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1 Motivation

Presumably the deepest problem of 20th century fundamental physics has been
the resolution of the conflict between quantum and gravitational theory. Evi-
dence for this clash are the incurable ultraviolet divergences emerging whenever
gravitational interactions are being included in a quantum field theoretical frame-
work. Superficially, this is to be expected due to the fact that (in four spacetime
dimensions) the strength of gravitational interactions grows with energy since its
coupling has negative (mass) dimensions, [1/Mpl] = GeV−1. Interactions of this
kind are infrared-safe but non-renormalizable. Two possible ways out of such a
situation come to mind:

a) a nontrivial UV fixed point, meaning that our divergences are artifacts.

b) new physics to be uncovered at higher energies.

For lack of evidence pointing at solution a), we shall presume case b) to be
realized in nature. Moreover, historically, an analogous situation was encountered
in the theory of weak interactions. Those were first described with a local four-
point coupling by Fermi. Although successful at energies well below 100 GeV,
the Fermi theory suffered from UV divergences. The present theory of weak
interactions, due to Glashow, Salam, and Weinberg, solves this problem uniquely
by ‘point-splitting’ the interaction according to the Feynman graphs depicted.
The Feynman diagrams of (tree-level) quantum gravity suggest a similar approach

GF

4-point Fermi Spontaneously broken YM

to alleviate the UV desaster. Further ‘smearing’ of the three-point couplings
naturally (uniquely?) leads one to consider extended objects, i.e. strings in the
first place. From the string diagram it becomes obvious that the notion of a
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Lorentz-invariant interaction point has ceased to exist.
In the absence of experimental input our only guidance is mathematical con-

sistency. Reassuringly, string theory unifies many of the theoretical concepts be-
yond the Standard Model. In fact, it necessarily includes gravity, GUTs, higher
dimensions and supersymmetry, sometimes with a new twist. It also displays
amazing mathematical structures and cohesiveness. As we see in the following
figure, the gravitational coupling constant almost meets the other three near the
Planck scale. Although it should be kept in mind that this extrapolation is not to
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be trusted too much, the low-energy world certainly hints at some kind of grand
unification including gravity. And it is fair to say that currently string theory is
the only promising path leading towards this goal.

The attentive student may ask herself: why stop the smearing at one-dimen-
sional extended objects, rather than allowing for membranes and so on? Before
1995, the answer would have involved better space-time but worsening world-
volume properties with increasing dimension (strings strike an optimal balance
in this regard). In the meantime, however, one has learned that (classical) string
theory indeed contains all sorts of higher-dimensional objects (called ‘branes’)
which become invisible in the perturbative weak-coupling regime. Since their
(perturbative?) quantization is posing enormous difficulties, we shall content
ourselves with (pre-1995) perturbative string theory in these lectures, leaving the
more recent developments for the continuation by Dieter Lüst. Let me end these
preliminaries by remarking that string theory is more than a theory of strings
only, just like a quantum theory of strongly interacting particles may reveal non-
pointlike structures.
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2 The Bosonic String

2.1 The Classical Bosonic String

Our starting point is the classical discussion of the structureless relativistic string,
called ‘bosonic string’, in a flat spacetime R

1,D−1. It is described by a map X
from a two-dimensional parameter space Σ ⊂ R1,1, into the target space(time)
R1,D−1,

X : Σ −→ R
1,D−1 .

The coordinates on Σ are denoted by (τ, σ) = (ξ0, ξ1) = (ξα, α = 0, 1), and its flat
metric is (ηαβ) = diag(−1, 1). The image point of (τ, σ) has coordinates Xµ(τ, σ),
with µ = 0, 1, . . . , D−1, i.e.

Xµ : (τ, σ) 7−→ Xµ(τ, σ) .

We take the flat target space metric to be (ηµν) = diag(−1, 1, . . . , 1︸ ︷︷ ︸
D−1

) and abbre-

viate ηµνA
µBν = A·B. The embedded surface X(Σ) ⊂ R1,D−1 swept out by the

string moving through flat space and is called the ‘worldsheet’. Each point p on

Σ

X: Σ R
1,D-1

τ

σ

X
.X

/

X( Σ )

X(Σ) carries a two-dimensional tangent space TpX(Σ). (The coordinates of) its
two basis vectors read

Ẋµ =
∂Xµ

∂τ
= ∂0X

µ and X ′µ =
∂Xµ

∂σ
= ∂1X

µ . (2.1)

There are two types of strings, distinguished by the worldsheet topology for the
case of free string propagation. The closed string originates from the cylinder
Σ = [τ1, τ2]× S1, or

Xµ(τ, σ+2π) = Xµ(τ, σ) ∀τ , (2.2)

so that the boundary of X(Σ) is given by the initial and final string configuration.
The open string possesses end points, at σ = 0 and σ = π, yielding the strip
Σ = [τ1, τ2] × [0, π]. The additional worldsheet boundaries require a choice of
boundary conditions, which will be discussed in conjunction with the equations
of motion.
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The Nambu-Goto Action

The bosonic string motion is governed by the Nambu-Goto action

S√[X] =

∫

Σ

d2ξ L(Ẋ,X ′) = − 1

2πα′

∫

Σ

d2(area) = − 1

2πα′

∫

Σ

d2ξ
√−γ (2.3)

where γ = detγαβ < 0 is the determinant of a metric induced on the parameter
space by pulling back with X the flat target space metric ηµν ,

γαβ[X] = (∗η)αβ = ηµν ∂αX
µ ∂βX

ν =

(
Ẋ·Ẋ Ẋ·X ′

X ′·Ẋ X ′·X ′

)
. (2.4)

The factor 1
2πα′ of dimension GeV2 is the tension of the string, as can be seen from

the static open-string configuration (X0, X1, X2, . . . , XD−1) = (τT, σL
π
, 0, . . . , 0)

whose action (for τ ∈ [0, 1]) is S√ = −LT
2πα′ so that [ 1

2πα′ ] = [S/T
L

] = energy per
length. The meaning of the parameter α′ will be explained in section 3.2. The
requirement that γ be negative is related to the causality of the string propaga-
tion; the tangent space to the worldsheet should be Lorentzian at each (interior)
point.

Local symmetries and constraints. The Nambu-Goto action is invariant
under reparametrizations of the worldsheet, infinitesimally δεξ

α = −εα(ξ) imply-
ing δεX

µ = εγ∂γX
µ. Hence, there will be constraints on the phase space. The

canonical momentum densities are

Πµ(ξ) =
∂L
∂Ẋµ

= − 1

2πα′
(Ẋ·X ′)X ′

µ − (X ′2)Ẋµ√
(Ẋ·X ′)2 − Ẋ2X ′2

. (2.5)

Exercise 2.1 Show that the covariant form of (2.5) reads

Πµ(ξ) = − 1

2πα′
√
−γ γ0α ηµν ∂αX

ν ,

and use this to derive the two constraints

Π ·X ′ = 0 and Π · Π +
1

4π2α′2X
′2 = 0 .
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Combining the two equations gives the Virasoro constraints

2α′ T±±(Π, X ′) :=
1

2
(2πα′Πµ ±X ′µ)2 = 0 . (2.6)

Constraints which follow from the definition of the canonical momenta without
using the equations of motion are called primary. A constraint φa is first class
if its Poisson bracket {φa, φk} with any constraint φk vanishes upon application
of the constraints; otherwise it is called second class. The Virasoro constraints
are primary and first class. A detailed discussion of constrained systems is given
in [?]. Here we just note that first class constraints are associated with gauge
invariance. The canonical Hamiltonian vanishes identically,

H =

∫
dσ (Ẋ · Π−L) ≡ 0 , (2.7)

which seems to imply that we have no time evolution. Actually, the theory
of singular systems demands that we have to add a linear combination of the
constraints toH . Therefore, the dynamics is completely governed by the Virasoro
constraints. This is more thoroughly discussed in [?].

Gauge fixing. We can use the invariance under worldsheet reparametrizations,
ξα 7−→ ξ′α = fα(ξ), to bring the induced metric on any coordinate patch of the
parameter space to the conformally flat form

γαβ = λ(ξ) ηαβ . (2.8)

This is called the conformal gauge or orthogonal gauge, because it translates
via (2.4) into

Ẋ ·X ′ = 0 and Ẋ2 +X ′2 = 0 . (2.9)

In this gauge, the Nambu-Goto action (2.3), the canonical momentum density
(2.5), and the Virasoro constraints (2.6) simplify to

Sgf√ [X] =
1

4πα′

∫

Σ

d2ξ (Ẋ2 −X ′2) ,

Πgf
µ =

1

2πα′ Ẋµ ,

2α′ T gf
±± =

1

2
(Ẋ ±X ′)2 = 0 . (2.10)

The Polyakov Action

The Nambu-Goto action is non-polynomial und therefore difficult to quantize. As
in relativistic point-particle mechanics, an alternative and classically equivalent
description is obtained by introducing an auxiliary degree of freedom, namely the
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intrinsic worldsheet metric hαβ(ξ) as a field independent of γαβ[X]. This is the
price to pay for getting an action quadratic in X, called the Polyakov action (as
usual, h := det hαβ):

S0[X, h] = − 1

4πα′

∫

Σ

d2ξ
√
−hhαβ ∂αX

µ ∂βX
ν ηµν

= − 1

4πα′

∫

Σ

d2ξ
√
−hhαβ γαβ[X] .

(2.11)

Local symmetries and constraints. This action is again reparametrization
invariant. An infinitesimal change of coordinates ξα 7−→ ξα − εα(ξ) induces

δεX
µ = εα∂αX

µ ,

−δεhαβ = ∇αεβ +∇βεα (2.12)

= −εγ∂γh
αβ + ∂γε

βhαγ + ∂γε
αhγβ (2.13)

which implies δε
√
−h = ∂γ(ε

γ
√
−h). In addition, the Polyakov action possesses

a local Weyl (rescaling) invariance,

δΛX
µ = 0 ,

δΛhαβ = Λ(ξ) hαβ ,
(2.14)

which is not to be confused with a (conformal) coordinate transformation! No
primary constraints appear, but the equation of motion for the auxiliary field hαβ

turns out to be algebraic.

