correspond

to well-de�ned two-dimensional theory on the torus. In string theory there is another reason,

namely that one has to integrate over the parameter � . String perturbation theory is a

summation over all two-dimensional surfaces. This sum splits in a sum over all di�erent

topologies, and integrals over all di�erent shapes of surfaces with a given topology, the

moduli. In two dimensions the topology can be described by a single parameter, the number

of handles, or the genus. The genus is 0 for the sphere, 1 for the torus, etc. At genus 1 there

is one complex modulus, the parameter � . The integral over � is not over the full positive

upper half plane, but should be restricted to a region that covers the set of distinct tori just

once. An example of such a region is shown below
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1
2

1
2- 1-1

The entire upper half plane is covered with an in�nite number of such regions of di�erent

shapes and sizes. For example, the lower part of the strip �

1

2

� Re � <

1

2

contains an

in�nite number of such regions. The integral over � should not depend on the choice of the

region, or otherwise the theory is not well-de�ned. If the theory is modular invariant, this

problem does not arise.

6.10. Operator products and locality

An important consequence of modular invariance is that operator products are local, i.e.

that it has no branch cuts as a function of z � w. This is true because one always �nds

combinations like (z � w)

h

(�z � �w)

�

h

= jz � wj

2

�

h

(z � w)

h�

�

h

, with h�

�

h an integer.

This implies that integrals over the positions z and w around the cylinder (or along cycles

of the torus or higher Riemann surfaces) are well-de�ned. Such integral occur always in

the application to string theory, where one has to integrate not only over the moduli of the

Riemann surface, but also over the positions of the vertex operators. If the operator product

were not local, there would inevitably exist correlation functions which have branch cuts in

some of their variables, and one would encounter integrals like

H

dz

p

z around z = 0. Since

the integrand is not periodic around the origin, the integral depends on the choice of the

beginning and the end of the interval, and is thus not de�ned.

In applications to statistical mechanics the existence of such branch cuts is less obviously

fatal, and indeed even in the application to string theory it can be useful to drop the re-

quirement of locality (and modular invariance) in intermediate results.
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6.11. Fusion rules

The coe�cients C

ijk

in three-point functions or in the operator product satisfy certain selec-

tion rules. Note that i; j and k label �elds �

i

(z; �z) etc.. The label \i" stands thus for some

combination of holomorphic and anti-holomorphic representations of the Virasoro algebra.

The selection rules depend on those representations. To discuss them it is thus better to

label the �elds as �

i;�{

.

The selection rules imposed by the Virasoro algebra are called fusion rules [9]. They are

written as follows

[i]� [j] =

X

k

N

ijk

[k] :

Here N

ijk

is a set of non-negative integers, and (i) : : : label representations of the Virasoro

algebra. The notation with raised indices is introduced for future purposes (when we consider

extended algebra), and has no relevance here.

If the fusion coe�cient N

ijk

vanishes, this means that the OPE-coe�cients C

i�{;j�|;k

�

k

vanish.

If the coe�cient does not vanish, the corresponding OPE-coe�cient is allowed, and usually

it is then indeed non-zero.

From this discussion one might think that N

ijk

must be either zero or 1, but actually it can

be any non-negative integers. Values higher than 1 indicate that there exists more than one

way of coupling the �elds. This should be compared to the tensor product rules in group

theory; for example in SU(3) there are two distinct ways of coupling two 8's to a third 8.

The interpretation in terms of three point functions tells us that N

ijk

must be symmetric in

all three indices.

Although the fusion rules are similar to rules for tensor products in several respects, it would

not be correct to refer to them as the tensor product rules of the Virasoro algebra. If one

tensors two Virasoro representations, one would have to add up the central charge and the

conformal weight, which is not the case for the fusion rules.
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6.12. The Verlinde formula

The reason fusion rules are discussed in this chapter is that there turns out to be a relation

between the fusion rule coe�cients and the matrix S, discovered by E. Verlinde [16]. His

formula is

N

ijk

=

X

n

S

in

S

jn

S

kn

S

0n

: (6:7)

It is remarkable that such a bizarre-looking expression involving matrix elements of a unitary

matrix actually produces non-negative integers, but it does!

Another useful way of looking at this formula is to regard N

ijk

as a collection of matrices

(N

i

)

jk

= N

ijk

. Then (6.7) can be rewritten as

(S

y

N

i

S)

pq

= (

S

iq

S

0q

)�

pq

:

In words, the matrix S simultaneously diagonalizes the fusion rules for all �elds i. In deriving

this relation we have used the fact that the matrix S on Virasoro representations is real.

The ratios

�

(n)

i

�

S

in

S

0n

are sometimes called the (generalized) quantum dimensions of the �eld i (there is a more

restricted de�nition where one only calls �

(0)

i

the quantum dimension). Yet another way of

writing the Verlinde formula is as

�

(n)

i

�

(n)

j

=

X

k

N

ijk

�

(n)

k

;

with no sum over n. This equation states that the quantum dimensions for each value of n

form a one-dimensional representation of the fusion rules.

Formula (6.7) was conjectured by Verlinde, and proved by Moore and Seiberg [17].
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6.13. Higher genus partition functions

The basic ideas discussed here have generalizations to higher genus. On a surface with n

handles one can de�ne a basis of homology cycles a

i

, b

i

, i = 1; : : : n

a1 a2 
a3 

b1 b2 b3 

as shown in the �gure. One can choose a set of n holomorphic 1-forms on the surface, and

normalize them so that

Z

a

i

!

j

= �

ij

Then the integral along the b cycles de�nes the period matrix 


ij

Z

a

i

!

j

= 


ij

This is the higher genus generalization of � . In the lattice picture of the torus, the a-cycle is

the line from 0 to 1, and the b cycle the line from 0 to � . The holomorphic 1-form is dz. Since

it is constant it is periodic, hence well-de�ned on the torus. Clearly

R

a

dz =

R

1

0

dz = 1 so

that it is properly normalized. Then 


11

=

R

a

dz =

R

�

0

dz = � . The modular transformation

S corresponds to the mapping a! �b and b! a, while the transformation T corresponds

to replacing b by a+ b, without changing a.

The higher genus generalization of the modular transformation is


! (A
 +D)(C
 +D)

�1

;

where the n� n matrices A;B;C;D must be such that

 

A B

C D

!

2 Sp

2n

(Z)

For n = 1 one has the isomorphism Sp

2n

� SL

2

.
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The condition for higher genus modular invariance is thus simply invariance of the partition

function P (
;

�


) under this group. The computation of the partition function is much

harder, and in practice has only been done for theories of free bosons and fermions, plus a

few isolated other cases.

The most important constraint come from the partition function at genus 1. The genus-2

partition function adds some further restrictions, in particular to quantities which vanish at

genus 1. There are believed to be no further constraints from genus three and higher.

The de�nition of the modular domain which contains all inequivalent surfaces exactly once

becomes much harder than it is for the torus.

7. Extensions of the Virasoro algebra

In most applications one is dealing with theories that have more symmetries than just the

Virasoro algebra. Such symmetries are called extensions of the Virasoro algebra. These

theories have a larger algebra that contains the Virasoro algebra as a subalgebra. These

generalized algebras are often referred to as chiral algebras, since they are generated by

currents that are holomorphic or anti-holomorphic, as we will see. When going back to the

cylinder and to Minkowski space, holomorphic dependence on z translates to dependence on

x + t, so that the corresponding modes are purely left-moving; hence the word chiral. The

chiral algebra may in fact be di�erent in the holomorphic and the anti-holomorphic sector;

then one speaks sometimes of a heterotic theory.

Since the algebra contains the Virasoro algebra, all representations can be decomposed into

Virasoro representations. In most cases the number of Virasoro representations contained in

an extended algebra representation is in�nite.

7.1. Rational conformal field theories

We have seen that the Virasoro algebra with 0 < c < 1 has a �nite number of unitary

representations. In general, a conformal �eld theory with an extended algebra with a �nite

number of unitary representations is called a rational conformal �eld theory. One can show

that the values of c and h in such a theory must be rational numbers [18,19].

For c � 1 the number of Virasoro representations is in�nite. This implies that a diagonal

modular invariant partition function necessarily contains an in�nite number of terms.
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Since extended algebras can group an in�nite number of Virasoro characters into extended

algebra representations, it may happen that a conformal �eld theory with c > 1, which has

an in�nite number of Virasoro representations, becomes a rational conformal �eld theory

with respect to an extended algebra.

This clearly has positive consequences for the solvability of the theory. First of all one would

expect that there are fewer distinct correlation functions to be calculated. Just as for the

Virasoro algebra one would expect that it should be su�cient to know the correlation func-

tions for just one (highest weight) state in each representation. In a rational conformal �eld

theory the number of distinct n-point functions is then �nite. This implies also that the

number of operator product coe�cients is �nite, so that one has a much better chance of

determining them all from duality arguments. But perhaps the most important consequence

of additional symmetry is the appearance of additional null vectors. This implies more con-

straints on correlation functions than the Virasoro algebra gives by itself, so that correlators

have to satisfy additional di�erential equations.

7.2. Currents

The Virasoro algebra is generated by operators L

n

, which are modes of a current T (z), which

has conformal spin 2. Extended algebras are generated by modes of other currents. These

currents may have integer spin (bosons), half-integer spin (fermions) or fractional (rational,

but not half-integer) spin (para-fermions [20]). An important di�erence between bosonic

currents and (para)-fermionic ones is that the former can satisfy the condition h �

�

h =

0 mod 1. Hence the currents J(z) can appear as conformal �elds in a modular invariant

theory. The converse is also true. Suppose a conformal �eld theory contains a conformal

�eld J(z; �z) with h 2 Z and

�

h = 0. Then we know that the state J(0; 0) j0i satis�es

�

L

�1

J(0; 0) j0i = 0, since this would-be descendant has zero norm. Hence the corresponding

descendant �eld must vanish. This �eld is @

�z

J(z; �z). Since it must vanish, J(z; �z) must be

holomorphic. .
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7.3. Fermionic currents

Fermionic currents are often discussed in a similar way, as if they were holomorphic operators.

However, they can never appear like that in a modular invariant theory. One way of thinking

about them is in terms of a theory that is conformally invariant only under a maximal

subgroup of the modular group that does not contain the element T but does contain T

2

.

Then fermionic operators are allowed, but correlation functions on the cylinder may have

branch cuts. We will soon see the consequences of this fact. Similar remarks apply to

para-fermionic theories, but will not be discussed here.

7.4. Mode expansions

Modes of the currents are de�ned as follows

J

r

=

I

dz

2�i

z

r+h�1

J(z)

The inverse relation is

J(z) =

X

r

z

�r�h

J

r

(7:1)

Since the currents are conformal �elds, it is straightforward to compute their commutator

with the Virasoro generators,

[L

n

; J

r

] = (n(h � 1) � r)J

r

; (7:2)

where h is the conformal weight of J(z). It follows that acting with J

r

decreases the conformal

weight of a state by r. The commutators of the current modes themselves de�ne the extended

algebra. To compute them requires more detailed knowledge, namely the operator product

of two currents with each other.
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7.5. Integer and half-integer modes

The parameter r that de�nes the modes of a current is not necessarily an integer. Suppose

on some primary �eld �(w; �w)

J(z)�(w; �w) = (z � w)

�

�

0

(w; �w) + : : :

Then we would like to de�ne the J(z)-charges of the state created by � from the vacuum by

means of the contour integral

I

dzz

r+h�1

J(z)�(0; 0) j0i =

I

dzz

r+h�1

z

�

�

0

(0; 0) j0i :

writing z = e

i�

; dz = e

i�

id� we get a phase integral

2�

Z

0

id�e

i(r+h+�)�

This integral is well-de�ned (i.e. independent of the choice of the � interval) only if r+h+� 2

Z. In modular invariant theories � is always an integer, and it follows then that h+ r must

be an integer as well. In theories with fermionic currents, � can have both integer and

half-integer values, and hence we must choose integer or half-integer modes for the currents,

depending on which representation they act. Note that the right-hand side of an operator

product does not contain just one term, but in general an in�nite number of terms. A mode

expansion can only be de�ned if the fractional parts of the exponents � are the same for all

terms. One calls such a universal phase exp 2�i� de monodromy of J around �.

Note that the periodicity changes if we go from the complex plane to the cylinder. Because

of the factor (

@f

@z

)

h

in the conformal transformation currents on the plane and the cylinder

are related as

J

cyl

(w) = z

h

J(z) ;

where z = e

w

. If h is half-integer, the periodicity changes.

For historical reasons [21], representations on which J is half-integer moded are called Neveu-

Schwarz representations. On the plane, the current acting on such ground states is periodic
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around the origin (cf. (7.1)), but it is anti-periodic around the cylinder. Representations

which allow integer modes are called Ramond representations. The current is anti-periodic

on the plane, but periodic on the cylinder. This is summarized in the following table

r 2 Plane Cylinder

Neveu-Schwarz Z +

1

2

periodic anti-periodic

Ramond Z anti-periodic periodic

7.6. Types of chiral algebra extensions

A rough classi�cation of the possible extensions of the Virasoro algebra is in terms of the

conformal spin of the currents. The following possibilities are of interest

� h =

1

2

Free fermions

� h = 1 A�ne Lie algebras (also called Kac-Moody algebras in the physics literature)

� h =

3

2

Superconformal algebras

� h = 2 Virasoro tensor products

� h > 2 W-algebras.

7.7. Properties of extended Virasoro representations

In the foregoing �ve lectures we have extensively studied Virasoro representations. Fortu-

nately most of what we learned remains valid for the extended theories.

Extended symmetries a�ect the representation theory in two ways. First the number of

ground states is typically reduced, because one imposes extra conditions on them. These

conditions usually take the form J

n

j�i = 0 for positive modes of the extra currents J(z).

The rationale behind this should be clear: just as we did for the Virasoro algebra we would

like to build highest weight representations. Since J

n

, n > 0 decreases the conformal weight,

any state not annihilated by J

n

is obviously not a highest weight state. Having determined

the highest weight states, one uses the negative modes of the extra currents in addition to

those of the Virasoro algebra to build representations. Since extra currents are used, the

representations can only get larger, even though additional null-states appear.
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There is thus a new notion of primary �eld required. Primary �elds not only have operator

products of a prescribed form with T (z) (namely (3.6)), but there are additional operator

products with the currents J(z) that must have a certain form. Furthermore descendant

�elds are now not only created by T (z) but also by all currents J(z) in the chiral algebra.

These operator products are equivalent to the aforementioned requirements on highest weight

states, since that latter are still created from the vacuum by �(0) j0i, if �(z; �z) is an (extended

algebra) primary �eld.

Explicitly these primary �eld conditions take the following form for integer-moded currents

of integer spin h

J(z)�(w; �w) / (z �w)

�h

�

0

(w; �w) + higher order in z � w ; (7:3)

Note that this only states that there are no more singular terms in (z � w), not that the

leading power must be �h. For example, if the zero-mode J

0

annihilates the state, the

leading power is �h + 1 or less; if J

�1

also annihilates the states it is �h + 2 or less, etc.