Exercise 2.2 Show that

0 = − 4πα′
√
−h

δS0

δhαβ

= ∂αX · ∂βX −
1

2
hαβ

(
hγδ ∂γX · ∂δX

)
= γαβ −

1

2
hαβ tr(h−1γ) (2.15)

=: α′ Tαβ[X, h]

(Tαβ will be related to T±± in (2.6) shortly).

Comparison with Nambu-Goto action. From (2.15) we see that the aux-
iliary metric hαβ is classically proportional to the induced metric γαβ. If we
evaluate the Polyakov action (2.11) on this solution,

S0[X, h..=λγ..] =
−1

4πα′

∫

Σ

d2ξ
√
−λ2γ λ−1γαβγαβ =

−1

2πα′

∫

Σ

d2ξ
√−γ = S√[X] ,

we obtain back the Nambu-Goto action (2.3), which demonstrates their equiva-
lence on the level of the equations of motion.
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Exercise 2.3 Using the inequality (trM)2 ≥ 4 detM for any real symmetric 2×2
matrix M , with equality for M ∝ 11, show that

|S0[X, h]| ≥ |S√[X]| ∀h

with equality if and only if hαβ ∝ γαβ.

Let us stress that the Polyakov action is not the worldsheet area measured with
the intrinsic metric. Both actions are equal if and only if the metrics hαβ and
γαβ[X] are conformally related, which is the case when the equation of motion
for hαβ is satisfied. Note that the proportionality factor λ drops out due to Weyl
invariance.

Conformal gauge fixing. Since the intrinsic metric hαβ is not dynamical but
a pure gauge degree of freedom, we may fix it to a convenient value. We use the
worldsheet reparametrizations (2.13) to go again to the conformal (orthogonal)
gauge, now

hαβ = λ(ξ) ηαβ . (2.16)

This is always possible by solving the so-called Beltrami equation for the trans-
formation functions. The action then simplifies to

Sgf
0 [X] = S0[X, h..=λ(ξ)η..]

= − 1

4πα′

∫

Σ

d2ξ ηαβ ∂αX
µ ∂βX

ν ηµν

= +
1

4πα′

∫

Σ

d2ξ
(
Ẋ2 −X ′2

)
= Sgf√ [X] .

(2.17)

Finally, the equation of motion for X (dropping boundary terms)

0 =
δS0[X, h]

δXµ

∝ ∇α∂αX
µ = ∂α

(√
−h hαβ ∂βX

µ
)

(2.18)

turns into the free wave equation

0 = �Xµ = (∂2
τ − ∂2

σ)Xµ . (2.19)

We have arrived at a collection of free massless scalar fields Xµ(ξ) on the param-
eter space. The Weyl invariance might be employed to specialize to λ = 1, but
this is neither necessary nor advisable, since that symmetry acquires a quantum
anomaly as we will see in section 2.2. It is important to note that not all solutions
of the wave equation (2.19) extremize S0. We still must impose on the solutions
of (2.19) the (gauge fixed) equations of motion of hαβ ,

0 = α′ T gf
αβ =

(
1
2
(Ẋ2 +X ′2) Ẋ ·X ′

Ẋ ·X ′ 1
2
(Ẋ2 +X ′2)

)
. (2.20)
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Here we recognize the Virasoro constraints (2.10), which in this context appear
as first class but secondary. They generalize the familiar mass-shell constraint
0 = p2 +m2 ∝ Ẋ2 + 1 or ∝ Ẋ2 for a massive or massless relativistic particle.

X

h

Xgf
cl

hgf
cl

F [X, h] = 0

hcl[X] = γ[X]

gauge

It is convenient to introduce world-sheet light-cone coordinates

ξ± = ξ0 ± ξ1 = τ ± σ =⇒ ∂± =
1

2
(∂0 ± ∂1) , (2.21)

in which a two-tensor tαβ acquires the new components

t±± =
1

4
(t00 ± t10 ± t01 + t11) and t±∓ =

1

4
(t00 ± t10 ∓ t01 − t11) ,

so that the worldsheet metric reads

η±± = 0 and η±∓ = −1

2
.

In this basis the Virasoro constraints become

α′ T gf
±± = ∂±X · ∂±X = 0 and T±∓ ≡ 0. (2.22)

The Polyakov formulation makes contact with two-dimensional general rela-
tivity. We may interpret (2.11) as the action of a collection of D massless real
scalar fields (Xµ) coupled to gravity (hαβ) in two dimensions. The Einstein-
Hilbert part

∫√
−hR is missing from this action because in two dimensions it

is merely a constant (4π times the Euler number χ of Σ, a topological invari-
ant) — there are no transversal gravitational fields here. From (2.15) one learns
that Tαβ can be identified with the energy-momentum tensor of the matter (Xµ).
Since the Einstein tensor Rαβ − 1

2
hαβR vanishes identically in two dimensions,

the Einstein equation simply reads Tαβ = 0. The energy-momentum tensor is
covariantly conserved,

∇αTαβ = 0 , (2.23)
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and it is traceless because

0 = δΛS0 =

∫

Σ

δS0

δhαβ
δΛh

αβ =

∫

Σ

√
−h
4π

Tαβ Λhαβ =

∫

Σ

√
−h
4π

T α
α Λ (2.24)

due to Weyl invariance. In other words, the theory possesses dilatation and there-
fore conformal invariance. Let us mention that two dimensions is the maximal
number where the local symmetries (εα,Λ) allow one to completely eliminate the
gravitational field (hαβ), gauge-fixing locally hαβ 7→ ηαβ. More generally, in d
dimensions one has 1

2
d(d+1) field degrees of freedom in the metric but only d de-

grees of reparametrization freedom, so 1
2
d(d−1) metric degrees of freedom remain

dynamical.

The conformal gauge (2.16) is incomplete; a class of residual gauge trans-
formations survive (in the Polyakov as well as the Nambu-Goto case). These
are reparametrizations which can be compensated by a Weyl rescaling and are
called (pseudo)conformal coordinate transformations because they preserve (hy-
perbolic) angles. These transformations will play an important role when we
discuss the global aspects of the conformal gauge.

Exercise 2.4 Characterize coordinate transformation parameters εα(ξ) which re-
spect the conformal gauge fixing, i.e. which produce δεhαβ|h=λη = (δλ)ηαβ. First,
show that this implies the property ∂(αεβ) = (∂·ε)ηαβ. In worldsheet light-cone
coordinates (2.21) the parameters εα combine to ε± = ε0± ε1. Second, show that
in these coordinates the above property reads ∂+ε

− = 0 = ∂−ε
+, which means that

the residual gauge transformations take the form

ε+ = ε+(ξ+) and ε− = ε−(ξ−) .

Integrating we find that globally the (pseudo)conformal transformations are

ξ+ 7−→ f+(ξ+) and ξ− 7−→ f−(ξ−) (2.25)

with the functions f± only depending on the one coordinate exhibited. It follows
that the new coordinates satisfy the wave equation with respect to the old ones,
�fα = 0.

Transversal gauge fixing. A complete gauge fixing is possible when sacrificing
manifest Lorentz covariance. We specialize the conformal gauge to the transversal
gauge by performing a (pseudo)conformal transformation with f++f− = 2nµX

µ

which is possible since both sides obey the wave equation. As a result, the new
worldsheet time becomes

τ = 1
2
(ξ+ + ξ−) = nµX

µ , (2.26)
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and no freedom remains because this also determines σ, up to a constant shift.
It is convenient to take the vector n lightlike, choosing nµ = β

2α′p+ (1, 0, . . . , 0, 1)
which gives

X+ := X0 +XD−1 = 2
β
α′p+τ with β :=

{
1 for open strings
2 for closed strings

(2.27)

and a constant p+. Here, we have introduced spacetime light-cone coordinates
X± = X0 ± XD−1 which define a splitting of {Xµ} into timelike/longitudinal
components (X±) and transversal ones (X i, i = 1, . . . , D−2). With the help of
∂±X

+ = 1
2
Ẋ+ = α′

β
p+ we can solve the Virasoro constraints

0 = α′ T gf
±± = ∂±X · ∂±X = −∂±X+ ∂±X

− +
D−2∑

i=1

∂±X
i ∂±X

i (2.28)

for X− and find (summation convention for i understood)

∂±X
− =

β

α′p+
∂±X

i ∂±X
i . (2.29)

Adding the zero mode q− of X− we see that the set of physical degrees of freedom
is {q−, p+, X i(ξ)}.

Finally, the Hamiltonian (2.7) in conformal gauge takes the form

Hgf =
1

4πα′

∫
dσ (Ẋ2 +X ′2) =

1

2πα′

∫
dσ

(
(∂+X)2 + (∂−X)2

)
. (2.30)

We note that it is proportional to the average of T gf
++ + T gf

−−.

Global symmetries. The global symmetries of the Polyakov (or Nambu-Goto)
action are the Poincaré symmetries in R1,D−1,

δXµ = aµ
ν X

ν + bµ with aµν = −aνµ , but δhαβ = 0 . (2.31)

The associated Noether charge densities and charges are (in conformal gauge)

Πµ =
1

2πα′ Ẋµ =⇒ Pµ =

∫
dσ Πµ =

1

2πα′

∫
dσ Ẋµ , (2.32)

Jµν =
1

2πα′ X[µẊν] =⇒ Jµν =

∫
dσ Jµν =

1

2πα′

∫
dσ X[µẊν] . (2.33)

The charge P µ is nothing but the center-of-mass energy-momentum of the string,
and P+ = p+ explains the normalization in (2.27). The total energy P 0 of the
string is not to be confused with the Hamiltonian H (which vanishes).

Exercise 2.5 Show that the charges above are conserved for closed strings, and
find the boundary conditions under which they are conserved for open strings as
well. What is their interpretation in terms of worldsheet momentum flow off the
ends of the string?
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Solution of the Equation of Motion

In the conformal gauge (2.8), we identified the equations of motion as the two-
dimensional wave equation (2.19). The general solution to this linear problem is
well known and given by

Xµ(ξ) =
1

2

(
Xµ

R(ξ−) +Xµ
L(ξ+)

)
. (2.34)

Since XR (XL) depends only on the combination ξ− (ξ+) of worldsheet coor-
dinates, it represents a right-moving (left-moving) wave along the string and is
called a ‘right-mover’ (‘left-mover’). The Virasoro constraints (2.22) then read
T±∓ = 0 and

α′ T−− = ∂−X · ∂−X = 1
4
(∂XR)2 = 0 ,

α′ T++ = ∂+X · ∂+X = 1
4
(∂XL)2 = 0 ,

(2.35)

where from now on we drop the ‘gf’ label. Energy-momentum conservation (2.23)
boils down to

∂+T−− + ∂−T+− = 0 =⇒ T−− = T−−(ξ−) ,

∂+T−+ + ∂−T++ = 0 =⇒ T++ = T++(ξ+) ,
(2.36)

which reveals T−− (T++) as a right-mover (left-mover).

Closed string. Recalling that the closed string satisfies periodicity conditions
(2.2), we may expand right- and left-movers in Fourier series plus linear terms,

Xµ
R(τ−σ) = qµ

R + (τ−σ)α′pµ
R +
√

2α′
∑

n 6=0

i

n
αµ

n e−in(τ−σ) ,

Xµ
L(τ+σ) = qµ

L + (τ+σ)α′pµ
L +
√

2α′
∑

n 6=0

i

n
α̃µ

n e−in(τ+σ) ,
(2.37)

which yields

Xµ
closed =

qµ
L
+qµ

R

2
+ α′ pµ

L
+pµ

R

2
τ + α′ pµ

L
−pµ

R

2
σ +

√
α′

2

∑

n 6=0

i

n
(αµ

n einσ + α̃µ
n e−inσ) e−inτ

=: qµ + α′ pµ τ + α′wµ σ +
√

α′

2

∑

n 6=0

i

n
(αµ

n einσ + α̃µ
n e−inσ) e−inτ (2.38)

so that indeed (2.32) yields P µ = pµ. The coordinate zero mode qµ is shared,
and the σ-periodicity of Xµ enforces1 wµ = 0, putting pµ

R = pµ
L = pµ. The reality

condition (Xµ)∗ = Xµ tells us that qµ and pµ are real and

(αµ
n)∗ = αµ

−n and (α̃µ
n)∗ = α̃µ

−n . (2.39)

1Not so if the target space is multiply connected, since then we may have Xµ(τ, σ+2π) =
Xµ(τ, σ) + 2πα′wµ with a ‘winding’ wµ. For this reason we mostly carry wµ along.
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It is convenient to define

αµ
0 :=

√
α′

2
pµ

R and α̃µ
0 :=

√
α′

2
pµ

L (2.40)

because then the derivative of (2.37) can be represented as

∂−X
µ
R = Ẋµ

R =
√

2α′
∑

n∈Z

αµ
n e−in(τ−σ) ,

∂+X
µ
L = Ẋµ

L =
√

2α′
∑

n∈Z

α̃µ
n e−in(τ+σ) .

(2.41)

Open string. When deriving the equations of motion for the open string, an
assumption has to be made about the variation of Xµ at the worldsheet bound-
aries σ = 0 and σ = π. (The boundaries in τ represent initial and final string
configurations which are kept fixed or moved to temporal infinity.) If we insist
in spacetime translation invariance, we must not restrict the string ends in any
way. Extremizing the action in (2.18) then produces the wave equation in the
conformal gauge only up to boundary terms which must vanish seperately,

nα ∂αX
µ|σ=0,π = X ′µ|σ=0,π = 0 Neumann (2.42)

with nα being a vector normal to the worldsheet boundary.

Exercise 2.6 Using the constraints (2.20) and the Neumann boundary condi-
tions (2.42) show that the ends of an open string move at the speed of light. (The
ensueing degeneracy of the worldsheet metric at the boundary poses only a formal
difficulty.)

Alternatively, one can avoid the boundary terms by keeping the worldsheet
boundaries fixed, e.g.

Xµ|σ=0 = 0 and Xµ|σ=π = Lµ Dirichlet (2.43)

where Lµ is an arbitrary constant spacelike vector. The choice between Neumann
and Dirichlet boundary conditions can be made seperately at each string end for
each coordinate Xµ, which leads to the more general situation of

Neumann at σ = 0 for X0, . . . , Xp ,

Dirichlet at σ = 0 for Xp+1, . . . , XD−1 ,

and similarly (with a potentially different distribution) at σ = π. The geometrical
interpretation is obvious: The left end of the open string is constraint to a p-
dimensional hypersurface on which it can move freely (we usually take X0 to
be Neumann). Clearly, translation invariance is broken in the D−p+1 spatial
directions transversal to the hypersurface. As will be shown in the lectures of
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Lüst [?], such hypersurfaces are actually dynamical and represent (the classical
limit of) solitonic objects which are intrinsic to string theory and are called Dp-
branes. Their p+1 dimensional worldvolumes are defined as the locations where
the worldlines of open string ends can live. For p = 0 we have a D-particle, for
p = 1 we have a D-string, for p = 2 we have a D-membrane, . . ., for p = D−1 the
D-brane fills the whole space. The latter represents the traditional situation (full
translational invariance), while the other extreme (p = −1) is localized even in
time and therefore called a D-instanton. It is important to notice that the open
string and the D-string are different objects.

X

X

X

0

1...p

p+1...D-1

worldsheet

D-branes

Like the closed string periodicity, the open string boundary conditions suggest
a Fourier mode expansion of the solution (2.34) to the wave equation. The
standard trick to implement the boundary conditions employs the mirror charge
idea: combine the solution Xµ

closed with its reflection at the boundary. For the
σ=0 end, this yields (see also Exercise (2.7))

Xµ
open = Xµ

closed(τ, σ) ± Xµ
closed(τ,−σ)

=
1

2

(
Xµ

R(τ−σ)±Xµ
R(τ+σ) +Xµ

L(τ+σ)±Xµ
L(τ−σ)

)

=
{

(qµ
L+qµ

R) + α′(pµ
L+pµ

R) τ
α′(pµ

L+pµ
R) σ

}
+
√

2α′
∑

n 6=0

i

n
(αµ

n ± α̃µ
n) e−inτ

{
cosnσ
i sinnσ

}

=:
{
qµ + 2α′pµτ

2α′wµσ

}
+
√

2α′
∑

n 6=0

i

n
βµ

n e−inτ
{

cosnσ
i sinnσ

}
, (2.44)

where we introduced

βµ
n := αµ

n±α̃µ
n including βµ

0 =
√

α′

2
(pµ

L±pµ
R) =

√
2α′

{ pµ

wµ

}
. (2.45)
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Note that again P µ = pµ but qµ
closed = 2qµ

open. The functions Xµ
R and Xµ

L are taken
from the closed-string expansion (2.37) (and do not refer to (2.34) literally). The
upper and lower signs correspond to the Neumann and Dirichlet cases, respec-
tively. Note that in the latter case the center-of-mass data qµ and pµ are absent
while a so-called ‘winding term’ linear in σ is now admitted due to the lack of
periodicity and even necessary to agree with (2.43) upon choosing Lµ = 2πα′wµ.
The right- and left-moving amplitudes αµ

n and α̃µ
n are no longer independent but

get swapped upon reflection at the string ends. In effect, we have built the
open-string vibrations by combining left- and right-movers into a standing wave.

Exercise 2.7 The construction (2.44) automatically imposes the σ=0 boundary
condition also at the σ=π end. Can you generalize it to the mixed (DN and ND)
cases, and write down the corresponding mode expansions?

Virasoro constraints. We have seen that an arbitrary closed string config-
uration is encoded in the set {qµ, pµ, αµ

n 6=0, α̃
µ
n 6=0}. However, these data are too

general since they must be subjected to the Virasoro constraints. We now show
how to implement those. Since the energy-momentum tensor is the current as-
sociated with general coordinate transformations, the Noether theorem tells us
that the (weighted) Virasoro constraints

T ε+

++(τ) =

∮
dσ ε+(ξ+)T++ and T ε−

−−(τ) =

∮
dσ fε−(ξ−)T−− (2.46)

generate (via Poisson brackets) the residual (pseudo)conformal coordinate trans-
formations (2.25) of the closed-string worldsheet in the conformal gauge.

Exercise 2.8 Show that the above charges are conserved, e.g. Ṫ ε+

++ = 0. Con-
sequently, for the Cauchy problem the Virasoro constraints represent restrictions
on the initial string configuration only.

Without loss of generality, we put τ = 0. A convenient basis for the periodic
weight functions is ε±n (σ) = 1

2π
e±inσ. The associated charges are the Virasoro

operators (→ quantum theory)

Ln := T ε−n
−− =

∮
dσ

2π
e−inσ 1

4α′ (∂XR)2 =
1

2

∑

m∈Z

αn−m · αm

L̃n := T ε+
n

++ =

∮
dσ

2π
e+inσ 1

4α′ (∂XL)2 =
1

2

∑

m∈Z

α̃n−m · α̃m

(2.47)

for the closed string.