Usually there is only one state that is annihilated by J

0

, namely the vacuum, created by the

operator '(z; �z) = 1. The leading power is then in fact 0, and for example if we consider

the Virasoro algebra this implies that both L

0

and L

�1

must annihilate the vacuum. Fields

which have powers of (z � w)

�1

larger than h in their operator products are descendants;

the corresponding states are not annihilated by J

n

; n > 0.

For half-integer spin algebras we have to distinguish half-integer moded (Neveu-Schwarz) and

integer moded (Ramond) operators. In the former case the operator product of a primary

�eld �(w) is

J(z)�(w; �w) = (z �w)

�h+

1

2

�

0

(w; �w) + higher order in z �w ;

where �

0

is a descendant that has a conformal weight that is

1

2

larger than that of �. It may

happen that there is no such �eld. Then J

�

1

2

annihilates the ground state �(0) j0i, and the

leading power in the operator product is lower. But in any case �elds with a power higher

than h are descendants.

In the Ramond sector one has

J(z)�(w; �w) / (z � w)

�h

�(w; �w) + higher order in z � w :

Only states that are annihilated by the zero mode generators do not satisfy this formula.
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They have a leading power (z�w)

�h+1

(or less). There can be arbitrarily many such states.

Note that the zero-modes in of integer-moded operators either annihilate a state, or they

transform ground states of a given value of h into each other. The ground states form in

this way a representation of an algebra generated by the zero-mode generators.

All these notions have been developed explicitly for Kac-Moody algebras, free fermions and

superconformal algebras. In the application to W algebras there are several footnotes to be

added to this general picture.

7.8. Charge conjugation

Everything discussed in the section 4 and 5 goes through for extended algebras, apart from

one important di�erence. We have seen that two-point functions of Virasoro primaries are

diagonal in the sense that

h0j �

h

(z)�

h

0

(z) j0i = �

h;h

0

z

�2h

(7:4)

for the holomorphic part. Since Virasoro representations are uniquely determined by c and

h, the Kronecker � implies that only identical representations have a non-trivial propagator

connecting them.

In the extended case (7.4) still holds, but now there can be representations with identical

values of h that are di�erent with respect to other generators of the algebra. In particular

it may happen that the propagator does not act diagonally within each set of h values. One

can always choose a basis of �elds so that they come in pairs connected by the propagator.

The two members of such a pair are called each others charge conjugates.

Charge conjugation thus de�nes a matrix C which is symmetric, whose entries are 0 or 1,

and which satis�es C

2

= 1. It either takes a �eld into itself (such a �eld is called self-

conjugate), or to its charge conjugate. The vacuum is necessarily self-conjugate, since it is

non-degenerate.

If charge conjugation is non-trivial, the duality diagrams of the previous chapter must be

modi�ed by assigning arrows to each line.
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7.9. Characters and modular transformations

Virasoro characters of extended algebras are de�ned exactly as for Virasoro representations.

One can generalize the notion of the character by inserting exponentials of zero-modes of

other currents into the trace, but we will not consider that here.

The matrix T requires no further discussion. There also is a matrix S with the property

�

i

(�

1

�

) =

X

j

S

ij

�

j

(� ) :

Note however that this transformation as it stands does not always determine S completely,

because it is now possible that several representations j have the same character. This was

excluded for Virasoro representations because all representations have di�erent conformal

weights. One can nevertheless de�ne S completely by taking into account extra variables

in the characters (as mentioned above) and by requiring it to be a unitary and symmetric

matrix.

The relation among the generators in the general case is

(ST )

3

= S

2

= C with C

2

= 1

Note that the modular transformation S acting on the variable � (� ! �

1

�

) squares to 1.

However the transformation on the a and b cycles is

a! �b; b! a

and squares to �1. It is thus a double cover of the transformation on the positive upper

half plane in which � is de�ned. The transformation S

2

, i.e. a! �a, b! �b is non-trivial,

but it acts trivially on the \period matrix" � . Intuitively S

2


ips the time (and the space)

direction on the torus, and this is why a �eld goes into its charge conjugate rather than

itself.

Because S is still unitary and symmetric, we have

S = CS

y

= S

y

C = S

�

C = CS

�

so that in particular reality of S is equivalent to C being equal to the identity.
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The Verlinde formula in its general form reads

N

k

ij

=

X

n

S

in

S

jn

S

y

nk

S

0n

:

Here the raised index indicates charge conjugation. We may also de�ne

N

ijk

=

X

l

N

l

ij

C

lk

=

X

n

S

in

S

jn

S

nl

S

0n

Because S is symmetric,N

ijk

is symmetric in all its indices. This is the quantity that counts

the number of couplings in the three point vertex. In other words, if N

k

ij

does not vanish,

[i]� [j] contains the representation [k]. Hence they can be coupled to the representation [k

�

]

to form a non-vanishing three point coupling, by insertion of the k � k

�

propagator. This is

illustrated below.

i

j

kk*

i

j

k
=

Nij
k Nijk

7.10. Virasoro tensor products

A simple example of an extended chiral algebra is obtained by taking the tensor product

of two Virasoro representations, with central charges c

1

and c

2

. The resulting theory has a

Virasoro algebra generated by L

(1)

n

+L

(2)

n

with central charge c

1

+c

2

. The representations are

simply all pairs of representations of the two algebras, and have conformal weights h

(1)

i

+h

(2)

i

.

It is easy to check that in such a theory there is a conformal �eld with weights (2; 0), namely

c

2

T

(1)

(z)� c

1

T

(2)

(z) :

This is the current of the extended symmetry.

The simplest modular invariant partition function of such a system is the diagonal one, which

is the product of the diagonal invariant of the two systems. However, in principle there can

be many additional modular invariants, and in general there are.

Of course one can also consider tensor products of representations of other extended algebras.
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7.11. Extensions and off-diagonal partition functions

Sometimes possible extensions of the chiral can be read o� directly from the existence of

modular invariant partition functions. A typical such partition function has the form of a

sum of squares,

M

X

l=1

j

N

X

a=1

�

l;a

j

2

(7:5)

Such an expression can often be interpreted in terms of an extension of the original chiral

algebra (which itself may be an extension of the Virasoro algebra), in such a way that the

characters of the new algebra are equal to sums of characters of the original algebra

�

new

l

=

X

a

�

l;a

: (7:6)

The new theory as M characters, whereas the original one had at least NM characters. In

fact it always has more, because a general feature of a partition function of the form (7.5)

is that certain representations of the original algebra are \projected out", i.e. they do not

appear at all in the o�-diagonal partition function.

Of special interest is the identity character. If it is a sum of several characters of the old

theory, then the extra terms imply the existence of matrix elements M

i0

6= 0, where M is

the multiplicity matrix in the modular invariant. The corresponding primary �elds have

h = h

1

6= 0;

�

h = 0. They can thus be interpreted as currents, and they are in fact precisely

the currents that extend the chiral algebra.

Although in practice one only deals with explicit modular invariant partition functions for

extensions from one rational conformal �eld theory to another one, conceptually the chiral

algebra extension that make a non-rational conformal �eld theory rational work in the same

way. In that case M is �nite and N is in�nite.

7.12. The new S and T matrices

Once we have a new, smaller set of characters, one expects to have a new set of modular

transformation matrices S and T . The new T matrix is trivial to get, since by modular

invariance all terms in (7.6) have the same T -eigenvalue. The new matrix S

new

can be

obtained easily from the original one, S

old

, in the simplest case, where all linear combinations
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(7.6) have the same number of terms (each with coe�cient 1). It is then not hard to show

that the matrix

S

new

l;m

=

1

N

X

a;b

S

old

(l;a)(m;b)

transforms the new characters if S

old

is the transformation matrix for the original one.

Many o�-diagonal invariant invariants have a more complicated from. For example, it may

happen (although it rarely does) that the linear combinations in (7.6) have coe�cients larger

than 1. A more serious complication occurs when the linear combinations have di�erent

lengths. The typical form of such a partition function { in this example with linear combi-

nations of either N terms or 1 { is something like

M

X

l=1

j

N

X

a=1

�

l;a

j

2

+

N

f

X

f=1

N j�

f

j

2

This partition function can { usually { be interpreted in terms of a new, extended algebra

withM+N

f

�N representations. Note that the last N

f

�N representations have characters

that are identical in groups of N . This means that it is not obvious which matrix S

new

to use

for the transformations among these characters. Indeed, since they are identical in groups

of N the transformation � !�

1

�

does not determine S

new

completely. This problem can be

solved by imposing unitarity as well as the modular group property (ST )

3

= S

2

on S

new

, but

it turns out that in this case the matrix elements of S

new

are not simply linear combinations

of those of S

old

.

7.13. Extensions and automorphisms

The matrices M that de�ne a modular invariant partition function can be divided into to

main groups: those with M

0i

= M

i0

= 0 for i 6= 0, and all others. It can be shown that

in the former case there is no extension of the chiral algebra, and that all characters must

appear in the partition function. However, they may appear non-diagonally, as

X

l

�

l

�

lm

��

m

where � is a permutation of the labels. It is not hard to see that � is then an automorphism

of the fusion rules, i.e. the fusion coe�cients N

ijk

are invariant when � acts simultaneously

on all labels.
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If some matrix elements M

0i

or M

i0

are non-zero, the modular invariant can always be

interpreted as an extension of the chiral algebra. If one re-writes it in terms of characters of

the new algebra one either gets the diagonal invariant of the new algebra, or a fusion rule

automorphism of the new algebra.

7.14. Simple currents

Many conformal �eld theories have representations [J ] with the property that

[J ]� [i] = [i

0

]

for all other representations [i]. The special property is thus that there is just one term on

the right hand side. Then [J ] is referred to as a simple current [22].

The word \current" anticipates the fact that it may be used to extend the chiral algebra, or

at least plays the rôle of a (para)fermionic current.

Simple currents organize the �elds in a conformal �eld theory in an obvious way into orbits,

and one can in an equally obvious way assign an order N to them. Among themselves they

generate an abelian group called the center of the conformal �eld theory.

Simple currents can always be used to extend the chiral algebra. In the simplest cases {

N prime { it is furthermore true that currents of fractional spin

`

N

generate fusion rule

automorphisms. In more complicated cases one gets combinations of automorphisms and

extensions.

The number of simple current invariants of a given conformal �eld theory grows very rapidly

with the number of abelian factors of the center, but all solutions have now been classi�ed.

It seems that most modular invariant partition functions can be described in terms of simple

currents, but there are exceptions. These are called, quite naturally, exceptional invariants.
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8. Free fermions

Free fermions are described by the two-dimensional action

S =

1

8�

Z

d

2

z

�

 @

�z

 +

�

 @

z

�

 

�

;

where we have already switched to Euclidean space and to complex coordinates. We will

focus on the �elds  from here on; all equations that follow are also valid with bars on all

relevant quantities.

8.1. The propagator

The equations of motion for  (z; �z) are @

�z

 (z; �z) = 0, so that we may write  (z) instead of

 (z; �z). The operator product of two fermions is

 (z) (w) =

1

z � w

8.2. Energy-Momentum tensor and central charge

The energy-momentum tensor is

T (z) = �

1

2

:  (z)@

z

 (z) : ; (8:1)

where as usual normal ordering implies that the vacuum expectation value of T (z) is zero.

This requires the subtraction of the singular terms in the operator product.

It is a simple exercise to verify that the central charge is equal to

1

2

, and that  (z) has

conformal weight (

1

2

; 0). This is an interesting result in view of the classi�cation of Virasoro

representations. We have seen that for c =

1

2

three representations exist: with h = 0; h =

1

2

and h =

1

16

. The conformal �eld  (z) clearly creates an h =

1

2

state from the vacuum:

�

�

1

2

�

=  (z) j0i
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8.3. Mode expansion

The free fermion can be expanded in modes. On the complex plane the mode expansion is

 (z) =

X

n

b

n

z

�n�

1

2

; (8:2)

which can be inverted in the usual way. When going to the cylinder the free fermion picks

up a conformal factor

�

@z

@w

�

1

2

. Hence we get

 

cyl

(w) = z

1

2

X

n

b

n

z

�n�

1

2

=

X

n

b

n

e

�nw

:

Here we see explicitly the aforementioned periodicity 
ip.

8.4. The spin field

The �eld  (z) has local operator products with all primary �elds we have seen so far (namely

 (z) itself and the identity). We expect there to exist also �elds with which it has a square

root branch cut, so that  (z) is realized �a la Ramond.

Furthermore we expect �elds with conformal weight

1

16

, since that is another allowed Virasoro

representation at c =

1

2

. Indeed, we will see that modular invariance forces such �elds to

exist.

Let us therefore introduce a �eld �(z; �z) with h =

�

h =

1

16

. Its operator product with  (z)

has the form

 (z)�(w; �w) = (z � w)

h

�

�

1

2

�

1

16

�(w; �w) ;

where � is some other �eld in the theory. Since we know all Virasoro representations its

conformal weight h

�

can only be 0;

1

2

or

1

16

, perhaps up to integers if we allow � to be a

descendant. Clearly only the choice

1

16

leads to an acceptable branch cut, since for fermions

only square root branch cuts (or no cuts at all) are allowed. We �nd thus that the �eld �

does indeed introduce the expected branch cut. This �eld is often referred to as a spin �eld.

Acting on the vacuum the �eld � produces a state

�

�

1

16

;

1

16

�

= �(0; 0) j0i. The �eld  (z),

acting on such a state is anti-periodic on the plane, and hence integer-moded.
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It is tempting to argue that � and � are in fact one and the same �eld. In the present

context that is in fact not quite correct, since we are not dealing with a modular invariant

partition function. When we make the theory modular invariant,  (z) and either � or � are

removed from the spectrum (i.e. all the states they create are removed). The primary �elds

in the modular invariant theory are 1,  (z)

�

 (�z) and �(z; �z). Each creates one state from the

vacuum, namely the vacuum itself, the state

�

�

1

2

;

1

2

�

and

�

�

1

16

;

1

16

�

. On these states one builds

Virasoro representations. The ground states are non-degenerate, i.e. there is just one state

with the corresponding values of h;

�

h.

The partially modular invariant theory has in addition the primary �elds  (z),

�

 (�z) and

�(z; �z). The operator products are now non-local. In addition to the ones already mentioned

one has

�(z; �z)�(w; �w)! 1;  (w)

�

 ( �w)

�(z; �z)�(w; �w)! 1;  (w)

�

 ( �w)

�(z; �z)�(w; �w)!  (w);

�

 ( �w)

(8:3)

If one substitutes the conformal weight factors (z�w)

h

k

�h

i

�h

j

one �nds that the last operator

product is non-local, indicating that one cannot have both � and � in the same modular

invariant theory. Removing the free fermions and either � or � solves the non-locality

problem in a consistent way, i.e. the operator product closes after this truncation. This will

be made explicit later in this chapter.

8.5. Free fermion characters

One advantage of the free fermion formulation of the c =

1

2

theory is that it is straightfor-

ward to compute the characters. The reason why this is not straightforward for Virasoro

representations is the existence of null vectors. Let us compare the lowest lying states in the

three representations.