Exercise 2.9 Verify equation (2.47).
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The Ln and L̃n are therefore the Fourier components of the energy-momentum
tensor,

T−−(σ) =
∑

n∈Z

Ln e+inσ and T++(σ) =
∑

n∈Z

L̃n e−inσ , (2.48)

and are subject to the reality conditions

(Ln)∗ = L−n and (L̃n)∗ = L̃−n . (2.49)

Hence, the closed-string Virasoro constraints (2.22) translate into

Ln = L̃n = 0 ∀n ∈ Z . (2.50)

Of particular importance are the combinations L0 + L̃0 and L0 − L̃0 because
they generate rigid translations in τ and σ. respectively. From

L0 =
1

2
α2

0 +
∑

m>0

α−m · αm =
α′

4
p2

R +NR =
α′

4
(p+ w)2 +NR

L̃0 =
1

2
α̃2

0 +
∑

m>0

α̃−m · α̃m =
α′

4
p2

L +NL =
α′

4
(p− w)2 +NL ,

(2.51)

where NL and NR abbreviate the left-moving respective right-moving vibrational
contributions, we invoke that

0 = L0 − L̃0 = α′p·w +NR −NL
p·w=0
=⇒ NR = NL =: N , (2.52)

as a consequence of rotational invariance, as well as

0 = L0 + L̃0 = α′

2
(p2+w2) +NR +NL

w=0
=⇒ 0 = α′

2
p2 + 2N , (2.53)

which is nothing but the Hamiltonian (2.30) in terms of Fourier modes,

H =
1

2

∑

m∈Z

(α−m·αm + α̃−m·α̃m) =
α′

2
p2 +

∑

m>0

(α−m·αm + α̃−m·α̃m) . (2.54)

Let us define N = 1
2
(NR+NL) also for w 6=0. Note that it is only through condi-

tion (2.52) at fixed wµ that left-movers know about right-movers.
For the open-string case, left- and right-movers are related, and we have to

take the appropriate linear combinations of T++ and T−− as well as of e−inσ and
e+inσ in order to respect Neumann or Dirichlet boundary conditions.

Exercise 2.10 Work out the details and obtain the following two equations.

16



The result is a single set {Ln} of Virasoro operators,

Ln =
1

2

∑

m∈Z

βn−m · βm , (2.55)

whose distinguished member reads

L0 =
1

2
β2

0 +
∑

m>0

β−m · βm = α′(p2 + w2) +N , (2.56)

for center-of-mass momentum pµ parallel and ‘winding’ wµ orthogonal to the
brane as well as vibration intensity N . We have chosen a notation which makes
the open-string constraints look like the right-moving constraints of the closed
string. Accordingly, we shall from now on denote βµ

n by αµ
n, too, and write

αµ
0 =

√
2α′

β
(pµ + wµ) with p · w = 0 for open strings . (2.57)

Let us consider a situation where the target space is partially compactified,
and adapt our string coordinates such that the momentum components split as
(pµ) = (pm

ext, p
I
int) with m and I labelling the ‘large’ and compactified dimen-

sions, respectively. Viewed with low resolution, a string then appears like a point
particle in a lower-dimensional spacetime, carrying energy-momentum pm

ext and,
therefore, mass M =

√
−p2

ext. The L0 constraint thus relates this mass to the
vibrational intensity (as well as the winding and compact momentum),

α′M2 = −α′p2
ext = β2N+α′(p2

int+w
2) with β2 =

{1 for open strings
4 for closed strings

.

(2.58)

2.2 The Quantized Bosonic String

If string theory is to describe fundamental physics it has to be subjected to quan-
tization. In these lectures, we shall use the so-called first-quantized framework,
i.e. develop the quantum mechanics of strings (string field theory is much harder).
Like for a point-particle, there exist a number of quantization schemes for the
string, namely

• Path integral quantization
(which will not be discussed in these lectures, see [?])

• Canonical quantization

– covariant (i.e. in the conformal gauge)

– light-cone (i.e. in the transversal gauge)

• BRST quantization
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Covariant Canonical Quantization

Point-particle mechanics may be considered as a (1+0) dimensional field theory
(on the worldline). Likewise, string mechanics can be treated as a (1+1) dimen-
sional field theory, with the string coordinates Xµ being viewed as scalar fields
on the parameter space Σ. Since we have learned from (2.17) that this field the-
ory is non-interacting in the conformal gauge, our task seems easy: quantize a
free-field theory with some constraints! (Presently we consider only worldsheets
of free string propagation; string interactions will be implemented in section 3.1
by generalizing the worldsheet topology, which however does not affect the local
X dynamics.) With canonical momenta Πµ = 1

2πα′ Ẋ
µ the standard equal-time

canonical commutation relations read

i ηµνδ(σ−σ′) =
[
Xµ(τ, σ) , Πν(τ, σ′)

]

=
1

2πα′

[
Xµ(τ, σ) , Ẋν(τ, σ′)

]
.

(2.59)

For the closed string, we can insert the mode expansion (2.38) and obtain the
equivalent relations

[qµ , pν ] = i ηµν ,

[αµ
m , α

ν
n] = mηµνδm+n,0 , (2.60)

[α̃µ
m , α̃

ν
n] = mηµνδm+n,0 ,

with all other commutators being zero. Since wµ does not enter, we treat it as a
constant parameter for the time being.2 Note that even q0 turns into an operator,
a price to pay in any covariant first-quantization scheme. In fact, the vanishing
of the covariant Hamiltonian (2.7) is intimately related. As usual, the ‘field’
amplitudes are promoted to quantum operators, calling for a Fock space to act
on. For each m>0, the set { 1√

m
αµ

m,
1√
m
αµ
−m|µ = 0, . . . , D−1} gives us D copies

of a harmonic oscillator. We recognize the (right-moving) number operator NR

for the string modes as the Hamilton operator (up to a constant) for this infinite
collection of harmonic oscillators, each of which contributes an amount m to the
energy,

NR =
∑

m>0

α−m · αm =
∑

m>0

m
(

1√
m
α−m · 1√

m
αm

)
. (2.61)

The commutators (2.60) tell us that an application of αµ
n>0 lowers the eigenvalue

of NR by n while the action of αµ
n<0 raises it by n. In order to bound the spectrum

of NR (and of NL) from below we define a vacuum state |0〉 by

αµ
n|0〉 = 0 and α̃µ

n|0〉 = 0 for n ≥ 0 , (2.62)

which at n=0 includes translation invariance, pµ|0〉=0. Normal ordering : . . . :
then rearranges operator products in the order α<, q, p, α>, with obvious notation.

2More accurately, it is the momentum conjugate to 1

2
(qL−qR).
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Exercise 2.11 For wµ=0, split Xµ
closed = qµ+α′pµτ+Xµ

<+Xµ
> in (2.38) and con-

sider the normal-ordered exponential : eik·Xclosed :. Show that, for τ → −∞(1−i0),

: eik·Xclosed : |0〉 −→ eik·q |0〉 =: |k〉

and verify that it is a momentum eigenstate, i.e.

pµ|k〉 = kµ|k〉 . (2.63)

The states |k〉 are still killed by αµ
n and α̃µ

n for n > 0, but they furnish a represen-
tation of the center-of-mass Heisenberg algebra [qµ, pν ] = iηµν . Hence, the Fock
space F is equipped with a scalar product satisfying

〈k|k′〉 = 0 for k 6= k′ . (2.64)

As usual, |k〉 is normalized to one in compact directions, but noncompact space-
time directions require wave-packet formation for properly normalized states. In
the following, we suppress this technicality and proceed as if spacetime were com-
pact, i.e. with 〈k|k〉 = 1. The Fock space F is constructed in the usual manner
by applying raising operators α< to the oscillator vacuum |k〉 for any fixed mo-
mentum vector k. With respect to our scalar product, we have the hermiticity
properties

(αµ
n)† = αµ

−n , (pµ)† = pµ ,

(α̃µ
n)† = α̃µ

−n , (qµ)† = qµ .
(2.65)

For the open string, the mode expansion (2.38) inside the canonical commutation
relations produces the same commutators as in (2.60), after renaming βµ

n → αµ
n.

Negative norm states. Due to the Minkowski signature of the metric, we en-
counter a standard difficulty in the covariant quantization of vector fields, namely
the occurrence of negative norm-squared states in the Fock space:

‖εµα
µ
−1|k〉‖2 = ε∗µεν

〈
k

∣∣αµ
1α

ν
−1

∣∣ k
〉

= ε∗µεν η
µν 〈k|k〉 = ε∗ · ε , (2.66)

which can take any sign depending on the vector ε being spacelike, timelike, or
lightlike. Lorentz covariance and boundedness of NR do not allow us to switch the
roles of α0

n and α0
−n, and so the probabilistic interpretation of quantum mechanics

is jeopardized.
The solution is well known, for example from the quantization of the Maxwell

field. First, the Virasoro constraints are yet to be implemented. We shall see that
this must be done in a weak version and defines a subspace of so-called ‘physical
states’ |phys〉 ∈ Fphys ⊂ F . Second, one has to prove that Fphys is positive
semidefinite. Even then, it remains to make sure that the negative norm-squared
states remain decoupled when turning on interactions.
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The Virasoro algebra. The Virasoro constraints now involve composite op-
erators and therefore may suffer from an ordering ambiguity. To fix notation, we
simply define the operators

Ln =
1

2

∑

m∈Z

:αn−m · αm : and L̃n =
1

2

∑

m∈Z

: α̃n−m · α̃m : . (2.67)

Equation (2.60) implies that reordering merely produces c-number shifts for L0

and L̃0 alone. Hence, the two corresponding quantum constraints are so far
determined only up to a constant, which will be fixed in a while. Clearly, the
Virasoro operators are hermitian,

(Ln)† = L−n and (L̃n)† = L̃−n . (2.68)

In order to properly implement the operator constraints, we need to know
their algebra. This calls for the computation of commutators of type [α ·α, α ·α].
While the ‘single-contraction’ terms reproduce L ∼ α·α like in a classical Poisson-
bracket calculation, the ‘double-contraction’ terms are quantum mechanical and
occur only for [Ln, L−n] and [L̃n, L̃−n] as c-number contributions. Their direct
calculation requires a regularization of the infinite sums involved; however, the
c-number ansatz plus the Jacobi identity and the evaluation of 〈0|[Ln, L−n]|0〉 for
n=1, 2 allows one to fix these so-called central terms uniquely. The result is a
commuting pair of algebras known as ‘Virasoro algebras’,

[Lm, Ln] = (m−n)Lm+n +
c

12
m(m+1)(m−1) δn+m,0 (2.69)

[L̃m, L̃n] = (m−n) L̃m+n +
c̃

12
m(m+1)(m−1) δn+m,0 (2.70)

[Lm, L̃n] = 0 (2.71)

where c (c̃) is known as the central charge or conformal anomaly. For the case at
hand one finds

c = c̃ = ηµ
µ = D . (2.72)

The open string, of course, supports only a single Virasoro algebra.