Neveu-Schwarz states

Consider �rst the Neveu-Schwarz sector. Using the operator product of two free fermions

and the mode-expansion (8.2), one can easily derive that the modes satisfy the following

anti-commutator

fb

r

; b

s

g = �

r+s;0

;

where r and s are half-integers. Clearly we cannot impose b

r

j0i = 0 for all r, and hence we
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only do so for r > 0. This is also the natural de�nition for highest weight modules, since the

positively moded b

r

's decrease the L

0

eigenvalue.

The Virasoro generator L

0

can be expressed in terms of the fermionic oscillators. Classically,

the result is

L

0

=

1

2

X

r

rb

�r

b

r

:

Quantum mechanically we have to be more careful, since the operators b

r

and b

�r

do not

commute. Changing their order only a�ects L

0

by a constant, so that we get

L

0

=

X

r>0

rb

�r

b

r

+ constant :

Here we have normal ordered the fermionic oscillators. Since we have already de�ned normal

ordering in (8.1), the constant is not a free parameter. It must be chosen in such a way that

h0jL

0

j0i = 0, i.e. the constant must be zero. It follows immediately that L

0

jhi = 0 if jhi

is a highest weight state of the fermionic algebra, i.e. if b

r

jhi = 0 for positive r. Hence the

fermionic algebra can have just one representation in the Neveu-Schwarz sector, namely the

one built on the vacuum.

At the �rst few levels, this representation contains the following states:

h = 0 j0i

h =

1

2

b

�

1

2

j0i

h = 1 none

h =

3

2

b

�

3

2

j0i

h = 2 b

�

3

2

b

�

1

2

j0i

h =

5

2

b

�

5

2

j0i

h = 3 b

�

5

2

b

�

1

2

j0i

h =

7

2

b

�

7

2

j0i

h = 4 b

�

7

2

b

�

1

2

j0i ; b

�

5

2

b

�

3

2

j0i

Note that fermionic oscillators must satisfy the Pauli exclusion principle, so that for example

b

1=2

b

1=2

is zero. For this reason there is no state at level h = 1, and we have to go to h = 4

to �nd more than one state.
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An important question is whether all these states have positive norm. Due to the simplicity

of the free fermion algebra it is not hard to show that indeed the norm of every state is

exactly 1, and that all distinct states are orthogonal. The fact that  (z) as a �eld on the

cylinder is real implies that b

y

r

= b

�r

. It is then trivial to prove that the states are indeed

orthonormal.

Hence we may expect them to �t exactly into one or more Virasoro representations. The

relevant Virasoro representations are, for the ground state representation

h = 0 j0i

h = 1 L

�1

j0i

h = 2 L

�2

j0i ; (L

�1

)

2

j0i

h = 3 L

�3

j0i ; L

�1

L

�2

; j0i (L

�1

)

3

j0i

h = 4 L

�4

j0i ; L

�3

L

�1

j0i ; L

�2

L

�2

; j0i (L

�1

)

4

j0iL

�2

(L

�1

)

2

j0i

For the representation with ground state weight h =

1

2

we �nd exactly the same result, with

j0i replaced by

�

�

1

2

�

, and all conformal weights shifted up by half a unit. However, we have

already seen that not all these states have positive norm. The ground state representation

has a null state at its �rst excited level (which propagates trough to all higher levels), while

the h =

1

2

representation has a null state at its second level. This agrees precisely with the

assumption that the fermionic representation is the sum of the two Virasoro representations,

and also gives us a quick way of counting the number of Virasoro null states at higher levels.

Neveu-Schwarz characters

It is straightforward to compute the character for the fermionic representation, since there

are no null states to be taken into account. Each oscillator b

�r

can act once or zero times

on the ground state. If there were just one oscillator b

�r

there would just be two states, j0i

and b

�r

j0i with h = 0 and h = r. The character is thus Tr q

L

0

= 1+ q

r

. All oscillators with

di�erent modes acts independently, and it is easy to see that each contributes via additional

factors of this form. Furthermore we have to take into account the subtraction �c=24. The

result is thus

�

0

+ �

1

2

= Tr q

L

0

�

c

24

= q

�

1

48

1

Y

r=

1

2

(1 + q

r

) : (8:4)

This gives us the sum of the characters of two Virasoro representations. Their di�erence
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is also easy to compute. Just observe that states created by an odd number of fermions

contribute to the spin-

1

2

representation, and the remaining ones to the vacuum representation.

Hence we can get the di�erence by changing the sign of the contribution of each single fermion

to the trace,

�

0

� �

1

2

= q

�

1

48

1

Y

r=

1

2

(1 � q

r

) :

This expression can also be written as a trace over the fermion representation, namely as

�

0

� �

1

2

= Tr(�1)

F

q

L

0

�

c

24

: (8:5)

Here F is the fermion number operator. We have now succeeded in computing both the

h = 0 and h =

1

2

character at c =

1

2

.

Ramond states

In the Ramond sector the fermionic oscillators are integer moded, which has the interesting

consequence that there exists a zero mode oscillator b

0

, which satis�es fb

0

; b

0

g = 1. The

expression for L

0

is

L

0

=

X

n>0

nb

�n

b

n

+ constant :

Obviously highest weight states jhi must satisfy b

n

jhi = 0 for n > 0, and this implies that

all highest weight representations in the Ramond sector must have the same highest weight,

namely \constant". Since we know that the Ramond sector is realized on states created by

the �eld � with h =

1

16

, it follows that \constant" must be equal to

1

16

in this case.

The Ramond ground state

It is fairly obvious how to build up the representation, the only slight problem being the

action of the operator b

0

. This operator changes the fermion number of the state it acts

on. To realize this we need thus two states, one with (�1)

F

= + and one with (�1)

F

= �.

Denoting these states as j+i and j�i we have thus

b

0

j+i =

1

p

2

j�i ; b

0

j�i =

1

p

2

j+i ;

so that b

2

0

=

1

2

. Of course we can realize this operator algebra on even more states, but two

is the minimum required.
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Ramond characters

Having done this, we get for the character

�
1

16

/ Tr q

L

0

�

c

24

= 2q

1

24

1

Y

n=1

(1 + q

n

) ; (8:6)

by exactly the same arguments as used above. The correct normalization will be discussed

in a moment. In principle the ground state of a Virasoro (or extended Virasoro) algebra can

be degenerate, so in principle it could be possible that the factor 2 should be absorbed into

the character itself. It is also possible to de�ne this trace with a factor (�1)

F

, but it is clear

that the result is then zero: the operator b

0

maps any state into a degenerate state, while


ipping the fermion number.

8.6. The partition function

Let us now assemble the partition function, by combining it with the anti-holomorphic �elds.

This is trivial in the Neveu-Schwarz sector. The oscillators

�

b

r

contribute addition factors

(1 + �q

r

) so that we get

P

NS

= (q�q)

�

1

48

1

Y

r;s=

1

2

(1 + q

r

)(1 + �q

s

) :

Now consider the Ramond sector. Here some further thought is needed. Do we again double

the ground state to deal with the action of

�

b

0

(in other words, do we take the absolute value

squared of (8.6))? Clearly this is not needed, because we already have two ground states,

and that is su�cient to realize simultaneously the b

0

and the

�

b

0

algebra. If we de�ne the

fermion number operator F to count the total fermion number (for  (z) as well as

�

 (�z), and

we choose two ground states j+i and j�i with opposite total fermion numbers, everything

will work automatically. Hence we de�ne

P

R

= 2(q�q)

1

24

1

Y

n;m=1

(1 + q

n

)(1 + �q

m

) :
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8.7. Theta-functions

Altogether we have now de�ned four kinds of partition functions on the torus: with R or

NS boundary conditions along the space direction, and with or without (�1)

F

operator

inserted. This latter operator can be interpreted in terms of periodicity along the Euclidean

time direction of the torus. The normal trace corresponds to a fermion path integral with

anti-periodic boundary conditions (this boundary condition has the same origin as the usual

� sign in fermion loops; it can be computed by repeating the calculation that yields (6.2)

for fermions). The insertion of (�1)

F

gives an extra � sign for every fermion in the loop, so

it 
ips the boundary condition to periodic. Hence we have
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q

L

0
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�q
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R
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24
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Here the letters \AP" indicate anti-periodicity along the \space" direction and periodicity

along the \time" direction on the torus, etc. It turns out that these four partition functions

can be expressed in terms of standard mathematical functions, namely the Jacobi �-functions

and the Dedekind � function. These functions are de�ned as follows

�

h

a

b

i

(zj� ) =

X

n

e

i�[(n+a)

2

�+2(n+a)(z+b)]

with the additional de�nitions

�

1

= �

�

1=2

1=2

�

; �

2

= �

�

1=2

0

�

; �

3

= �

�

0

0

�

; �

4

= �

�

0

1=2

�

and

�(q) = q

1

24

1

Y

n=1

(1� q

n

)

with q = e

2�i�

. The last column above indicates the identi�cation of each partition function

with ratios of � and � functions. The Jacobi �-functions have two arguments, but we are

only using them at z = 0 here. The function �

1

(zj� ) vanishes for z = 0, as does the partition

function in the PP sector, but it can be made plausible that the identi�cation given here is

the correct one. The fact that these functions are identical is far from obvious, but is one of

many remarkable identities that modular functions enjoy.
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8.8. Modular transformations

Finally we discuss modular invariance. Clearly modular transformations change the fermion

boundary conditions. For example, the transformation S interchanges the two cycles

(\space" and \time") on the torus, and hence it interchanges AP and PA. The transfor-

mation T maps XY to X(XY) as shown in the �gure, where X and Y stand for A or P, and

the multiplication rule is AA=P, AP=A and PP=P. In other words, it interchanges AA and

AP. Since S and T generate the modular group we generate all permutations of AA, AP and

PA, whereas PP transforms into itself.

τ τ+1

X

Y

XY

X

These transformations are clearly sensitive to the correct normalization of the partition

functions. They can be computed explicitly for the � and � functions, and one �nd

�

1

(�

1

�

) = �i

p

�i��

1

(� ); �

2

(�

1

�

) =

p

�i��

4

(� );

�

3

(�

1

�

) =

p

�i��

3

(� ); �

4

(�

1

�

) =

p

�i��

2

(� )

�

1

(� + 1) = e

i�=4

�

1

(� ); �

2

(� + 1) = e

i�=4

�

2

(� );

�

3

(� + 1) = �

4

(� ); �

4

(� + 1) = �

3

(� )

�(�

1

�

) =

p

�i��(� ); �(� + 1) = e

i�=12

�(� )

It follows that the partition function P

R

+ P

NS

=j

�

3

�

j + j

�

2

�

j is not modular invariant, as

expected. It is in fact invariant under a subgroup of the modular group generated by TST

and T

2

. This is clearly a subgroup of order 2, since by adding the element T we get the full

modular group. This shows in particular that we have chosen the correct normalization for

the ground state in the Ramond sector.
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8.9. The modular invariant partition function

It is also clear that the following partition function is fully modular invariant

1

2

�

j

�

3

�

j + j

�

4

�

j + j

�

2

�

j � j

�

1

�

j

�

The factor

1

2

was added to make sure that the vacuum appears with the correct multiplicity,

namely 1. The last term can be added with any factor, since it is (a) modular invariant

by itself and (b) zero. However, consistency of higher loop diagrams as well as one-loop

diagrams with external legs force this term to appear exactly as it does. The two signs have

a simple interpretation: the Ramond ground state appears in the partition function with a

factor

1

2

(1 � (�1)

F

) so that depending on the sign either the ground state with positive or

the one with negative fermion number survives. Note that the modular invariant partition

function has just one Ramond ground state. This is no problem, since the operators b

0

and

�

b

0

(zero modes of  (z) and

�

 (�z) are not in the theory anymore. The �rst two terms only

have contributions from the state  (0)

�

 (

�

0) j0i and its descendants, and this operator does

not change fermion number by an odd amount. The partially modular invariant partition

function has two Ramond ground states, corresponding to the �elds � and �. Depending on

the sign choice, either one of these is projected out. This sort of operation (for going from

a partially modular invariant partition function to a modular invariant one) is sometimes

called a GSO-projection (GSO stands for Gliozzi, Scherk and Olive, whose paper [23] was

the starting point of superstring theory).

8.10. Ising characters

We can write the modular invariant partition function as

j�

0

j

2

+ j�
1

2

j

2

+ j�
1

16

j

2

by making the identi�cations

�

0

=

1

2

(

s

�

3

�

+

s

�

4

�

)

�

1

2

=

1

2

(

s

�

3

�

�

s

�

4

�

)

�
1

16

=

1

p

2

s

�

2

�
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The �rst two equations follow already from (8.4) and (8.5).

8.11. The matrix S and the fusion rules

Using the transformation properties of the � functions and the � function it is now easy to

get the matrix S for the c =

1

2

system. On the basis (1;  ; �) the result is

S =

0

B

@

1

2

1

2

1

2

p

2

1

2

1

2

�

1

2

p

2

1

2

p

2 �

1

2

p

2 0

1

C

A

Using this matrix and the Verlinde formula we can compute the fusion rules:

[1]� [1] = [1]

[1]� [ ] = [ ]

[1]� [�] = [�]

[ ]� [ ] = [1]

[ ]� [�] = [�]

[�]� [�] = [1] + [ ]

This result should be compared with (8.3).

8.12. Multi-fermion systems

It can be shown that if there is more than one fermionic current with spin

1

2

, then a corre-

sponding part of the theory can be described as a free fermionic theory with c = N=2, where

N is the number of fermions. Of course this c = N=2 theory can appear as part of a tensor

product with other (extended) Virasoro representations, but at least the free fermion part

is easy to describe, and exactly solvable.

In such a free fermion theory each fermion can have its own boundary conditions on the torus

and higher Riemann surfaces, but there are constraints from modular invariance. These

constraints have been solved in general when the number of fermions is even, but there is

still some controversy regarding the odd fermion number case.

The number of modular invariant partition functions one can write down grows extremely

rapidly with N . Systematic studies of conformal �eld theories built out of free fermions (in

the context of heterotic string construction) were presented in [24,25].
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9. Free Boson partition functions

The free boson provides another simple example of a theory with an extended algebra. In

this case the current has spin 1,

J(z) = @�(z) :

The mode expansion has already been discussed before.

As we will see later, such a current can be interpreted as a generator of a U(1) symmetry,

with the momenta as charges.

9.1. The spectrum

The discussion of the spectrum is quite similar to that of the free fermion. The ground states

are de�ned by the condition

�

n

jxi = 0; n > 0

The representations are built up by acting with the negatively moded oscillators. It is not

hard to see that any state gotten this way has positive norm.

The Virasoro generators are dependent on the bosonic oscillators,

L

n

=

1

2

f

X

m

�

n�m

�

m

g ;

where �

0

= p, and the sum is over all integers. For the Virasoro zero mode we get thus

L

0

=

1

2

p

2

+

X

m>0

�

�m

�

m

:

In principle we would have to worry about normal ordering, but since we know that L

0

j0i = 0

we see immediately that there is no additional constant.