Exercise 2.12 Derive the Virasoro algebra (2.69) with c=D following the stategy
sketched above.

Remarks. Let us make four useful remarks concerning the Virasoro algebra
(2.69). First, a redefinition Ln → Ln − αδn,0 just shifts the central term by
2αmδn+m,0 which is a ‘trivial’ deformation of (2.69). Second, the commutator
[L0, Ln] = −nLn reveals that L0 measures the Z grading of the algebra. The
eigenvalue −n is called ‘level’. Third, the Virasoro algebra can be generated from
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{L−2, L−1, L1, L2} alone. Therewith, an infinite number of equations (see below)
often reduces to a few. Fourth, (2.69) contains plenty of subalgebras. Besides the
two Borel subalgebras involving only {Ln>0} or {Ln<0}, the most important (and
largest finite-dimensional) one is spanned by {L−1, L0, L1}. This set of generators
avoids the central term, annihilates the vacuum |0〉, and produces the algebra of
SL(2,R). The subgroup of conformal transformations generated by this algebra
is the group of real fractional linear transformations

z 7→ az + b

cz + d
with a, b, c, d ∈ R and ad− bc = 1

whose infinitesimal version reads

δz = α+ βz + γz2 with α, β, γ ∈ R .

For the closed string we have to combine this with the left-moving copy based on
{L̃−1, L̃0, L̃1} and obtain the group SL(2,C) of complex fractional linear trans-
formations. Both groups play an important role in the calculation of scattering
amplitudes as we will see in section 3.1.

Physical state conditions. Classically, we have Ln = 0 ∀n. The natural
quantum analog, Ln|phys〉 = 0, is, first, incomplete since the ordering ambiguity
in the L0 condition requires a relaxation to (L0−a)|phys〉 = 0 with a (yet to be
determined) real constant a, and second, inconsistent since it implies

0 = [Lm, L−m]|phys〉 =
c

12
m(m+1)(m−1)|phys〉 =⇒ c = 0 . (2.73)

One therefore imposes weaker conditions, namely

〈phys′ |(Ln − aδn,0)| phys〉 = 0 = 〈phys′ |(L̃n − ãδn,0)| phys〉 ∀n . (2.74)

Taking into account the hermiticity (2.68) it suffices to demand

(L0 − a)|phys〉 = 0 and Ln|phys〉 = 0 ∀n > 0 ,

(L̃0 − ã)|phys〉 = 0 and L̃n|phys〉 = 0 ∀n > 0 .
(2.75)

The tilded equations are absent in the open-string case. For the closed string,
the only relation between left- and right-moving oscillators (at fixed wµ) arises
as in (2.52),

(NL −NR)|phys〉 = (α′p·w + a− ã)|phys〉 . (2.76)

Anticipating a later result, we now specialize to ã = a, so that the ‘level-matching
condition’ at p·w=0 reads NL = NR = N on physical states.

The definition (2.75) of Fphys is consistent but suffers from a redundancy.
States of the form

|spur〉 :=
∑

n>0

L−n|anyn〉 +
∑

n>0

L̃−n|ãnyn〉 (2.77)
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are called ‘spurious’ and have the property that they are orthogonal to all physical
states,

〈spur|phys〉 =
∑

n>0

〈anyn |Ln| phys〉+
∑

n>0

〈ãnyn |L̃n| phys〉 = 0 . (2.78)

For certain values of a and c(=D) there exist a subspace Fnull ⊂ Fphys of states
which are simultaneously spurious and physical, the so-called ‘null’ states

|null〉 := |spur phys〉 =⇒ 〈null|phys〉 = 0 = 〈null|null〉 . (2.79)

It follows that null states may be added to physical states without a consequence
for the latter’s scalar products. We shall see that this is precisely a gauge freedom
of the spacetime field theory built on the quantum-mechanical states. Naturally,
null states define an equivalence relation

|phys〉 ∼ |phys〉+ |null〉 (2.80)

on Fphys. Clearly, physical amplitudes depend only on the equivalence classes
[|phys〉] of the states involved. The physical Hilbert space is then the coset space
of equivalence classes,

H = {[|phys〉]} = Fphys/Fnull . (2.81)

Since pµ commutes with the Virasoro operators we can confine our investiga-
tion to spacetime momentum eigenstates |phys, k〉. The L0 condition then yields
the quantum version of (2.58), namely the mass-shell condition

α′M2 = −α′ k2
ext = β2 (N − a) + α′(k2

int + w2) on |phys, k〉 (2.82)

for open and closed strings. Because compactified momenta kI
int are quantized

and the spectrum of N consists of the non-negative integers (called ‘mass levels’),
the quantity α′M2 is quantized (for fixed w2 and a), and a semi-infinite tower
of massive states emerges! We see that quantization has replaced the continuous
excitation spectrum of the classical string with a discrete one, thus enabling a
sensible particle interpretation.

Null state construction. From the physical-state conditions

(L0 − a)|phys, k〉 =
(

α′

β2 (k
2+w2) +N − a

)
|phys, k〉 = 0

and Ln>0|phys, k〉 =
(√

2α′

β
(k+w) · αn>0 + . . .

)
|phys, k〉 = 0

(2.83)

we can infer that for suitably shifted momenta kµ
ℓ with α′k2

ℓ = α′k2 − β2ℓ the
(off-shell) states |χℓ〉 := |phys, k〉|k→kℓ

fulfil

L0|χℓ〉 = (a−ℓ)|χℓ〉 and still Ln>0|χℓ〉 = 0 . (2.84)
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Using [L0, L−n] = nL−n it follows that any linear combination of the spurious
states

L−n1L−n2 · · ·L−nr
|χℓ〉 with ni > 0 and

∑
ini = ℓ (2.85)

satisfies again the L0 condition but generically not the others. Only if it is
annihilated by L1 and L2 (and thus by all Ln>0), such a linear combination will
form a null state of level ℓ built on the physical state |phys, k〉. In fact, all open-
string null states can be obtained in this fashion. Therefore, working out the L1

and L2 conditions for successive levels ℓ = 1, 2, . . . with heavy use of (2.69) yields
the full open-string null space Fnull =

⊕
ℓFℓ. This computation also produces

a certain relation D = D(ℓ, a) at each level for Fℓ to be nonempty. For generic
values of (a,D) null states are absent, i.e. Fnull = 0.

In particular, at a=1 it is easy to see that (independent of D) each physical
state |phys, k〉 gives rise to the level-one null state

|null, k1〉 = L−1|χ1〉 with α′k2
1 = α′k2 − β2 ,

since L1|null, k1〉 = 2L0|χ1〉 = 2(a−1)|χ1〉
and L2|null, k1〉 = 3L1|χ1〉 = 0 .

(2.86)

In fact, for generic D (but a=1) this is all, i.e. the open-string null space reads

F (a=1,D)
null = F1 =

{
L−1|χ1〉

∣∣ (L0, L1, L2)|χ1〉 = 0
}

. (2.87)

For certain particular values of D, higher-level null states occur. For example,
a level-two null state demands that D = 4−2a

3−2a
(21−8a), a curve which intersects

a=1 at D=26. Hence, at the point (a,D) = (1, 26) additional null states appear,

so that F (1,26)
null = F1 + F2. This observation will be crucial to obtain agreement

with light-cone quantization. By the way, the level-three null state curve reads
D = 5−a

2−a
(10−3a). All higher-level null state curves avoid the range 1 < D < 25

but touch it from both sides. The closed-string results obtain from tensoring left-
and right-movers; both copies of the Virasoro algebra then produce null states.

Exercise 2.13 Use the Virasoro algebra (2.69) to show that for a=1 a nonempty

F2 =
{
(L−2 + γL−1L−1)|χ2〉

∣∣ (L0+1, L1, L2)|χ2〉 = 0
}

fixes γ=3
2

and demands D=26 for the open string (and also for the closed string).

No-ghost theorem. It is not an easy task to find out for which, if any, values
of D and a the physical Fock space Fphys is positive semi-definite. A partial
answer is provided by the no-ghost theorem of Goddard, Thorn and Brower [?]
which was later extended by Kač [?, ?]. For both the open and the closed string,
the theorem states the following:

23



• a > 1: Fphys contains negative norm-squared states for any D.

• a < 1: Fphys is positive semi-definite for 1 ≤ D ≤ 25.

• a = 1: Fphys is positive semi-definite for 1 ≤ D ≤ 25 and D = 26.

Negative norm-squared physical states exist also in the regions (a≤1, D>25) and
(a≤1, D<1) but perhaps not everywhere outside the special point (a=1, D=26);
the analysis is not conclusive there.

1

25
26

D

a

If one follows in the (a,D) plane a curve which crosses the boundary of the
‘physical region’, some physical state will change the sign of its norm-squared at
the intersection with the boundary. Thus, the interior of the ‘physical region’ is
free of null states but they appear everywhere on its boundary.