The ground state jxi is completely determined by the action of the zero-mode generator

p. Once this is �xed, we know the entire representation, and the action of the Virasoro

generators. Hence we de�ne

jpi : p

op

jpi = p jpi ;

where p on the left-hand side is the operator, and on the right hand side the eigenvalue. Note

that there is no separate holomorphic and anti-holomorphic zero-mode algebra: �

0

= ��

0

= p.
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9.2. The characters and the diagonal invariant

It is straightforward to derive the character formula, since just as for the free fermion all

oscillators act independently and without generating null vectors. The result is

�

p

(q) = q

1

2

p

2

�

1

24

1

Y

n=1

1

(1 � q

n

)

=

q

1

2

p

2

�(q)

:

Note that the expansion of (1� q

n

)

�1

yields exactly one contribution at any level that is a

multiple n. Thus each such factor describes the contribution of one bosonic oscillator �

�n

acting any number of times on jpi.

Since any real value of p is allowed, there exists an in�nite number of characters. The

diagonal partition function is therefore not a sum, but an integral

P (�; �� ) =

1

Z

0

dp

e

i��p

2

�(� )

e

�i���p

2

�(��)

/

p

Im �

�(� )�(��)

:

The proper derivation requires of course a discussion of the measure and the normalization,

but the result is correct. This factor appears in the partition function of the bosonic string,

which is described by a tensor product of 26 free bosonic theories (plus ghosts).

Note that in this partition function we are exactly using all the ground states we have at our

disposal. Although the algebra is extended by @� we do not get a �nite number of primary

�elds, i.e. a rational conformal �eld theory. In many of the representations the extension

does not even make any di�erence. If there are no null vectors in a Virasoro representation,

the Virasoro algebra acts just like a free bosonic oscillator, and one gets a partition function

q

h�

c

24

1

Y

n=1

1

(1� q

n

)

;

where now every factor represents a single Virasoro generator L

�n

instead of a free bosons

�

�n

. Hence if on jpi the Virasoro algebra has no null vectors, the Virasoro representation is

equal to the \Virasoro+@�"- representation.
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The existence of Virasoro null vectors follows from the same curves we used for c < 1.

These curves hit the line c = 1 at several values of h, and only for those values the Virasoro

representation has a null state. From (4.5) and (4.6) we see that this happens for m!1,

h =

1

4

(p � q)

2

For example for h = 0, L

�1

j0i is a null state. The state �

�1

j0i is of course not null, so that

the identity representation is indeed non-trivially extended by @�.

9.3. Chiral bosons

The free boson mode expansion can be generalized by adding separate momenta for the

holomorphic and anti-holomorphic terms:

�(z; �z) = q � i(p

L

log(z) + p

R

log(�z)) + i

X

n6=0

1

n

�

�

n

z

�n

+ ~�

n

�z

�n

�

We have denoted these momenta as \L" (left) and \R" (right) because z and �z originate

from left- and right-moving modes on the cylinder. We may straightforwardly split also q in

left- and right-moving operators by writing q = q

L

+q

R

. Furthermore we de�ne the canonical

commutators [q

L

; p

L

] = [q

R

; p

R

] = i, while left and right operators commute. If we identify

p

L

= p

R

= p this leads again to old commutator [q; p] = i. Having done this we can now

split the boson completely in left and right components

�(z; �z) = �

L

(z) + �

R

(�z)

with

�

L

(z) = q

L

� ip

L

log(z) + i

X

n6=0

1

n

�

n

z

�n

;

and analogously for �

R

.

These manipulations do not in
uence any previous results that depend only on @� or

�

@�,

but we can now give meaning to chiral (holomorphic) objects like

e

i��

R

(z)

It may be checked that this is a conformal �eld of weight

1

2

~

�

2

.
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To see what the meaning is of the separate left and right momenta we can express the �eld

back into cylinder coordinates. Then we get

�(x

0

; x

1

) = q + 2px

0

+ Lx

1

+ oscillators ;

where

p

L

= p +

1

2

L ; p

R

= p �

1

2

L (9:1)

Previously we did not have the extra x

1

term because we required � to be periodic,

�(x

0

; x

1

) = �(x

0

; x

1

+ 2�). The extra term destroys the periodicity unless we impose it

as a symmetry on the �eld �: � = �+2�L. This must hold for any eigenvalue that the op-

erator L can have, and obviously also for all integer linear combinations of those eigenvalues.

If we want � to have a non-trivial dependence on x

1

, the only possibility is then that the L

eigenvalues are quantized on a lattice of dimension equal to the number of free bosons.

This has a natural interpretation in closed string theory, where � is viewed as the coordinate

of a space in which the string is embedded (this space is called target space). The existence

of a lattice means that the space is compacti�ed on a torus (a D-dimensional torus can be

de�ned as D-dimensional Euclidean space in which points di�ering by vectors on a lattice

are identi�ed). If L is a non-trivial lattice vector this means that the string is not closed in

the Euclidean space, but it is closed on the torus, i.e. the string winds around a couple of

times around the torus and ends in a point identi�ed with its beginning.

9.4. Further extensions of the chiral algebra

We arrive at the same lattice description naturally by extending the chiral algebra further.

In addition to @� we add integer spin currents

V

�

= e

i��(z)

; �

2

2 2Z (9:2)

to both the left and the right algebra. Note that such a current corresponds to momenta

(�; 0), so that it is only after introducing separate p

L

and p

R

that we have this possibility.
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It is easy to check that V

�

satis�es the operator product

V

�

(z)V

�

0

(w) = (z � w)

��

0

V

�+�

0

(w) + : : : (9:3)

Therefore, closure of the operator product requires V

2�

(z) to be an operator in the theory

if V

�

(z) is. More generally we see that the set of �'s such that V

�

is in the chiral algebra

must close under addition. It forms thus a one-dimensional even lattice, which we will call

�. Note that the operator product (9.3) is automatically local.

9.5. Representations of the extended algebra

Since the chiral algebra contains in any case the Virasoro algebra and the operator @X, any

other states in the theory are built on ground states jp

L

; p

R

i. We have to restrict this set

by imposing on it highest weight conditions with respect to the extended algebra. The �eld

creating these states from the vacuum are

V

p

L

p

R

(z; �z) = e

ip

L

�

L

(z)

e

ip

L

�

R

(�z)

;

because

e

ip

L

�

L

(0)

e

ip

L

�

R

(

�

0)

j0i = e

ip

L

q

L

+ip

R

q

R

j0i = jp

L

; p

R

i :

Locality with respect to the left and right chiral algebra requires that �p

L

2 Z and �p

R

2 Z.

This immediately restricts the set of left and right momenta that we can ever encounter to

the set

p

L

2 �

�

;

where �

�

is the dual (or reciprocal) lattice of �,

�

�

= f� 2 Rj�� 2 Z; 8� 2 �g

The lattice � is necessarily of the form nR, n 2 Z and R

2

even. The lattice �

�

has the

form m=R, m 2 Z. For example, if � is the set of even integers, �

�

is the set of integer and

half-integers. In this description R denotes the smallest positive value of � on the lattice.
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Now let us try to �nd which �elds are primary with respect to the full extended algebra. As

we have seen in (7.3), any �eld with a singularity stronger than (z � w)

�h

in its operator

product with a current of spin h is a descendant. A �eld V

p

L

p

R

(z; �z) has singularity (z�w)

p

L

�

with V

�

. Hence we �nd the condition

p

L

� �

1

2

�

2

; 8 � 2 � (9:4)

and the same for p

R

. The vectors on �

�

satisfying the highest weight condition (9.4) are

thus those with

�

1

2

R

2

� m �

1

2

R

2

We see thus that there is { in both the left as the right chiral algebra { only a �nite number of

highest weight representations. Hence the theory we are constructing is a rational conformal

�eld theory.

Note that each highest weight completely �xes the corresponding representation, since it

determines completely how all the oscillators and the operators p and q act on a state. Now

we can build these representations by acting with all negative modes of @� and V

��

. Doing

this in an unrestricted way would certainly lead to null states, since there is an in�nite

number of chiral algebra generators. However, writing everything in terms of oscillators and

momenta, one sees that the only states one can ever get starting from jp

L

; p

R

i are of the

form

(oscillators)

�

�

p

L

+ �; p

R

+ �

0

�

; �; �

0

2 � :

Furthermore any state of this form is indeed generated by the chiral algebra.

Note that the highest weight condition (7.3) is saturated only for m = �

1

2

R

2

, and further-

more this only happens for V

�R

, not for any other operators in the chiral algebra. These are

thus the only highest weights which are not annihilated by the zero mode of V

�R

. It is easy

to verify that

[V

�R

]

0

�

�

�

1

2

R

�

=

Z

dzz

1

2

R

2

V

�R

(z)

�

�

�

1

2

R

�

=

�

�

�

1

2

R

�

so that these two highest weight states are actually in the same representation of the hori-

zontal algebra.
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This brings us then �nally to the following characterization of the representations of the

chiral algebra. If the algebra is speci�ed by a lattice � with spacing R, satisfying R

2

= 2N ,

then the representations are labelled by the integers m;�N < m � N , and have characters

�

m

(q) =

1

�(q)

X

n

q

1

2

(

m

R

+nR)

2

(9:5)

Note that we may de�nem modulo 2N , since a shiftm! m+2N = m+R

2

can be cancelled

by a shift in the summation index n. It is sometimes convenient to choose m in the range

0 � m < 2N . There are in total 2N representations. The ground state multiplicity for

each of them except one is 1, the ground states being jpi = jm=Ri with �

1

2

R

2

< m <

1

2

R

2

.

The exception is the representation labelled by m = N(� �N). Here the ground state

multiplicity is two, because the states

�

�

�

1

2

R

�

are degenerate.

9.6. The matrix S

This is the condition for T invariance. To examine S invariance we have to determine �rst

how the characters transform. We know this already for the �-function. To deal with the

in�nite sum one can use a trick called Poisson resummation. Taking into account the �

function we get �nally

�

i

(�

1

�

) =

X

j

S

ij

�

i

(� )

with

S

ij

=

1

R

e

�2�i�

i

�

j

=

1

p

2N

e

�2�i

ij

2N

This is a unitary, symmetric 2N � 2N matrix. It is not real, a re
ection of the fact that the

theory does not have charge conjugation symmetry. Indeed, only the representations i = 0

and i = N are self-conjugate.

Since the characters do indeed transform into each other, the diagonal partition function is

indeed a modular invariant. Another modular invariant is de�ned by the charge conjugation

matrix C, which always commutes with S and T .

For a given R there are usually many more modular invariant partition functions.
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9.7. Relation with circle compactification

The modular invariant partition functions we have found (without claiming uniqueness) can

be described most conveniently by introducing a new lattice � with momenta (p

L

; p

R

). This

lattice contains all combinations of p

L

and p

R

that occur, and once we know it, we know the

full partition function:

P (�; ��) =

1

�(� )�(��)

X

p

L

;p

R

2�

e

2�i�p

2

L

e

�2�i��p

2

R

:

where the sum is over all vectors in the two-dimensional lattice. It is easy to show (again

using Poisson resummation) that this partition function is modular invariant if and only if �

is an even self-dual lattice with respect to the Lorentzian metric (�;+). Here \even" means

of course that for all lattice vectors p

2

L

� p

2

R

must be an even integer, and self-dual means

that � = �

�

(but with duality de�ned using the Lorentzian metric). One of the conditions

for modular invariance is locality. It is easy to verify that

V

p

L

p

R

(z; �z)V

p

0

L

p

0

R

(w; �w) = (z � w)

p

L

p

0

L

(�z � �w)

p

R

p

0

R

V

p

L

+p

0

L

;p

R

+p

0

R

+ : : : ;

so that locality clearly requires that p

L

p

0

L

�p

R

p

0

R

2 Z. This follows indeed from the condition

that the lattice is Lorentzian even, by considering the vector (p� p

0

).

The momenta occurring in our partition functions are

(

i

R

+ nR;

i

R

+mR); (

i

R

+ nR;�

i

R

+mR)

for the diagonal and charge conjugation invariant respectively. Here i lies in the range

0; 2N�1 and n;m are arbitrary integers. It may be veri�ed that this de�nes an even self-dual

Lorentzian lattice. One can also characterize these partition functions by two unrestricted

integers as

(

n

R

;

n

R

+mR); (

n

R

;�

n

R

+mR)

To make the result look more symmetric one can subtract mR=2 from both p

L

and p

R

(i.e.

one writes n = n

0

�

1

2

R

2

m) to get

(

n

R

�

1

2

mR;

n

R

+

1

2

mR); (

n

R

+

1

2

mR;�

n

R

+

1

2

mR) ;

where in the second term the lattice vector (mR; 0) was added. If we compare this to (9.1)

we see that the �rst partition function can be identi�ed with it if L takes the values mR.
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Because of the interpretation of L this implies that we are in a compact space with radius

R, de�ned by the lattice �. The momenta p in such a space must be such that exp(ipx)

respects the periodicity x ! x + nR of that space, and this implies that p must lie on the

dual lattice.

9.8. R! 2=R duality

In interesting feature of these partition functions is duality. If one replaces R by

2

R

and

interchanges the variables n and m (which are summed over in the partition function),

the two partition function (diagonal and charge conjugation) are switched. However these

two partition functions are indistinguishable, since charge conjugation does not change the

conformal weight, it only 
ips the U(1) charge. But our choice for the left and right U(1)

generator is just a convention. One arrives thus at the surprising conclusion that two theories

that are priori distinct are in fact indistinguishable. This duality (also called T-duality) is

reviewed in much more detail in [26].

9.9. Rationality

Note that earlier in this chapter we had found that R

2

should be an even integer. However,

from the point of view of circle compacti�cation it does not make any di�erence what R is.

There is an interesting subset of values of R for which the conformal �eld theory is rational.

This happens if the lattice contains vectors (p

L

; 0) or (0; p

R

), which correspond to operators

in the chiral algebra. The condition for rationality is thus

n

R

+

1

2

mR = 0 ;

for at least one non-trivial set of integers. The most general solution is R

2

=

2p

q

, where

p

q

can be any rational number.

Although we only constructed the special cases q = 1 and p = 1 (the latter is obtained

from duality) explicitly, all other cases can be obtained by constructing all other modular

invariant partition functions out of the characters.

Note that there is an in�nite number of irrational values. Nevertheless, as far as exact

solvability is concerned these values are not worse than the rational ones.
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The rational theories can all be obtained as modular invariant partition functions of theories

with the extended algebras of the form (9.2). The generators of this algebra are thus

@X; e

inR�

n 2 Z; n 6= 0 (9:6)

This are clearly the only operators we have at our disposal. These extended algebras are

characterized by a number R with R

2

an even integer. It follows that if we allow rational

values of R it cannot be true that one should substitute those values in (9.6). This would lead

to non-integer conformal weights for the extended algebra generators. Instead, the theory for

other rational R values is realized as a non-diagonal modular invariant of a theory satisfying

R

2

2 2Z.

9.10. Theories with more than one free boson

All the foregoing results have a simple generalization to theories with more than one free

boson. The most general modular invariant partition function is described by a Lorentzian

even self-dual lattice �

N;N

with metric ((�)

N

; (+)

N

) (this is sometimes called a Narain

lattice) [27].

To get the most general theory of this kind from a compacti�cation on on N -dimensional

torus requires the addition of a term to the Lagrangian, namely

�

Z

d

2

xB

ij

�

��

@

�

�

i

@

�

�

j

where B

ij

is an arbitrary set of constants.