Light-Cone Quantization

One may avoid the subtleties of determining the subspace of physical states in the
covariant quantization scheme by employing the light-cone gauge (2.27) instead,
which in terms of vibration modes reads3

α+
n 6=0 = α̃+

n 6=0 = 0 but α+
0 = α̃+

0 =
√

2α′

β
p+ 6= 0 . (2.88)

The solution (2.29) of the classical constraints Ln=0=L̃n expresses the modes in
the minus direction in terms of the transversal ones (i = 1, . . . , D−2),

α−
n =

1

α+
0

∑

m∈Z

αi
n−m α

i
m =

β√
2α′p+

∑

m∈Z

αi
n−m α

i
m (2.89)

and analogously for α̃−
n . We keep (q−, p+) classical and quantize {qi, pi, αi

n, α̃
i
n}

as the remaining independent degrees of freedom, obtaining the composites

α−
n =

1

α+
0

(∑

m∈Z

:αi
n−m α

i
m : − 2a δn,0

)
(2.90)

3We assume that w+ = 0, i.e. no winding in the ‘light-cone time’ direction.
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and similarly for α̃−
n , where we have again allowed for an unknown normal-

ordering constant a for p−. For n=0 this relation is a mass-shell condition in

disguise (remember that αµ
0 =

√
2α′

β
(pµ + wµ)):

α′M2 = α′ (p+p− − p⊥ 2
ext

)

= β2

2
α+

0 α
−
0 − α′p+w− − α′p⊥ 2

ext

= β2

2

(∑

m∈Z

:αi
−m α

i
m : − 2a

)
− α′p+w− − α′p⊥ 2

ext

= β2
(∑

m>0

αi
−m α

i
m − a

)
+ β2

2
αi

0 α
i
0 − α′p+w− − α′p⊥ 2

ext

= β2
(
N⊥ − a

)
+ α′(p2

int + w2) (2.91)

and a corresponding left-moving identity hold as operator equations. This mass-
shell condition takes the same form as (2.82) in the covariant quantization scheme,
except that only transverse oscillators contribute to N⊥, whose spectrum is N0.

In the transversal Fock space F⊥, spanned by the action of transversal creation
operators αi

< on |k〉, all states obviously have positive norm. However, there is no
free lunch because Lorentz covariance is no longer manifest. Hence, it becomes
necessary to explicitly check the realization of the Lorentz algebra on F⊥, as
provided by the quantum version of the Lorentz charges (2.33).

With the help of (2.37), the latters’ mode expansion reads

Jµν = q[µpν] −
∞∑

n=1

i

n

(
α

[µ
−n α

ν]
n + α̃

[µ
−n α̃

ν]
n

)
. (2.92)

In light-cone coordinates we can arrange these generators as {J ij, J i+, J i−, J+−}.
The J ij generate an SO(D−2) subgroup which is the manifest symmetry of rota-
tions in the transverse directions. Hence, those are safe and can be discarded from
further study. Furthermore, the light-cone choice of α+

n 6=0 = 0 = α̃+
n 6=0 renders

J i+ and J+− oscillator-free and thus harmless. Therefore, only the commutators
[J i−, J j−], which should (and classically do) vanish, may be anomalous and have
to be checked. Due to (2.90), schematically J i− ∼ αiα− ∼ αi : αkαk :, which
makes this calculation quite non-trivial. Details are found on pp. 97 of [?], where
the result

[J i−, J j−] = − 1
(p+)2

∞∑

m=1

∆m

(
α

[i
−m α

j]
m + α̃

[i
−m α̃

j]
m

)

with ∆m = 26−D
12

m +
(

D−26
12

+ 2 (1−a)
)

1
m

(2.93)

indeed spoils Lorentz covariance unless D=26 and a=1. It is certainly reassuring
that the magical value for (a,D) has reappeared in a completely different compu-
tational context. We shall see that, for other points in the (a,D) plane, covariant
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quantization and light-cone quantization yield different collections of physical
states. In conclusion, the bosonic string is quantum-mechanically healthy only in
a 26-dimensional spacetime! This illustrates that the presence of a string deter-
mines certain features of the spacetime it is moving in (and vice versa, as familiar
from general relativity). It does not spell disaster for our four-dimensional world
in the large because our starting point of R1,D−1 as spacetime (chosen for ped-
agogical and technical reasons) can be generalized to realistic spacetimes with
some (22) dimensions being rolled up at small scales.

Spectrum of the Bosonic String

Open string. In light-cone quantization, the spectrum of states for the open
string is simply generated by acting with the transverse creation operators, αi

<,
i=1, . . . , D−2, on the ground state |k〉 (not to be confused with the vacuum!).
Let us put a=1 in the mass-shell condition (2.91) with β=1 and freeze the internal
and winding contributions at their minimum, i.e. p2

int+w
2 = 0. Then, the ground

state |k〉 itself (N⊥=0) fulfils

α′M2|k〉 = (N⊥ − 1)|k〉 = −|k〉 , (2.94)

hence it is a scalar excitation with negative mass-squared, i.e. a tachyon! This
seems a disastrous result for a hopefully physical theory; yet, it only signals an
instability of flat spacetime in the bosonic string theory, which is driven to a new
‘vacuum’ by a process of ‘tachyon condensation’. Moreover, we shall be able to
get rid of tachyons in more sophisticated string models later.

The first excited states (N⊥=1)

|ε⊥, k〉 := ε⊥i α
i
−1|k〉 (2.95)

span a D−2 dimensional space parametrized by a polarization vector ε⊥. These
states are massless, since

α′M2|ε⊥, k〉 = (N⊥−1) ε⊥i α
i
−1|k〉 = 0 , (2.96)

and form a vector representation of the transversal rotation group SO(D−2).
On the next mass level (N⊥=2) one finds

|β⊥, ε⊥, k〉 := (β⊥
ij α

i
−1α

j
−1 + ε⊥i α

i
−2)|k〉 (2.97)

with α′M2 = +1, yielding as irreps of SO(D−2) a traceless symmetric two-tensor
representing a spin-two excitation, a scalar (the trace part of β⊥), and a vector.

It is now obvious how to go on to higher mass levels. In fact, this investigation
provides a check on Lorentz covariance: If the full Lorentz group of SO(1, D−1)
is realized in the light-cone quantization, the string states will fall into represen-
tations of the little group, which is SO(D−1) for massive states and SO(D−2)
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for massless ones. Thus, the SO(D−2) irreps found at a given mass level M2>0
should organize themselves into SO(D−1) multiplets. Indeed, at the first massive
level we observe that the three SO(D−2) irreps combine to a traceless symmetric
two-tensor of SO(D−1)! Turning the argument around, the fact that level N⊥=1
supports only D−2 states (and no additional scalar) is compatible with Lorentz
covariance only if the little group in this case is the massless one, which happens
just for a=1.

It is instructive to repeat the spectrum analysis in covariant quantization,
keeping a and D general at the beginning. Here, the task is, first, to restrict the
general state on a given mass level by the physical state conditions L1,2|phys, k〉 =
0 and, second, to identify the null states among the physical ones. Clearly, the
ground state |k〉 is physical and non-null; it represents a scalar with α′M2 = −a.
At level N=1 we have α′M2 = 1−a, and the most general state reads

|ε, k〉 := εµ α
µ
−1|k〉 . (2.98)

Let us work out the physical state conditions:

0 = L1|ε, k〉 = L1 ε · α−1 |k〉 = [L1 , ε · α−1]|k〉
= [α0 · α1 , ε · α−1]|k〉 = ε · α0 |k〉 =

√
2α′ ε · k |k〉 ,

(2.99)

0 = L2|ε, k〉 = L2 ε · α−1 |k〉 = [L2 , ε · α−1]|k〉
= [1

2
α1 · α1 , ε · α−1]|k〉 = ε · α1 |k〉 = 0 ,

(2.100)

where we have used (2.60)–(2.67). The result implies that |ε, k〉 is physical pro-
vided ε · k = 0, i.e. the ‘polarization vector’ ε should be orthogonal to the mo-
mentum vector. Among these physical states we still have to detect possible null
states given by (2.77), in order to be left with the inequivalent physical states.
The most general spurious state at level one is

|spur〉 = L−1|k〉 = α0 · α−1|k〉 =
√

2α′ k · α−1|k〉 =
√

2α′ |ε=k, k〉 (2.101)

which is physical (and therefore null) precisely if 0 = ε(k) · k = k2. Hence, the
null states arise only if M2=0 which means a=1.

For a fuller discussion let us look at norm of the states |ε, k〉 with ε · k = 0.
A quick computation yields ‖ |ε, k〉 ‖2= ε∗ · ε. This opens three possibilities:

• a > 1 −→ M2 < 0 −→ k2 is spacelike. We may choose a frame where
k = (0, |M |, 0, . . . , 0) and can still take ε = (∗, 0, . . . , 0), so that negative
norm-squared states are present.

• a < 1 −→ M2 > 0 −→ k2 is timelike. We may choose the rest frame
k = (M, 0, . . . , 0), which forces ε = (0, ∗, . . . , ∗), so that there are D−1
independent states with positive norm-squared.
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• a = 1 −→ M2 = 0 −→ k2 is lightlike. We may choose a frame where
k = (κ, κ, 0, . . . , 0), which allows for D−2 states ε = (0, 0, ∗, . . . , ∗) with
positive norm-squared plus one state ε ∼ k of zero norm.

The first case is clearly eliminated: The Virasoro constraints do not suffice to
remove all negative norm-squared states. The second case describes a massive
vector, while the third case yields a massless vector, suggesting the presence of
gauge symmetry in the spacetime dynamics.

Exercise 2.14 Repeat this analysis at level N=2 for a=1, but D arbitrary. The
mass-shell condition for

|β, ε, k〉 := (βµν α
µ
−1α

ν
−1 + εµ α

µ
−2)|k〉

reads L0|k〉 = −|k〉, hence α′k2 = −1. Proceed with the following steps:

a) Compare the states in light-cone quantization with those in covariant quan-
tization.

b) Determine the physical states |phys〉 by deducing from L1,2|β, ε, k〉 = 0 con-
ditions on ε and β.

c) Write down the most general spurious state |spur〉, building on λ · α−1|k〉
and on |k〉.

d) Determine the null states |null〉 by deriving from L1,2|spur〉 = 0 conditions
on the parameters of |spur〉.

e) Discuss the degrees of freedom.

f) Check that the state [10α−1·α−1 + (D+4)(α0·α−1)
2 + 2(D−1)α0·α−2] |k〉 is

physical and calculate its norm.