It is not hard to write down partition functions for these theories at arbitrary genus, and

check modular invariance. More details can be found in [3].
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10. Orbifolds

There are still more conformal �eld theories one can construct with one boson. From the

point of view of the target space interpretation the additional freedom consists of another

choice for the \manifold". Most manifolds are unsuitable since the resulting theory would

not be conformally invariant. The torus is always a solution to these conditions, since it

is 
at and a�ects the theory only via boundary conditions. In one dimension there is not

much choice, and the only proper manifold one can use is the circle. However it turns out

that one can still get sensible conformal �eld theories (and string theories) using spaces that

are not proper manifolds, but manifolds with singularities called orbifolds. This notion was

�rst used in heterotic string compacti�cation [28], but rapidly acquired a much more general

signi�cance.

10.1. Orbifolds as singular manifolds

The de�nition of an orbifold is as follows. Consider a manifold which has a discrete symmetry.

Such a symmetry is said to act freely if it moves every point to a di�erent point. Now we

de�ne a new \manifold" by regarding points related to each other by the symmetry as

identical. If one uses a symmetry that does not act freely then the �xed points of that

symmetry introduce conical singularities. This object is not a manifold, but is called an

\orbifold".

10.2. Orbifolds in conformal field theory

In conformal �eld theory the name \orbifold construction" is often used in a more general

sense for a method that allows one to modify conformal �eld theories by adding new �elds,

while removing some others. In some cases this procedure has an interpretation in terms

of manifolds. There is no need to distinguish freely acting or non-freely acting symmetries,

although the latter are usually more di�cult to deal with.

Intuitively the orbifold procedure implies the following changes to the theory

| Some states do not respect the discrete symmetry. They have to be removed from the

theory (they are \projected out").

| Since some points are identi�ed one can relax the boundary conditions of the boson.

Rather than �

i

(x

1

+ 2�) = �

i

(x

1

) (for the uncompacti�ed boson), or �

i

(x

1

+ 2�) =
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�

i

(x

1

) + 2�L

i

(for the boson on the torus), one must now also allow �

i

(x

1

+ 2�) =

G

ij

�

j

(x

1

)+2�L

i

, where G

ij

is a matrix representing the symmetry. This implies that

new states are added to the theory. This new set of states is called the twisted sector.

The two items mentioned above are closely related. Roughly speaking, a modular invariant

theory contains the maximal set of mutually local �elds. They must be mutually local to have

T -invariance, and maximal for S-invariance. This same structure is seen in the requirements

\even" and \self-dual" that a modular invariant torus compacti�cation must satisfy. Thus

if we remove some �elds from a modular invariant theory, we can only maintain modular

invariance by adding some other �elds. Such �elds are called twist �elds [29,30].

10.3. Orbifolds of the circle

In one dimension we have to consider the discrete symmetries of the circle. There are two

obvious Z

2

symmetries, namely the \anti-podal map" and the re
ection with respect to some

axis. The anti-podal map is a special case of an in�nite series of Z

N

symmetries, which can

be realize by shifts �! �+2�`

R

N

. These maps do not have �xed points. One can use them

in an orbifold construction, but one �nds that they simply lead to a theory on a circle with

a di�erent radius, and not to anything new. The re
ection corresponds to the symmetry

�! ��. This map has two �xed points, � = 0 and � = �R (note that ��R = �R because

of the lattice identi�cation), and does lead to a new series of theories.

We will discuss these theories here starting from the diagonal partition function of a circle

theory. Hence we will assume that R

2

is an even integer. Other radii can then be obtained

by means of non-diagonal modular invariants.

The twist �elds

It follows from the general reasoning that the twist �elds must be non-local with respect to

the �elds that are projected out.

The discrete symmetry acts by taking the conformal �eld @� to �@�. Thus this operator

must be removed. This is done by introducing a twist �eld with respect to which @� is

non-local:

@�(z)�(w; �w) = (z � w)

�h

�

0

(w; �w) + : : : ; (10:1)

where �h is non-integer. The branch cut must be such that it still respects the periodicities
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of the new manifold. This means that when @�(z) is moved once around w it can only

change sign. Hence �h must be half-integer.

Just as we did for the free fermion, we can describe the construction in terms of an inter-

mediate partially modular invariant invariant theory, in which @� and the twist �eld can

co-exist. If we require that � is primary with respect to @� we �nd that �h must in fact be

�

1

2

. One can then use arguments like the ones used for the free fermion to compute h

�

=

1

16

.

Consequently h

�

0

=

9

16

. The anti-holomorphic conformal dimension of � is also

1

16

, as one

would expect in the simplest modular invariant theory, the diagonal one.

Note however that this implies that

�

h

�

0

=

1

16

, since @�(z) has

�

h=0, and furthermore it

cannot introduce an anti-holomorphic branch cut. Now we also need a �eld ~� with the

operator product

�

@�(�z)�(w; �w) = (�z � �w)

�

1

2

~�

0

(w; �w) + : : : ;

If we were to identify � with ~� and �

0

with ~�

0

we would not get the correct branch cut.

Hence we clearly need at least one new twist �eld. In fact it turns out we need two: both ~�

and ~�

0

must be new �elds.

Projecting on the invariant states

The partially modular invariant theory is now obtained by acting on these twisted ground

states with all combinations of oscillators (note that the oscillators are half-integer moded

in the twisted sector), and including all states in the other untwisted sector.

Now we remove all states that are not invariant under the symmetry � ! ��, and the

corresponding operators. In particular this removes the operator @� and hence the branch

cut (10.1) causes no problems anymore. Note that this symmetry changes the sign of all the

oscillators as well as the momentum operator.

We do not only wish to remove all states that are odd under the discrete symmetry, but also

organize the remaining ones into representations of the chiral algebra of the orbifold theory.

In particular this means that we write the new partition function in the standard diagonal

form. The chiral algebra of the orbifold theory does not contain the current @�, but it does

contain some other operators, namely the symmetric combinations

e

inR�

+ e

�inR�

; n > 0 :

The operator of lowest conformal weight in this set has conformal weight

1

2

R

2

. For R =

p

2
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this current has spin 1.

The ground states in the untwisted sector transform as follows. We start from the diagonal

partition function of the circle theory, which is created by oscillators acting on the states

jm;mi with �N < m < N , as well as the states j�N;Ni. The latter four come from the

terms j�

N

j

2

in the diagonal partition function. Here the notation is as in (9.5), i.e. m denotes

a representation with ground state momentumm=R.

A state jm;mi is mapped to j�m;�mi, so that only the linear combination jm;mi +

j�m;�mi is left in the orbifold theory. At the �rst excited level there were four states,

�

�1

jm;mi ��

�1

jm;mi, �

�1

j�m;�mi and ��

�1

j�m;�mi. In this case the linear combina-

tions �

�1

jm;mi � �

�1

j�m;�mi and ��

�1

jm;mi � ��

�1

j�m;�mi survive the projection.

These two states are created from the ground state by the mode L

�1

of the energy-momentum

tensor �

1

2

(@�)

2

and its anti-holomorphic partner. Thus we see that the structure of the

lowest lying states is consistent with a contribution to the partition function of the form

jq

h�c=24

(1 + q + : : :)j

2

.

The states with charges �N are slightly more subtle. Of the four states j�N;�Ni two

linear combinations survive , namely jN;Ni + j�N;�Ni and jN;�Ni + j�N;Ni. They

form two separate ground states, each of one representation, since otherwise we could not

factorize their contribution to the partition function into anti-holomorphic and holomorphic

contributions (2 is not a square).

The vacuum sector also requires more attention. Here we have to distinguish two cases. For

R

2

> 2 the �rst excited states are are �

�1

j0; 0i and ��

�1

j0; 0i. They are both odd under the

symmetry � ! �� and disappear. However, the symmetric excitation �

�1

��

�1

j0; 0i does

survive. This contribution to the diagonal partition function starts thus as [q�q]

�c=24

(1+ q�q),

and does not factorize (the circle partition function has as its leading terms jq

�c=24

(1 +

q)j

2

.) Hence we are forced to introduce a new ground state, denoted as

�

�

@�;

�

@

�

�

�

, that

corresponds to the circle state �

�1

��

�1

j0; 0i. It may then be shown that all further excitations

factorize in a sum of two terms, one corresponding the vacuum representation and one to

the representation built on the ground state

�

�

@�;

�

@

�

�

�

.

If R =

p

2 the circle chiral algebra contains 3 spin 1 currents, @� and exp(�iR�), and hence

the leading terms in the circle partition function are [q�q]

�c=24

(1+3q+3�q+9q�q). Only one of

the three currents survive the projection, and of the nine current-current states �ve survive.
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Hence the orbifold partition function starts with

[q�q]

�c=24

(1 + q + �q + 5�q) = [q�q]

�c=24

jj1 + q + : : : j

2

+ [q�q]

1�c=24

j2 + : : : j

2

In this case the ground state of the representation denoted \

�

�

@�;

�

@

�

�

�

" has thus multiplicity

2, and contributes to the full partition function with multiplicity 4.

In the twisted sector we have to de�ne the action of the symmetry on the ground states; then

the rest is �xed. The unprimed and primed twist �elds must transform with an opposite

sign, as is clear from (10.1). Since �(0) j0; 0i =

�

�

1

16

;

1

16

�

is a desirable state and �

0

(0) j0; 0i =

�

�

9

16

;

1

16

�

is not, we choose � (as well as ~�) to transform with a + sign. Then the state

�

0

(0) j0; 0i transforms with a � sign and is removed, while for example ��

�1=2

�

0

(0) j0; 0i with

conformal weight h =

�

h =

9

16

remains.

10.4. The partition function

To summarize, we �nd thus the following partition function

P

orb

=

X

r

j�

r

j

2

where the label r stands for the following representations (the notation is inspired by the

foregoing discussion in an obvious way, but note that here we are only considering one chiral

sector )

r h r h

0 0 @� 1

�

1

16

~�

1

16

�

0
9

16

~�

0
9

16

N

(1)

N

4

N

(2)

N

4

m (0 < m < N)

m

2

4N

There are in total 1 + 1 + 4 + 2 + N � 1 = N + 7 representations. Each has ground state

multiplicity 1, except r = @� for R

2

= 2, as noted above.
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10.5. The geometric description

Although the presentation given above was a bit intuitive, it is not hard to show that it

actually leads to a modular invariant partition function. The partition function we were

constructing can be summarized as follows

P

orb

=

1

2

(P

PP

B

+ P

PA

B

+ P

AA

B

+ P

AP

B

)

Here P

B

represents the free boson path integral on the (world-sheet) torus, with boundary

conditions as indicated. The sum over boundary conditions is as for the free fermion, and is

modular invariant for the same reason.

The term P

PP

B

is the circle partition function. The second term is anti-periodic in the

time direction, which means that odd numbers of bosons contribute with a � sign. The

third and fourth term are anti-periodic in the space direction, and represent the twisted

sector. The combination of terms projects out the unwanted states in that sector. The �rst

term and the sum over the last three terms are separately modular invariant. The precise

combination of these two modular invariant sets is dictated by the requirement of having a

unique vacuum and positive integral multiplicities for all other states. In particular a relative

� sign between these modular invariant sets (which was allowed for the free fermion) is not

allowed here because it would project out the vacuum.

The partition function may also be written as

P

orb

= Tr

P

1

2

(1 + g)q

L

0

�c=24

�q

�

L

0

��c=24

+ Tr

A

1

2

(1 + g)q

L

0

�c=24

�q

�

L

0

��c=24

;

where g represents the non-trivial Z

2

element that sends � to ��. This formula has an

immediate generalization to arbitrary discrete abelian groups, often written suggestively as

P

orb

=

1

jGj

X

g;h2G

g

h

;

where jGj is the number of elements in the group G. The sum over h is over all possible

twisted sectors, whereas the sum over g performs the projections. Modular invariance of this

expression is intuitively clear.

The advantage of this formulation applied to the c = 1 orbifolds is that it works immedi-

ately for arbitrary (even non-rational) R. The disadvantages is that it does not give direct

information on the chiral algebra and the representations.
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10.6. The c = 1 conformal field theories

We have now identi�ed two sets of c = 1 conformal �eld theories, each parametrized by a

real number R. Furthermore there is a duality in both spectra, since R and

2

R

are giving

rise to the same spectrum. The self-dual point occurs at R =

p

2.

One may think that the orbifold and the circle theories are all di�erent, but in fact they are

not. It can be shown that the orbifold of the R =

p

2 theory and the circle with R = 2

p

2

describe one and the same theory. This cannot happen at any other point, since only for

R =

p

2 the orbifold theory has a spin-1 current. It is easy to verify that the spectra of the

orbifold and circle theories are indeed the same, and not much harder to show that they are

in fact the same theory.

Hence the two lines are not separate, but connected, as shown in the following picture [31],

[32]. Note that only the topology of the picture matters, not the geometry. The dashed lines

indicate values of R that have already been taken into account because of R ! 2=R duality.

The orbifold radius is denoted by R

o

.

Circle

Orbifold

Isolated
theories

R =

p

2

(self-dual
 point)

R

0

R

R

0

=

p

2

R = 2

p

2

Apart from this continuum there also exist three isolated theories. They can be obtained by

an orbifold procedure applied to the R =

p

2 circle theory [33]. With these points included
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the picture is conjectured to be complete.

10.7. Moduli and marginal deformations

This picture provides the simplest example of moduli in conformal �eld theory. Moduli are

free parameters which can be varied continuously without a�ecting conformal invariance.

Apart from the three isolated points, every point on the diagram corresponds to a conformal

�eld theory with moduli. The point where the circle and the orbifold meet is characterized

by the existence of an additional modulus.

One can detect the existence of such conformal invariant deformations within a given theory

by looking for conformal �elds of dimension (1; 1), called marginal operators. Such operators

have precisely the correct weights to yield a conformal invariant result when integrated over

dz and d�z.

?

This implies that they can be added as a perturbation to the action,

�S /

Z

dzzd�zV

1;1

(z; �z) ;

where V

1;1

is a marginal operator.

In the circle and orbifold theories, this operator is @�(z)@�(�z). The additional marginal

operator in the meeting point of the lines is due to combinations with the additional spin-1

�eld e

i

p

2�

.

11. Kac-Moody algebras

In this chapter we consider extensions of the chiral algebra by a set of (anti)-holomorphic

spin-1 currents.

11.1. Spin one operator products

These currents are conformal �elds with respect to the Virasoro algebra. The operator

product of two such currents in a modular invariant conformal �eld theory must be local.

Since the currents are holomorphic their operator product is holomorphic as well. Hence it

is an expansion of integer powers of (z � w) multiplied by integer spin operators. Since the

? Marginal operators must satisfy additional constraints not explained here.
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lowest spin an operator in a unitary conformal �eld theory can have is zero (the identity), the

leading term is a constant times (z �w)

�2

. The next one is (z � w)

�1

times a holomorphic

spin-1 operator, which must therefore be one of the currents. Hence we get

J

a

(z)J

b

(w) =

d

ab

(z � w)

2

+

if

abc

J

c

z � w

+ : : : (11:1)

Note that the next term has spin 2, and hence is a candidate for a Virasoro generator; we

will return to it later.