Only for a=1 and D=26 does the spectrum of inequivalent physical states ex-
actly agree with that in light-cone quantization. The massless vector excitation
is tentatively identified with a gauge boson (photon or gluon); the relevant gauge
group will appear later. Since at level N with α′M2 = N−1 we always have a
state described by a symmetric tensor of rank N , we find that the maximal spin
at each level is Jmax = N = α′M2 + 1.
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level (mass)2 states and their little representation content with
N α′M2 SO(24) representations group respect to the little group

0 −1
|k〉
•
1

SO(25)
•
1

1 0
αi
−1|k〉

24

SO(24)
24

2 1
αi
−2|k〉 αi

−1α
j
−1|k〉
+ •

24 299 + 1

SO(25)
324

Closed string. Since in the case of the closed string (β=2) we can excite both
left- and right-moving degrees of freedom, its states are simply tensor products
of the open string states, except for the center-of-mass data (qµ, pµ) common to
left- and right-movers. Again we put p2

int+w
2 = 0 for simplicity. We have already

seen that Lorentz covariance enforces a = ã = 1. The ground state is again a
scalar tachyon |k〉 with mass α′M2 = −4. The most general first excited state is
massless and reads

|e⊥, k〉 := eij α
i
−1α̃

j
−1|k〉 . (2.102)

We can decompose this state space into irreps of SO(D−2),

eij =
[1

2
(eij + eji)−

tr e

D−2
δij

]
+

[1

2
(eij − eji)

]
+

[ tr e

D−2
δij

]
, (2.103)

which describe a traceless symmetric two-tensor, an antisymmetric two-tensor,
and a scalar. As in the case of the open string, this matches up with the result of
covariant quantization only for a = ã = 1 andD = 26. Precisely then not only are
negative norm-squared states absent but also exist sufficiently many null states
in order to kill all longitudinal modes. At D=26 the three SO(24) representations
are the 299, the 276, and the 1. The corresponding excitations are interpreted as
the graviton, the Kalb-Ramond field, and the dilaton, respectively. The maximal
spin at each level is Jmax = 2N = 1

2
α′M2 + 2.
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level (mass)2 states and their little representation content with
N α′M2 SO(24) representations group respect to the little group

0 −4
|k〉
•
1

SO(25)
•
1

1 0
αi
−1α̃

j
−1|k〉

24
×

24

SO(24)
299

+
276

+
•
1

2 4

αi
−2α̃

j
−2|k〉

24
×

24

αi
−2α̃

j
−1α̃

k
−1|k〉

24
×

(
299

+
•
1

)

αi
−1α

j
−1α̃

k
−2|k〉(

299
+
•
1

)
×

24

αi
−1α

j
−1α̃

k
−1α̃

l
−1|k〉(

299
+
•
1

)
×

(
299

+
•
1

)

SO(25)

324
×

324

=
20150

+
32175

+
52026

+
324

+
300

+
•
1

Number of states. Using the equivalence of covariant and light-cone quanti-
zation at a=1 and D=26, we can easily estimate the total number of independent
states at each mass level ℓ for a fixed kµ. This number is nothing but the dimen-
sion dℓ of the eigenspace of the number operator N⊥ at level ℓ, where

N⊥|phys〉 = ℓ |phys〉 . (2.104)
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Instead of computing the sequence of the dℓ by direct counting, it is more elegant
to evaluate its generating function. For the open string one finds (α′M2 = ℓ−1)

G(q) =

∞∑

ℓ=0

dℓ q
ℓ−1 =

∑

basis

〈phys|qN⊥−1|phys〉 = trF⊥ qN⊥−1

= q−1 trF⊥ q
P24

i=1

P

∞

n=1 αi
−nαi

n = q−1

24∏

i=1

∞∏

n=1

trn,i q
αi
−nαi

n

= q−1
24∏

i=1

∞∏

n=1

∞∑

m=0

〈m|qαi
−nαi

n |m〉 = q−1
24∏

i=1

∞∏

n=1

∞∑

m=0

(qn)m

= q−1

[ ∞∏

n=1

1

1− qn

]24

= η(τ)−24 , where q := e2πiτ

(2.105)

and the complete trace is taken over the basis states |{mn,i}〉 with mn,i ∈ N0 and
ℓ =

∑
n,i nmn,i. In conformal field theory, G(q) = tr qL0−c/24 is also known as a

Virasoro character. Expanding the result again in powers of q one confirms that

(
dℓ

)
=

(
p24(ℓ)

)
=

(
1, 24, 324, 3200, 25650, 176256, 1073720, . . .

)
, (2.106)

which denotes the number of 24-colored partitions of the integer ℓ. The function
η in the last line is the Dedekind function known from complex function and
number theory. Using its asymptotic expansion for q → 1 we find the number of
states for large ℓ ∼ α′M2 to be growing like

dℓ ∼ ℓ−27/4 e4π
√

ℓ ∼ M−27/2 eM/M0 with M0 = 1
4π

√
α′

. (2.107)

The closed-string level density explodes similarly.

2.3 BRST Quantization

General Aspects.

BRST quantization (named after Becchi, Rouet, Stora, and Tyutin) is a gen-
eral method that is taylored to quantize systems with constraints, for instance
systems with a local gauge symmetry. Consider a theory of fields φi(ξ) with a
gauge group G. The gauge transformations δλ are parametrized by λa(ξ) and are
generated by hermitian charges Ta spanning a Lie algebra

[Ta, Tb] = if c
ab Tc with a, b, c = 1, . . . , dimG (2.108)

and f c
ab being the (real) structure constants of G. We use a general notation for

the gauge-fixing conditions (labelled by an index A),

FA[φi, ξ] = 0 . (2.109)
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Recall the Faddeev–Popov trick in the path-integral quantization of gauge theory,

∫
[dφi]

Vol(G)
eiS[φi] −→

∫
[dφi][dc

a][dbA][dBA] eiS[φi]+iSfix+iSgh (2.110)

with the gauge-fixing term

Sfix = −
∫

dξ BA(ξ)FA[φi, ξ] (2.111)

and the ghost action

Sgh =

∫
dξ bA(ξ) δcF

A[φi, ξ] =

∫∫
dξdξ′ bA(ξ)

δFA[φi, ξ]

δφi(ξ′)
(δcφ)i(ξ

′) , (2.112)

where δc denotes a gauge transformation with an anticommuting parameter func-
tion λa(ξ) = ca(ξ). Moreover, the path integral involves ca and bA as new anticom-
muting fields , called ‘ghosts’ and ‘antighosts’, respectively. Integrating them out
brings back the Faddeev–Popov determinant associated with the chosen gauge-
fixing FA. The auxiliary field BA is commuting and implements the gauge fixing
via

∫
[dBA]eiSfix =

∏
ξ δ(F

A[φi, ξ]). Due to the presence of both statistics, one has
a Z2 grading in the enlarged field space, but there exists an even finer Z grad-
ing, the ghost number U , with the assignments of U=+1 for ghosts, U=−1 for
antighosts, and U=0 otherwise.

Fermionic symmetry. We now extend the local fermionic transformations δc
to include the ghost, antighost, and auxiliary fields by defining

sφi = (δcφ)i , sca = −1
2
fa

bc c
bcc ,

sBA = 0 , sbA = BA .
(2.113)

The new transformations are tuned in such a way that the ‘BRST transformation’
s is nilpotent, i.e. ss = 0. As derivations they also satisfy a graded Leibniz rule.

Exercise 2.15 Check the nilpotency of s on φi and on ca.

It is quite useful to realize that (suppressing ξ dependence)

Sfix + Sgh = −
∫

(sbA)FA[φi] +

∫
bA sFA[φi] = −s

∫
bA F

A , (2.114)

because the nilpotency of s then guarantees that not only S[φi] but also Sfix+Sgh is
BRST invariant. Hence, we have found a local fermionic invariance of the gauge-
fixed action as a remnant of the original gauge symmetry. BRST invariance is an
invaluable tool for quantization when interactions are included.
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Quantum-mechanically, BRST transformations are effected via sW = [Q,W}
where [. , .} denotes the graded commutator and Q is known as the BRST opera-
tor. The Hilbert space of quantum states |ψ〉 is extended by the ghost/antighost
degrees of freedom in such a way that Q is hermitian, Q† = Q. Note also that
Q raises the ghost number by one unit. Consider now a small change of the
gauge-fixing condition, FA → FA + δFA. Such a shift should not affect physical
quantities like transition amplitudes of physical states |phys〉. In other words,

0 = δ 〈phys | phys′〉 = i 〈phys | δ(Sfix + Sgh) | phys′〉

= −i
〈
phys

∣∣ s ∫ bA δFA
∣∣ phys′

〉
= −i

〈
phys

∣∣ {Q, ∫ bA δFA}
∣∣ phys′

〉 (2.115)

for any δFA, hence we conclude that

Q |phys〉 = 0 , (2.116)

i.e. all physical states in the enlarged Fock space must be BRST invariant. The
converse is also true. Abbreviating I ≡

∫
bAδF

A, we just saw that {Q, I} gen-
erates a shift of the gauge-fixing condition. Yet, as a conserved charge, Q itself
must not change under this shift, meaning that

0 = [Q, {Q, I}] = Q2I −QIQ+QIQ− IQ2 = [Q2, I] ∀ δFA , (2.117)

so that

Q2 = 0 (2.118)

as expected from the (classical) nilpotency of s.

Exercise 2.16 Q† = Q suggests that Q can be diagonalized. Q2 = 0 then means
that all eigenvalues are zero, hence Q ≡ 0! What is wrong with this argument?