Since integer spin currents are bosons the left-hand side is symmetric under interchange

((z; a) $ (w; b)). It follows that d

ab

must be symmetric and f

abc

anti-symmetric in a and

b. Since f

abc

appears in the three-point function it must then be anti-symmetric in all three

indices [This is true provided a Hermitean basis is chosen]. Using duality relations one can

then show that the coe�cients f

abc

must satisfy Jacobi identities. It follows then that they

are structure constants of a Lie algebra. This Lie algebra must be a direct product of some

simple Lie algebras and some U(1) factors (here \some" includes the possibility that there

are no such factors).

The argument given here is due to A. Zamolodchikov [34].

11.2. Intermezzo: some Lie algebra facts

We will �x some standard normalizations for simple Lie algebras. The algebra is

h

T

a

; T

b

i

= if

abc

T

c

It is satis�ed in particular by the matrices

(T

a

adj

)

bc

= �if

abc

;

which are the generators of the adjoint representation. Their commutator is in fact nothing

but the Jacobi identity. The generators in the adjoint representation act on the algebra via

the commutator.
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The root system is de�ned by selecting out of the generators T

a

the maximally commuting

set H

i

, the Cartan subalgebra. The number of such generators is called the rank of the alge-

bra. In the adjoint representation we may simultaneously diagonalize the Cartan subalgebra

acting on the remaining ones, so that

�

H

i

; E

~�

�

= �

i

E

~�

(11:2)

The set of vectors ~� is called the root system of the algebra.

In a compact Lie algebra a basis can be chosen so that

TrT

a

adj

T

b

adj

= N�

ab

; (11:3)

where N is a normalization, to be �xed in a moment. The left-hand side is called the

Killing metric of the Lie algebra. It will be assumed that the Cartan subalgebra generators

are elements of the basis. Then (11.3) induces a natural inner product on the root space,

namely ~� �

~

� =

P

i

�

i

�

i

.

Given a root system we can choose a plane which divides the roots into positive and negative

ones (this plane must thus be chosen in such a way that none of the roots lies in the plane).

Then one de�nes a set of simple roots which form a basis of the root system with the property

that all positive roots are linear combinations with positive coe�cients of the simple roots.

One also de�nes a highest root  as the unique positive root from which all other roots can

be obtained by subtracting simple roots. Now we de�ne the dual Coxeter number g:

g =

(

~

 + 2~�) �

~

 

~

 �

~

 

;

where ~� is half the sum of the positive roots. Note that this de�nition is independent of the

normalization of the inner product. The values of the dual Coxeter number for all simple

Lie algebras are listed in the following table
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Type

rank

Algebra Value of g Adjoint dimension

A

N�1

SU(N) N N

2

� 1

BN�1

2

SO(N); N > 4; odd N � 2

1

2

N(N � 1)

C

N

Sp(2N) N + 1 N(2N + 1)

DN

2

SO(N); N > 3; even N � 2

1

2

N(N � 1)

G

2

4 14

F

4

9 52

E

6

12 78

E

7

18 133

E

8

30 248

The �rst column gives the Dynkin classi�cation, while the second one gives the identi�cation

with the perhaps more familiar classical Lie algebras.

We now �x the normalization of the generators by requiring that N = 2g in (11.3). This

normalization implies that the highest root has norm 2. To conclude this section we write

down the remaining commutators among the generators in this basis. For the commutator

between the root generators one has

h

E

~�

; E

~

�

i

= �(~�;

~

�)E

~�+

~

�

;

if ~�+

~

� is a root, and

h

E

~�

; E

�~�

i

= ~� �

~

H ;

and zero in all other cases. The coe�cients �(~�;

~

�) are non-zero real numbers.

11.3. The central term

The �rst tensor in (11.1) must be symmetric in a and b, and furthermore the Lie algebra

structure we have just identi�ed requires it to be an invariant tensor of the Lie algebra.

Hence it must be proportional to the Killing form, which in our conventions means it is

proportional to �

ab

. Since we have already �xed the normalization of the structure constants,
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the normalization of the �rst term is �xed. Note that the �rst term determines the current-

current propagator, and that this has a positive residue only if the Lie-algebra is compact

(if it is not compact the Killing form has negative eigenvalues). If the propagator had a

wrong-sign residue this would violate unitarity. Thus in unitary conformal �eld theories the

Lie algebra must be compact.

If the Lie algebra is semi-simple the term d

ab

takes the form k

a

�

ab

, where k

a

is constant on

each simple factor. From now on we will focus on simple Lie algebras; the index a on k

a

can

then be dropped.

11.4. Modes

The mode expansion of the currents is as discussed in general in chapter 7. It is straightfor-

ward to derive the algebra in terms of modes

h

J

a

m

; J

b

n

i

= if

abc

J

c

m+n

+ km�

ab

�

m+n;0

(11:4)

Note that for m = n = 0 one obtains a subalgebra which is a simple Lie-algebra. Since the

modes with m = n = 0 do not alter the conformal weight, this algebra takes the states of a

given weight into each other. It is usually referred to as the horizontal algebra.

If k = 0 the algebra is referred to as the loop algebra. If k 6= 0 one gets strictly speaking only

an algebra if we consider k as the eigenvalue of an operator K, which is called the central

extension of the loop algebra. This operator commutes with all others. This is analogous to

the central extension of the Virasoro algebra.

The algebra (11.4) is called a centrally extended loop algebra, or current algebra. It is

often also referred to as an a�ne Lie algebra, or a Kac-Moody algebra. This is not quite

correct. The mathematical de�nition of an a�ne Lie-algebra includes in addition to the

operators appearing in (11.4) still one more operator called the derivation D. This operator

satis�es [D;J

a

n

] = nJ

a

n

, and [K;D] = 0. Comparing the �rst expression with (7.2), one �nds

that it is satis�ed by D = �L

0

; because of (11.4), L

0

commutes with K and hence the

second commutator is also satis�ed. Since we will only consider the spin-1 current algebras

in combination with a Virasoro algebra, the distinction between the two de�nitions is not

essential for us. Note that the current algebra is una�ected if we omit D, since it never

appears on the right hand side of a commutator, but from the mathematical point of view it
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is convenient to introduce it in order to de�ne an invertible Killing form. The mathematical

de�nition of a Kac-Moody algebra is much more general, and includes ordinary as well as

a�ne Lie algebras, and many more. We will nevertheless use the term \Kac-Moody" algebra

from here on in a restricted sense, to refer to (11.4).

11.5. Twisted and untwisted affine algebras

Since the current has integral spin, the \natural" mode expansion is in terms of integer

modes. One can however also consider fractionally moded operators by introducing twist

�elds. One �nd that in many cases the fractionally mode algebras are isomorphic to the

integrally moded ones. There is a set of algebras and twistings (related to so-called outer

automorphisms of the horizontal Lie-algebra) for which this is not the case. They are known

as twisted a�ne algebras. In these lectures we will only encounter the untwisted ones.

11.6. Primary fields

Primary �elds are de�ned by the condition that they should be Virasoro primary �elds, and

in addition satisfy

J

a

(z)�

i

(w; �w) =

T

a

ij

z � w

�

j

(w; �w) + : : :

The leading pole is determined as in the general arguments given in chapter 7. Since the

�eld appearing on the right hand side has the same conformal weight as �, one can label all

the �elds with that conformal weights by a label i, and then the operator product inevitably

looks like the one above.

This implies that the ground states jri are rotated into each other by the horizontal algebra,

which acts via the matrices T

a

ij

:

J

a

0

jr

i

i = T

a

ij

(r) jr

j

i ; (11:5)

where

jr

i

i = �

i

(0) j0i

The matrices T

a

ij

(r) can be shown to satisfy the commutation relations of the horizontal
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algebra,

h

T

a

; T

b

i

= if

abc

T

c

;

by acting with a second generator J

b

0

. They are the representation matrices of the horizontal

algebra in some representation r determined by �

i

.

Note that the current itself is not a Kac-Moody primary �eld, just as the energy momentum

tensor is not a conformal �eld.

11.7. The Sugawara tensor

In addition to the current modes the algebra under consideration consists of Virasoro gener-

ators, with de�nite commutation relations with themselves and the currents. Actually, there

is one as yet unknown quantity in the Virasoro algebra, namely its central charge. It turns

out that the Virasoro generators can be expressed in terms of the currents in the following

way:

T (z) =

1

2(k + g)

:

X

a

J

a

(z)J

a

(z) : ; (11:6)

where the sum is over all generators of the horizontal algebra. This is called the Sugawara

energy-momentum tensor [35]. As usual, normal ordering means subtraction of the singular

terms,

:

X

a

J

a

(z)J

a

(z) :� lim

w!z

"

X

a

J

a

(z)J

a

(w)�

k dim(adj)

(z � w)

2

#

(For U(1) algebras dim(adj) should be interpreted as the number of U(1) generators.) To

verify that this is indeed the Virasoro generator, we have to check the operator product with

the current, and with T (w). The requirement that J

a

(z) is a conformal �eld of weight 1

�xes the normalization in (11.6). In the computation one uses the relation

�f

acd

f

bdc

= TrT

a

adj

T

b

adj

= 2g�

ab

Then the computation of T (z)T (w) serves as a check, but in addition determines the central
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charge:

c =

k dim(adj)

k + g

The Virasoro generators can be expressed in terms of the modes of the currents:

L

n

=

1

2(k + g)

1

X

m=�1

: J

a

m+n

J

a

�m

: ;

where normal ordering means that positive modes should appear to the right of negative

ones.

11.8. Highest weight representations

Highest weight representations are characterized by a ground state jri that is annihilated

by all positive modes of J

n

. This implies automatically that it is annihilated by all positive

modes of the (Sugawara) energy-momentum tensor, i.e. that it is a Virasoro highest weight.

The only remaining freedom we have in characterizing representations is the action of the

zero-mode generator J

a

0

. We have already seen before that the ground states form a represen-

tation r of the horizontal algebra generated by the zero-modes. Representations of simple Lie

algebras are themselves generated by step operators acting on highest weight vectors. This

implies that any irreducible unitary representation of a Kac-Moody algebra is completely

characterized by a highest weight vector of the horizontal algebra and the eigenvalue of the

operator K, called the level (k). Completely, because once we know the horizontal algebra

highest weight and k we know the action of all current modes and the Virasoro generators.

In particular we know the conformal weight of the ground state:

h =

P

a

hrj J

a

0

J

a

0

jri

2(k + g)

(11:7)

The expectation value can be computed using (11.5):

X

a

hr

i

jJ

a

0

J

a

0

jr

j

i =

X

a

(T

a

(r)T

a

(r))

ij

= C

2

(r)�

ij

:

Here i and j label the components of the representation r, and C

2

(r) is the quadratic Casimir

operator. The result is thus

h

r

=

1

2

C

2

(r)

k + g

Note that our normalization is such that in the adjoint representation C

2

(adj) = 2g.
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The representation r must be an irreducible highest weight representation of the horizontal

algebra. What remains to be done is to determine which representations and which values of

k are allowed. Rather than attempting to solve this directly in general, we start by looking

at the simplest theories.

11.9. U(1) theories

If all structure constants f

abc

vanish one obtains a product of one or more U(1) factors.

Their currents can always be written in terms of free bosons, J

i

= i@�

i

. They satisfy the

operator product (11.1) with k = 1. We have already studied this case in detail, and discuss

it only here to show how it �ts in.

Since f

abc

= 0, the dual Coxeter number g vanishes. Then the energy-momentum tensor has

the standard form for free bosons, T (z) = �

1

2

(@�(z))

2

. The central charge is equal to the

number of free bosons, as expected.

The representations are labelled by the zero-mode momenta of the ground states, usually

referred to as charges. The ground states satisfy thus

J

0

jqi = q jqi ;

and they are in fact uniquely labelled by q. Their conformal weight is

1

2

q

2

. Note that J

0

= p,

the momentum operator.

11.10. The SU(2) Kac-Moody algebra

The root system of SU(2) has just one simple root �. This is also the only positive root, and

is also equal to the highest root. The Weyl vector � is equal to half the sum of the positive

roots, and is thus equal to

1

2

�. The dual Coxeter number is easily computed to be 2.

The algebra is generated by three currents J

a

; a = 1 : : : 3. The structure constants are

proportional to �

abc

. The proportionality constant can be determined by (11.3), which reads

(�ix�

acd

)(�ix�

bdc

) = 2g�

ab

= 4�

ab

;

where x is the proportionality constant. We �nd thus that x =

p

2. This is a disadvantage

of this normalization: SU(2) generators are not normalized in the familiar way. Similarly
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the generators in the spinor representation are

1

2

p

2�

i

, where �

i

are the Pauli matrices. [An

advantage of our normalization is that for any algebra and any representation the quantity

I

2

(R), de�ned by TrT

a

T

b

= I

2

(r)�

ab

is an integer.]

Highest weight representations of the SU(2) Kac-Moody algebra are characterized by SU(2)

Lie-algebra representations and the level k; hence they are characterized by k and the SU(2)

spin j. A ground state has 2j + 1 components jj;mi. Its conformal weight is

h =

j(j + 1)

k + 2

Here we recognize the SU(2) Casimir eigenvalue j(j + 1).

The following argument restricts the values of k. The algebra (11.4) has several interesting

sub-algebras. One is the zero-mode algebra,

h

J

a

0

; J

b

0

i

= i

p

2�

abc

J

c

0

:

Apart from the normalization this is a standard SU(2) algebra. Since we want to use results

from SU(2) representation theory, we have to change the normalization of the generators.

Furthermore we go to a basis of raising/lowering operators. Hence we de�ne

I

�

=

1

p

2

(J

1

0

� iJ

2

0

); I

3

=

1

p

2

J

3

;

so that

�

I

+

; I

�

�

= 2I

3

. Standard results in SU(2) unitary representation theory tell us now

that the eigenvalues of I

3

must be (half)-integers. It is easy to check that the following

generators satisfy the same commutation relations:

~

I

+

=

1

p

2

(J

1

+1

� iJ

2

+1

);

~

I

�

=

1

p

2

(J

1

�1

+ iJ

2

�1

);

~

I

3

=

1

2

k �

1

p

2

J

3

=

1

2

k � I

3

:

Hence we conclude that the eigenvalues of

~

I

3

must also be (half)-integers, and furthermore

since I

3

and

~

I

3

commute we can diagonalize them simultaneously. This is only consistent if

k is an integer. Furthermore unitarity (positivity of the residue of the propagator) requires

it to be a positive integer.
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Now we can directly get a further constraint by computing the norm of the state

~

I

�

jj;mi,

where jj;mi is one of the components of the ground state

0 � hj;mj

~

I

+

~

I

�

jj;mi

= hj;mj

h

~

I

+

~;I

�

i

jj;mi

= hj;mj 2

~

I

3

jj;mi

= hj;mj (k � 2I

3

) jj;mi

= hj;mj (k � 2m) jj;mi

Here we used the requirement of unitarity (positivity of the norm), the highest weight prop-

erty of jj;mi, which implies that J

a

+1

jj;mi = 0, and the SU(2) commutator [I

+

; I

�

] = 2I

3

.

Clearlym cannot be larger than

1

2

k, and the same follows then for j. It is convenient to label

the representations by integers l = 2j. They are thus restricted to the values 0 � l � k.

11.11. SU(2) at level 1.

For k = 1 there are thus precisely 2 representations, with ground state spins j = 0 and

1

2

. We have already seen a realization of this theory, namely in the self-dual point of the

c = 1 circle theory. At this point there are three spin-1 �elds, namely @� and e

�i

p

2�

. Their

operator products are (singular terms only)

@�(z)e

�i

p

2�

(w) =

�i

p

2

(z � w)

e

�i

p

2�

(w)

@�(z)@�(w) = �

1

(z �w)

2

e

i

p

2�(z)

e

i

p

2�(w)

= non-singular

and

e

i

p

2�(z)

e

�i

p

2�(w)

=

1

(z � w)

2

+

i

p

2

z � w

@�(w)

These is precisely equal to (11.1) with k = 1 provided we de�ne

J

1

(z) =

1

2

p

2(e

i

p

2�

+ e

�i

p

2�

) ; J

2

(z) = �

1

2

i

p

2(e

i

p

2�

� e

�i

p

2�

) ;

J

3

= i@� :

Thus we see that this algebra can be realized with a single free boson. We have already

seen in the previous chapter that for R

2

= 2N the bosonic theories have 2N characters
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with conformal weights

m

2

4N

, �N < m < N . For N = 1 this agrees with the SU(2) level-1

description of the same theory.

The primary �eld corresponding to the only non-identity representation can also be written

in terms of the free boson, namely as exp(i

1

2

p

2�(z). Unfortunately things are less simple

at higher levels.

11.12. Generalization to other Kac-Moody algebras

The foregoing results on SU(2) have an immediate generalization to other algebras. This

generalization works exactly like the reasoning one follows to derive the Lie-algebra repre-

sentations from the representation theory of SU(2). The results for SU(2) are valid for any

SU(2) sub-algebra of some Kac-Moody algebra, and now it is simply a matter of �nding the

most suitable one.

Let us �rst �nd a suitable basis for the current modes J

a

n

. For the zero modes there is a

standard basis, the one introduced in section 11.2.

To generalize this to Kac-Moody algebras one simply attaches an extra index n to all oper-

ators, and includes the central term. The result is

�

H

i

m

;H

j

n

�

= m�

m+n;0

�

ij

h

H

i

m

; E

~�

n

i

= �

i

E

~�

m+n

h

E

~�

m

; E

~

�

n

i

= �(~�;

~

�)E

(~�+

~

�)

n+m

h

E

~�

n

; E

�~�

m

i

= ~� �

~

H

n+m

+Kn�

n+m;0

:

It is easy to see that any root ~� de�nes a conventionally normalized SU(2) subalgebra, whose

generators are

~

I

+

=

q

2

~�

2

E

�~�

n

;

~

I

�

=

q

2

~�

2

E

~�

�n

and

~

I

3

=

1

~�

2

(Kn� ~� �H

0

). The normalization

of this SU(2) is the traditional one, i.e.

�

I

+

; I

�

�

= 2I

3

etc. By arguments similar to the ones

used for SU(2) we conclude that the quantity 2nK=(~�

2

) must have integer eigenvalues, for

any n and ~�. Obviously the strongest constraint comes from n = 1. If we have normalized

our root system in the canonical way, i.e.

~

 

2

= 2, there is always a root with norm 2, and

we �nd that K must have integer eigenvalues k. The norms of other roots that can occur

in simple Lie algebras are 1 or

2

3

, in the canonical normalization. This does not impose

additional constraints.
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One can use the same subalgebra to �nd constraints on the ground states. We know already

that the ground states are representations of the horizontal algebra, and are characterized

by a highest weight

~

�. The ground state has then dim(r

~

�

) components, where r

~

�

indicates

the representation with highest weight

~

�.

Take any component j�i, where � is any weight in r

~

�

. By requiring positivity of the norm

of

~

I

�

j�i we get now the condition 2

~��~�

~��~�

� k. This condition is most restrictive if we take �

equal to the highest weight of the ground state representation

~

�, and  equal to the highest

root. In the canonical normalization we get then

~

 �

~

� � k

Just as for SU(2) the number of representations satisfying this condition is �nite. The

following picture shows the allowed highest weights for the algebra A

2

at various levels

k=5

k=4

k=3

k=2

k=1



� 122 �

The negatively moded currents J

a

�n

act on these ground states and create the full Kac-Moody

representation. Since they are in the adjoint representation of the horizontal algebra, they

also change the representation that one �nds at higher excitation levels (the excitation level,

also called grade is de�ned as the conformal weight of a descendant minus that of the ground

state. It should not be confused with the level of the algebra). Naively the representation

content at the higher excitation levels can be obtained by selecting all combinations of

current modes that produce the desired excitation level, and tensoring the ground state

representation with the adjoint representation as many times as required. For example, one

might expect the �rst excited level to contain all representations in the tensor product r

�


r

 

,

the latter being the adjoint representation. However, the norms of some of the representations

in the tensor product might be 0, just as was the case for Virasoro representations.

Zero-norm states are removed. Nothing in the previous arguments guarantees the absence

of negative norm states, which would make the representation non-unitary. The conditions

we have satis�ed are necessary conditions for the absence of some potential negative norm

states, namely those occurring in certain SU(2) sub-algebras. One way to show that the

representations are indeed unitary is to �nd an explicit realization of the symmetries in some

well-de�ned �eld theory.

11.13. The Frenkel-Kac construction

One such realization is the Frenkel-Kac construction [36].

This is a generalization of the level-1 construction which we gave for SU(2). It works for

any Lie-algebra whose roots have the same length, which is conveniently normalized to the

value 2. Such a Lie-algebra is called simply-laced, and the algebras enjoying this property

are A

r

, D

r

and E

6

; E

7

and E

8

.

The generators of these algebras at level 1 can be written down explicitly in terms of r free

bosons, where r is the rank. One simply writes them as

E

~�

(z) = e

i~���

(z)

and

H

i

(z) = i@�

i

(z) ;

and de�nes modes in the usual way. This yields the correct operator product for the SU(2)
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sub-algebras associated to each of the roots (as one may check), and furthermore one gets

e

i~���

(z)e

i

~

���

(w) = (z � w)

���

e

i(~�+

~

�)��

(w) + : : :

Inner products between roots of simply laced algebras can be 2; 1; 0;�1 and �2. In the �rst

case ~� =

~

�, and in the last case ~� = �

~

�. If ~� �

~

� = �1 one �nds that ~� +

~

� is a root.

Precisely in that case the operator product has a pole, exactly as required by (11.1).

However, this is not quite the end of the story, because the coe�cients �(~�;

~

�) can have signs.

Although many of these signs are merely a conventions, some are essential. To reproduce

them one has to introduce so-called co-cycle factors in the de�nition of the root generators,

whose commutators produce the correct signs. We will not discuss this further.

The Frenkel-Kac construction yields thus an explicit realization of level-1 simply laced alge-

bras in terms of free bosons. The lattice on which the momenta of these bosons are quantized

is the weight lattice of the simply-laced algebra, which is the dual of the root lattice.

11.14. The WZW-model

Realizations of the other theories can be obtained from the so-called Wess-Zumino-Witten

models. These are conformal �eld theories with a two-dimensional action

S = k[S

WZ

+ S

W

]

The �rst term is due to Wess and Zumino [37], and has the form

S

WZ

=

1

16�

Z

d

2

zTr @

�

g(z)@

�

g(z) ;

where g(z) is a map from the two-dimensional surface to a group manifold. In other words,

for every point z on the manifold, g(z) is some element of the group G under consideration.

Here G can be any compact group belonging to a simple Lie algebra.

The second term was added by Witten [38], and has the bizarre form

S

W

=

1

24�

Z

d

3

y�

��


Tr g

�1

(y)@

�

g(y)g

�1

(y)@

�

g(y)g

�1

(y)@




g(y)

The strange feature is that the integral is over a three-dimensional surface. However the inte-

gral is a total derivative, and hence it can be written as a surface integral over the boundary
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of the three-surface. The boundary of a three-surface is a two-dimensional manifold, for

which we take the one used in the �rst term, with the boundary condition g(y)j

y=z

= g(z).

The extra term is required to make the theory conformally invariant. Upon quantizing the

theory one �nds that k must be an integer for the integral to be consistent.

The currents that generate the Kac-Moody algebra for this model are J(z) = @gg

�1

and

�

J(�z) = g

�1

�

@g.

11.15. Modular transformation properties

Virasoro characters for representations of Kac-Moody algebras can be de�ned in the usual

way. It is however useful to de�ne a more general quantity, namely

X

�;k

(�;

~

�) = Tr

V

�;k

e

2�i�(L

0

�c=24)

e

2�i

~

��

~

H

0

:

Here the trace is over all states in the representation with highest weight � and level k. If

we put the variables �

i

to zero this reduces to the Virasoro character.

A general formula for the characters and their transformation properties was given by Kac

and Peterson [39]. The result is

X

�;k

(� + 1;

~

�) = e

2�i(h

�;k

�c

k

=24)

X

�;k

(�;

~

�) ; (11:8)

with h and c as de�ned earlier, and

X

�;k

(�

1

�

;

~

�

�

) = e

�ik

~

�

2

4��

X

�

0

S

k

��

0

X

�

0

;k

(�;

~

�)

A very important feature is that di�erent levels do not mix under modular transformations.

This could have been expected on the basis of the WZW-model (which has a de�nite level

and can be de�ned on the torus).

Formulas for the matrix elements of S can be found in the literature. Many important results

on Kac-Moody algebras are due to V. Kac, in collaboration with various other authors. These

results are collected in a book [40], but this is not easily accessible. The formulas for S can

be found for example in [41] or [8].
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11.16. Modular invariant partition functions for SU(2)

An as yet unsolved problem is that of �nding all modular invariant partition functions for

all WZW-models. That is, one wants to �nd all non-negative integer matrices M

�;�

0

that

commute with S and T (the latter is implicitly de�ned in (11.8)) and with M

00

= 1, so that

the vacuum is unique.

The only horizontal algebras for which this problem has been solved are SU(2) and SU(3).

For SU(2) the solutions are divided into three types called A, D and E:

A : These are simply the diagonal invariants, which exist at any level, and for any algebra.

D : They occur at all even levels. If the level is a multiple of 4, they imply and extension

of the chiral algebra. For the other even levels they correspond to automorphisms of

the fusion rules.

E : They occur for level 10, 16 and 28.

The notation is chosen because the solutions resemble the classi�cation of the simply-laced

Lie-algebras. The resemblance is more precise than suggested here, but so far there is no

deep understanding of the mathematical structure (if any) behind this observation.

The A and D invariants are explicitly

k

X

l=0

jX

l

j

2

k=4�1

X

m=0

jX

2m

+ X

k�2m

j

2

+ 2jX

k=2

j

2

(k = 0 mod 4)

k

X

l=0;even

jX

l

j

2

+

k

X

l=0;odd

X

l

X

�

k�l

(k = 2 mod 4)

This is called the ADE-classi�cation of the SU(2) modular invariants. It was obtained and

shown to be complete by Cappelli, Itzykson and Zuber [42]. (The SU(3) invariants were

classi�ed in [43].)
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11.17. Fusion rules and simple currents

The fusion rules can be derived using Verlinde's formula. There is also a more direct approach

which is a modi�ed version of the tensor product rules of the horizontal Lie algebra.

Such a tensor product has the general form

r

i


 r

j

=

X

M

l

ij

r

l

;

where M

l

ij

gives the multiplicity of the representation r

l

in the tensor product of r

i

and r

j

.

For example, in SU(3) one has the rule

(8)
 (8) = (1) + (10) + (10) + 2(8) + (27)

Here representations are indicated by their dimension, and the bar indicates the complex

conjugate. The coe�cients M

l

ij

are somewhat reminiscent of the fusion rule coe�cients.

Indeed, it is true that N

l

ij

� M

l

ij

, with equality in limit of in�nite level (for �xed i, j

and k). For example, these are the results for SU(3) at various level, with [n] indicating a

Kac-Moody representations whose ground state is the Lie-algebra representation (n):

k = 2 : [8]� [8] = [1] + [8]

k = 3 : [8]� [8] = [1] + [10] + [10] + 2[8]

k = 4 : [8]� [8] = [1] + [10] + [10] + 2[8] + [27] :

For higher levels the result is as for k = 4. For k = 1 the ground state [8] does not exist.

One method for �nding these results starts with the group theory tensor products, to which

certain level-dependent projections are applied.

Most Kac-Moody algebras have simple currents. They are the representations whose ground

state highest weight is k times a so-called co-minimal fundamental weights. The only excep-

tion is E

8

level 2, which has a simple currents even though it has no fundamental weights at

all.

For SU(2) the simple current is the representation with j = k. For SU(N) they are all N

representations with Dynkin labels (0; : : : ; 0; k; 0; : : : ; 0), etc.
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11.18. Modular invariant partition functions for other Kac-Moody alge-

bras

No complete classi�cation exists, although it seems plausible that at least for simple horizon-

tal algebras the present list of solutions is close to complete. The majority of the invariants

on that list are simple current invariants. For example for SU(2) all D-type invariants are

simple current invariants. Only the three exceptional invariants remain mysterious. This is

also the pattern one observes for other algebras.

11.19. Coset conformal field theories

A huge class of rational conformal �eld theories can be obtained with the coset construction

[44]. Consider a Kac-Moody algebra G and another Kac-Moody algebra H. Suppose the

horizontal sub-algebra of H can be embedded in that of G, Then one can associate a con-

formal �eld theory with any such pair G and H. For simplicity we will assume that both

horizontal algebras are simple.

The embedding implies that one can write the currents of H in terms of those of G:

J

i

H

(z) =

X

a

M

i

a

J

a

G

(z)

Substituting this into the operator product (11.1) one �nds

J

i

H

(z)J

j

H

(w) =

kM

i

a

M

j

b

�

ab

(z � w)

2

+

iM

i

a

M

j

b

f

abc

z � w

J

c

G

(w)

The fact that we have an embedding in the horizontal algebra implies that in the last term

the identity M

i

a

M

j

b

f

abc

= f

ijl

M

l

c

can be used to get f

ijl

J

l

(w), and that in the �rst term

M

i

a

M

j

b

�

ab

/ �

ij

. However, in general there is a proportionality coe�cient, which is called

the Dynkin index of the embedding. This index, which we denote I(G;H) is an integer. We

�nd thus the following relation for the level of G and H:

k

H

= I(G;H)k

G

If H is not simple, one simply attaches a label to H to indicate the simple factors; if G is

not simple one does the same, and includes on the right-hand side a sum over the G-labels.
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The energy-momentum tensor of the coset conformal �eld theory is T

G

(z) � T

H

(z), where

T

G

and T

H

are the Sugawara tensors for G and H, each at the appropriate level.

The currents of H are spin-1 conformal �elds with respect to T

H

; on the other hand, they

are linear combinations of currents of T

G

, and hence they are also spin-1 conformal �elds

with respect to T

G

. But that implies that the operator product of T

G

(z) � T

H

(z) with J

i

H

is non-singular, since the singularities cancel. Furthermore, since the Sugawara tensor T

H

is constructed completely out of the currents of H, it follows that the operator product

(T

G

(z)� T

H

(z))T

H

(w) is non-singular, or in other words T

G

(z)T

H

(w) = T

H

(z)T

H

(w) up to

non-singular terms. The same is true for T

H

(z)T

G

(w). Hence we get

(T

G

(z)� T

H

(z))(T

G

(w) � T

H

(w)) = T

G

(z)T

G

(w)� T

H

(z)T

H

(w)

=

c

G

� c

H

(z � w)

4

+ 2

T

G

(w) � T

H

(w)

(z � w)

2

+

@

w

(T

G

(w)� T

H

(w))

(z � w)

2

+ : : :

This tells us that T

G

� T

H

is a Virasoro generator with central charge c

G

� c

H

that is

\orthogonal" to T

H

in the sense that their operator product is non-singular. Hence the

original energy-momentum tensor T

G

has been decomposed into two orthogonal pieces

T

G

= T

G=H

+ T

H

;

with T

G=H

= T

G

� T

H

.

Given such a decomposition, any representation of G can be decomposed in terms of H

representations,

V (�

G

) =

X

�

�

H

V

H

(�

H

)
 V

G=H

(�

G

; �

H

) :

Here �

H

labels all representations of the Kac-Moody algebra H, and V (�) denotes a rep-

resentation space. Each single state in the G representation is a product of some state

in an H-representation times a state in a G=H representation. In this way we de�ne the

representation spaces for the coset theory. Note that T

G=H

= T

G

� T

H

realizes a unitary

representation on this space. This follows from unitarity of the modes of T

G

and T

H

(in the

sense that L

y

n

= L

�n

) as well as the fact that the norm of states in G representations are

equal to products of norms of states in H and G=H representations. Hence the norms of the

latter cannot be negative.
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Naively, we can explicitly construct the characters of the coset theory by decomposing any

G representation systematically into H representations. This corresponds to the following

relation

X

�

G

(� ) =

X

�

H

b

�

G

�

H

(� )X

�

H

(� ) (11:9)

The functions b

�

G

�

H

(� ) are called the branching functions of the embedding. They are some-

times confused with the characters of the coset theory, but in general this is not correct. The

relation (11.9) does not give su�cient information to compute the branching functions. To

compute them one has to take into account not only the dependence on � of the characters,

but use also the representation content with respect to the horizontal algebra.

11.20. The minimal discrete series as a coset theory

An interesting example is the series

SU(2)

1

� SU(2)

k

SU(2)

k+1

The central charge is

c = 1 �

6

(k + 2)(k + 3)

;

which corresponds precisely to the central charges of the minimal Virasoro models if we

make the identi�cation m = k + 2. Since the minimal models are the only unitary theories

with these central charges (apart from non-diagonal modular invariants of these theories) the

coset theories must form an explicit realization of the minimal models. This is quite useful,

because we had not proved that the minimal models are actually unitary, we just had not

been able to rule them out.

Let us compute some of the branching functions. The representations of G are labelled by

two integers 0 � l

1

� 1 and 0 � l

2

� k, and those of H by one integer 0 � l

3

� k + 1.

Let us consider l

1

= l

2

= 0. The ground state of the G Kac-Moody representation is then

the Lie-algebra representation (0; 0). It decomposes to (0) of H. The branching function

starts thus at h

G

� h

H

= 0. At the next excitation level we encounter the states (J

a

�1

)

1

j0i

and (J

a

�1

)

2

j0i, generated from the vacuum by the currents of SU(2)�SU(2). There are six

states, and they transform in the representation (3) + (3) of H.
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In the vacuum representation of H we will have also a set of states J

a

�1

j0i, in the (3) of

SU(2). This removes one of the (3)'s we found. The other is not a singlet, and hence can

not contribute to the branching function b

0;0

0

. It must thus be interpreted as the �rst term

in a new branching function b

0;0

2

, where \2" denotes the representation (3) (in general the

dimension is (l + 1), since l denotes twice the usual SU(2) spin). The leading conformal

weight in that branching function is

0 + 0 + 1 �

1

2

l

3

(

1

2

l

3

+ 1)

(k + 1) + 2

=

1

2

;

where the �rst two terms are the ground state weight in G, the third is the excitation level,

and the last is the contribution from the term �T

H

, with l

3

= 2 and k = 1. This branching

function is seen to correspond to the h =

1

2

representation of the Ising model. There is no

contribution at the �rst excited level to b

0;0

0

. This agrees with the fact that L

�1

j0i = 0 on

the ground state.

11.21. Field Identification

The complications with interpreting the branching functions as characters start becoming

clear as soon as one observes that for example the branching function b

0;0

1

is identically

zero, since the G-representation contains only integer spin representations of SU(2). Closely

related, but less obvious, is the fact that several branching functions are in fact identical.

Something like this had to happen, since the total number of branching functions one gets

for the coset SU(2)

1


 SU(2)

1

=SU(2)

2

is 2 � 2� 3 = 12. This exceeds the number of Ising

model representations by a factor of 4.

The solution is that only the following branching functions are non-vanishing, and that they

are identical in pairs:

b

0;0

0

= b

1;1

2

h = 0

b

1;0

1

= b

0;1

1

h =

1

16

b

0;0

2

= b

1;1

0

h =

1

2

This phenomenon is called �eld identi�cation [45,46].

In this case it is still true that the branching functions are equal to the characters. However,

in other cases it happens that the number of �elds that is identi�ed is not always the same.
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In that case there are non-trivial problems [47]. The solution is beyond the scope of these

lectures, and partly beyond the scope of what is presently known. However, it is certainly

true that in these cases the characters are not simply equal to the branching functions. This

problem occurs frequently, for example in the cosets SU(2)

k


 SU(2)

l

=SU(2)

k+l

whenever

k and l are both even. For a more detailed discussion of this problem see [22] and [48].

11.22. Other coset models

It should be clear that the set of coset models is huge. Most of them have a central charge

larger than 1, and are example of rational conformal �eld theories with an extended algebra.

For example, it was shown that the series

SU(3)

1

� SU(3)

k

SU(3)

k+1

has a chiral algebra with currents of spin 3, and forms the minimal series of the W

3

algebra

(which will not be discussed here further).

The number of coset models is so large that it has even been suggested that in combination

with free bosonic theories and orbifolds and perhaps some other ideas it exhausts the set

of rational conformal �eld theories. Unfortunately this \conjecture" has never been made

su�ciently precise to disprove it. Any claims that rational conformal �eld theories have

in some { usually vague { sense been classi�ed should be regarded with a great amount of

suspicion. In fact it is fairly clear that even rational conformal �eld theories with a single

primary �eld are essentially unclassi�able.

12. Superconformal algebras

There is still another important class of extensions of the chiral algebra, namely by currents

of spin

3

2

. Since these are half-integer spin currents, many of the remarks we made in

the section on fermionic currents are valid here as well. In particular there are two sectors,

Neveu-Schwarz and Ramond, and there may be square root branch cuts in operator products.

The name \superconformal" refers to the fact that a spin-

3

2

current can be put in a super-

multiplet together with the energy-momentum tensor. The currents of this algebra generate

the so-called superconformal transformations, a supersymmetric generalization of conformal

transformations. Indeed, one can describe the entire algebra in a manifestly supersymmetric

way, but we will write it in terms of components.
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12.1. The N = 1 algebra

The simplest superconformal algebra is generated by a single spin-

3

2

current T

F

(z) in addition

to the Virasoro generator. This is the N = 1 superconformal algebra. The complete set of

operator products is

T (z)T (w) =

1

2

c

(z � w)

4

+

2

(z � w)

2

T (w) +

1

z � w

@T (w)

T (z)T

F

(w) =

3

2

(z � w)

2

T

F

(w) +

1

z �w

@T

F

(w)

T

F

(z)T

F

(w) =

1

6

c

(z � w)

3

+

1

2

z � w

@T (w)

The �rst two operator products simply state that T (z) is the energy-momentum tensor and

T

F

(z) a spin

3

2

conformal �eld.

Modes are de�ned as in section 7. The modes of the supercurrent are traditionally called

G

n

. The algebra in terms of modes looks like this

[L

m

; L

n

] = (m� n)L

m+n

+

c

12

(m

3

�m)�

m+n;0

[L

m

; G

r

] = (

1

2

m� r)G

m+r

fG

r

; G

s

g = 2L

r+s

+

1

3

c(r

2

�

1

4

)�

r+s;0

In the last term we �nd an anti-commutator because the left-hand side of the corresponding

operator product is odd under the exchange z $ w. This is also exactly like the free fermion.

The fermionic currents G can be half-integer-moded (Neveu-Schwarz) or integer moded (Ra-

mond). To emphasize this we have used indices r and s for this current. A new feature, in

comparison with the free fermion, is that it is now possible that a Ramond ground state is

annihilated by G

0

(because of the anti-commutator fb

0

; b

0

g = 1 this is impossible for the free

fermion). Because of the last relation, this implies immediately that h =

c

24

for such a state.

These states are often called chiral states. Furthermore any state which is not annihilated

by G

0

must have h >

c

24

. Note that the latter ground states necessarily come in pairs of

opposite fermion number, related by G

0

, whereas the ones annihilated by G

0

are unpaired.

This also implies that in superconformal theories the trace in the Ramond sector with (�1)

F

projection may be non-zero, unlike the free fermion case. In fact this trace clearly receives

contributions only from the chiral states with h� c=24 = 0, so that the corresponding terms
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in the partition function are constants. This implies in particular that this contribution to

the partition function (which corresponds to the PP-sector) is modular invariant by itself.

In the Neveu-Schwarz sector one should note the relation

fG

r

; G

�r

g = 2L

0

+

1

3

c(r

2

�

1

4

)

Since r

2

�

1

4

the left-hand side is positive or zero, with the latter value occurring only for

r =

1

2

and h = 0. If the left-hand side is positive we have

jG

�r

jxi j

2

> 0

for ground states. Hence the excitations have positive norm. There is a unique ground state

with the property G

�1=2

jxi = 0, namely the vacuum (note that ground states in any case

satisfy G

r

jxi = 0; r �

1

2

).

The unitary representations of this algebra form a discrete series for 0 � c < 3=2, whereas for

larger values of c there are in�nitely many representations, just as for the Virasoro algebra.

The c-values for this series are

c =

3

2

�

1 �

8

m(m+ 2)

�

; m = 3; 4; : : :

The m = 3 value is c = 7=10, and coincides with a member of the minimal Virasoro series.

Obviously superconformal representations are in particular representations of the Virasoro

algebra. The second member is on the c = 1 boundary of the Virasoro representations.

A concrete realization of this series is given by the coset models

SU(2)

2

� SU(2)

k

SU(2)

k+2

:
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12.2. The N = 2 algebra

There are also superconformal models with extended supersymmetry [49]. The case of most

interest is N = 2, since it occurs in supersymmetric string theories. In these theories there

are two supercurrents. Note that just having two supercurrents is not yet enough, since

a tensor product of two N = 1 models would also have that property, and one would not

expect it to have extended supersymmetry. To get an N = 2 algebra the currents need to

satisfy a set of operator products. Furthermore it turns out that the algebra must contain

one additional current J of spin 1. This current generates a U(1) algebra.

The full algebra is, in terms of modes:

[L

m

; L

n

] = (m� n)L

m+n

+

c

12

(m

3

�m)�

m+n;0

�

L

m

; G

�

r

�

= (

1

2

m� r)G

�

m+r

�

G

�

r

; G

+

s

	

= 2L

r+s

� (r � s)J

r+s

+

1

3

c(r

2

�

1

4

)�

r+s;0

[L

m

; J

n

] = �nJ

m+n

[J

m

; J

n

] =

1

3

cm�

m+n;0

�

J

m

; G

�

r

�

= �G

�

m+r

This algebra also has a discrete series, with central charges

c = 3(1 �

2

m

) ; m = 3; 4; : : :

The �rst member of this series has c = 1. It is also in the N = 1 series, and can be

realized as a circle compacti�cation of a single free boson (with R

2

= 2N = 12). The central

charges turn out to be identical to those of the SU(2) Kac-Moody algebras, if one substitutes

m = k + 2. This is related to the fact that the minimal series can be obtained from the

following cosets

SU(2) � SO(2)

U(1)

:

Ground states are characterized by a conformal weight h and a U(1) charge q. In addition

one can have chiral states both in the Neveu-Schwarz and in the Ramond sector. In the
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Neveu-Schwarz they have the special property

G

+

�1=2

j�i = 0 or G

�

�1=2

j�i = 0

and are called respectively chiral or anti-chiral states. Primary states satisfy the condition

G

+

r

j�i = G

�

r

j�i = 0 for r > 0. Chiral primary (or anti-chiral primary) states satisfy the

corresponding combination of these conditions.

Using the algebra (as for N = 1 above) it is easy to deduce that for chiral primaries h =

1

2

q,

and for anti-chiral primaries h = �

1

2

q. The only state that is both chiral and anti-chiral

primary is thus the vacuum. Furthermore it can be shown that any other state in the theory

has h >

1

2

jqj, and that the conformal weights of chiral primaries satis�es h � c=6.

An interesting consequence of the relation between charges and conformal weights is that

within the set of chiral primary states conformal weights are \conserved" in operator products

just like charges. Consider the operator product of two chiral primary �elds �

1

and �

2

(ignoring anti-holomorphic components). Then

�

1

(z)�

2

(w) = (z � w)

h

3

�h

1

�h

2

�

3

(w) + less singular terms:

The charge of �

3

is q

1

+q

2

, and therefore h

3

�

1

2

(q

1

+q

2

) = h

1

+h

2

(note that chiral primaries

have positive charges). Hence the operator product is non-singular. Therefore we can de�ne

�

1�2

(z) = lim

w!z

�

1

(z)�

2

(w) :

This limit is zero if �

3

is not a chiral primary state, and is equal to �

3

if it is a chiral primary.

Hence this de�nes a closed operation on the chiral primary states. This is called the chiral

ring [47]. There is of course also an anti-chiral ring.

In the Ramond sector one de�nes chiral states as those which are annihilated by both G

+

0

and G

�

0

. From the anti-commutator of these two operators one learns that those are precisely

the states with h� c=24 = 0.

An important property of N = 2 algebras is spectral 
ow. This means that there exists an

operator U

�

that maps the entire algebra to an isomorphic one. It acts on the generators by
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conjugation, and the mapping has the following e�ect

U

�

L

n

U

�1

�

= L

n

+ �J

n

+

c

6

�

2

�

n;0

U

�

J

n

U

�1

�

= J

n

+

c

3

��

n;0

U

�

G

�

r

U

�1

�

= G

�

r��

The interesting feature of this map is that it changes the mode of the supercurrent. Closer

inspection shows that for � =

1

2

it maps the Neveu-Schwarz moded algebra to the Ramond

moded algebra. It is not di�cult to show that chiral primary states are mapped to the

chiral Ramond grounds states, while the latter are mapped to the anti-chiral states by the

same map. This shows in particular that there is a one-to-one correspondence between chiral

Ramond ground states and (anti)-chiral states in the Neveu-Schwarz sector. In string theory

this is related to space-time supersymmetry, as the Neveu-Schwarz sector yields space-time

bosons and the Ramond sector space-time fermions; one of the conditions for having space-

time supersymmetry is N = 2 supersymmetry in two dimensions.
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