Consequently, Q|any〉 is physical but also orthogonal to any |phys〉,

〈phys|
(
Q|any〉

)
=

(
〈phys|Q

)
|any〉 = 0 . (2.119)

Hence, Q|any〉 = |null〉, and the physical Hilbert space (2.81) of cosets in the
ghost-extended Fock space can be identified with the cohomology of the BRST
operator,

H =
{|phys〉}
{|null〉} =

kerQ

imQ
=
{Q-closed states}
{Q-exact states} = H∗(Q) . (2.120)

The nilpotent algebra (2.118) can be represented irreducibly only in two ways.
Either Q ∼ ( 0 1

0 0 ) on a doublet of states, or Q = 0 on a singlet. Obviously, H is
the direct sum of all singlets.
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BRST Quantization of the Bosonic String.

Let us apply the BRST formalism to the case {φi} = {Xµ, hαβ} of the bosonic
string. Recall that the Polyakov action (2.11) enjoys invariance under general
coordinate transformations (2.12) and local Weyl transformations (2.14), which
are parametrized by εα and Λ, respectively. Accordingly, we have to introduce
reparametrization ghosts cα and a Weyl ghost w. It is convenient to perform a
linear combination of δε and δΛ,

−δ̃εhαβ = ∇(α εβ) − (∇ · ε) hαβ =: (P1ε)
αβ

−δ̃Λhαβ = (Λ +∇ · ε) hαβ

}
=⇒ shαβ = −(P1c)

αβ−whαβ

(2.121)
which separates the traceless from the trace part and defines P1 as the map
from vectors ε to traceless symmetric two-tensors h. The string coordinates Xµ

transform as before. We have seen that these symmetries suffice to completely
gauge-fix the worldsheet metric hαβ, if not globally to the flat metric ηαβ so at

least to some fixed reference metric ĥαβ . Using F αβ = − 1
4π

√
−h (hαβ−ĥαβ), our

gauge-fixing term (2.111) then reads

Sfix = −
∫
Bαβ F

αβ[h] = 1
4π

∫
Bαβ

√
−h

(
hαβ − ĥαβ

)
, (2.122)

and the ghost action (2.112) takes the form

Sgh =

∫
bαβ sF αβ = 1

4π

∫
bαβ

√
−h

(
(P1c)

αβ + w ĥαβ
)

(2.123)

with the help of

s

√
−h = −1

2

√
−hhαβ shαβ =

√
−hw . (2.124)

We denote the total action by S = S0 + Sfix + Sgh. Since the Weyl ghost w
and the auxiliary field Bαβ are not dynamical we can integrate them out and

obtain
∏

ξ δ(ĥ·b) δ(h−ĥ) in the path-integral measure. Thus, the antighost b
gets projected to its traceless part, and the worldsheet metric is replaced by the
reference metric ĥ. However, we must not forget the h equations of motion which
provide the (ghost-extended) Virasoro constraints

0 = − 4π√
−h

δS

δhαβ

∣∣∣∣
h=bh

= TX
αβ + T gh

αβ −Bαβ , (2.125)

where TX was already obtained in (2.15) while T gh stems from the h dependence
(also of P1) in (2.123). The BRST transformations (2.113) specialize to

sXµ = cα ∂αX
µ ,

scα = cβ∇β c
α ,

sbαβ = Bαβ = TX
αβ + T gh

αβ =: T tot
αβ .

(2.126)
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We now specialize to the conformal gauge, ĥαβ(ξ) = λ(ξ) ηαβ, and convert to
light-cone coordinates, yielding cα → c± and bαβ → b±±. Then, the total action
simplifies to

Sgf[X, b, c] =
1

πα′

∫
d2ξ ∂+X · ∂−X +

1

π

∫
d2ξ (b++∂−c

+ + b−−∂+c
−) . (2.127)

The BRST transformation can be split, s = sR + sL, with

sR X
µ = c−∂−X

µ , sLX
µ = c+∂+X

µ ,

sR c
− = c−∂−c

− , sL c
+ = c+∂+c

+ , (2.128)

sR b−− = T tot
−− , sL b++ = T tot

++ ,

where the gauge-fixed total energy-momentum tensor is given by

T tot
−− = 1

α′ ∂−X · ∂−X + c−∂−b−− − 2 b−−∂−c
− ,

T tot
++ = 1

α′ ∂+X · ∂+X + c+∂+b++ − 2 b++∂+c
+ ,

(2.129)

which, in contrast to the action (2.127), is not symmetric under the interchange
c ↔ b. From the free-field action one immediately extracts the equations of
motion for the ghosts and antighosts, which directly imply that

c− = c−(ξ−) , b−− = b−−(ξ−) ,

c+ = c+(ξ+) , b++ = b++(ξ+) ,
(2.130)

so that BRST transformations and energy-momentum tensor indeed decompose
on-shell into left- and right-moving parts. In addition, periodicity conditions for
the closed string and boundary conditions for the open string emerge:

closed string: b±±(σ+2π) = b±±(σ) , c±(σ+2π) = c±(σ) ;

open string: b−−|σ=0,π = b++|σ=0,π , c−|σ=0,π = c+|σ=0,π .
(2.131)

Like for the Xµ, such conditions are implemented by Fourier-expanding,

c−(τ, σ) =
∑

n∈Z

cn e−in(τ−σ) , b−−(τ, σ) = i
∑

n∈Z

bn e−in(τ−σ) ,

c+(τ, σ) =
∑

n∈Z

c̃n e−in(τ+σ) , b++(τ, σ) = i
∑

n∈Z

b̃n e−in(τ+σ) ,
(2.132)

with c̃n = cn and b̃n = bn for open strings but independent left- and right-moving
modes for closed strings. Note that c± are real fields while the b±± are imaginary.

35



Ghost quantization. The ghost system is almost trivial to quantize because
it represents two pairs of mutually conjugate first-order free fields, (b−−, c

−) and
(b++, c

+). Since they anticommute, one has the standard equal-time anticommu-
tation relations

{b++(τ, σ) , c+(σ′, τ)} = 2πi δ(σ−σ′) = {b−−(τ, σ) , c−(σ′, τ)} , (2.133)

with all other anticommutators vanishing. Inserting the mode expansions (2.132)
one obtains

{bm, cn} = δm+n,0 , {b̃m, c̃n} = δm+n,0 ,

{bm, bn} = {cm, cn} = 0 , {b̃m, b̃n} = {c̃m, c̃n} = 0 .
(2.134)

For each value of m∈Z we recognize a couple of fermionic harmonic oscillators,
{bm, c−m} = 1 = {b̃m, c̃−m}, whose Fock spaces are two-dimensional but not real
since

(cn)† = c−n and (bn)† = b−n etc. . (2.135)

Like in (2.47), the Fourier modes of T gh
±± yield the ghost contributions to the

hermitian Virasoro operators,

Lgh
n =

∑

m∈Z

(m+n) :bn−m cm : and L̃gh
n =

∑

m∈Z

(m+n) : b̃n−m c̃m : (2.136)

with a normal-ordering prescription yet to be specified. In oder to bound

Ngh
R := Lgh

0 =
∑

m>0

m : (b−m cm + c−m bm) : (2.137)

(and L̃gh
0 ) from below, one must define the ghost vacuum as follows,

cn|0〉 = 0 for n ≥ λ and bn|0〉 = 0 for n ≥ 1−λ (2.138)

with some integer λ, and likewise for the left-movers. Mapping λ → 1−λ corre-
sponds to interchanging cn ↔ bn.

By straightforward but lengthy calculation one asserts that the ghost Virasoro
operators (2.136) generate their own pair of Virasoro algebras (2.69), with central
charges cgh = c̃gh = −26 ! The requirement that one obtains the canonical
form (2.69) (and not a trivial deformation) determines the value of λ in (2.138):

0 = 2Lgh
0 |0〉 = [Lgh

1 , L
gh
−1]|0〉 = Lgh

1 L
gh
−1|0〉

= (λ+1)b1−λcλ (λ−2)b−λcλ−1|0〉 = (λ+1)(λ−2)|0〉 .
(2.139)

We take λ = 2 and achieve SL(2) invariance of the vacuum since Lgh
n≥−1|0〉 = 0,

just like for LX
n . The SL(2) invariant vacuum is, however, not a highest-weight
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state of the ghost algebra. Since c1 acts as creation operators on |0〉, we can lower
the Lgh

0 eigenvalue by one unit and arrive at its ‘ground state’:

|Ω〉 := c1|0〉 =⇒ Lgh
0 |Ω〉 = −|Ω〉 . (2.140)

The b↔ c asymmetry also leads to a peculiarity of the (indefinite) scalar product
in the ghost Fock space. From (2.138) and (2.135) we learn that {c−1, c0, c1} are
nonzero on |0〉 as well as on 〈0|, while {b−1, b0, b1} kill both |0〉 and 〈0|. Consider
now the vacuum expectation value of an operator O:

〈0|O|0〉 = 〈0|{bm, c−m}O|0〉
= 〈0| bm c−mO + c−mO bm|0〉 = 0 for m = −1, 0,+1

(2.141)

if [bm,O} = 0, i.e. if O does not contain the product c−1c0c1. Thus, 〈0|0〉 = 0,
and the simplest non-vanishing expectation value is

〈0| c−1 c0 c1|0〉 = 1 . (2.142)

This leads to an off-diagonal pairing,

|0〉 ←→ c−1c0c1|0〉 and |Ω〉 ≡ c1|0〉 ←→ c0c1|0〉 ≡ c0|0〉 . (2.143)

BRST operator. Demanding that the BRST transformations (2.128) on all
fields φ are generated via sφ = [Q, φ} one can reconstruct the (closed-string)
BRST operator

Q =

∮
dσ

2π
(J− + J+) (2.144)

as an integral over the BRST current with components

J− = c− TX
−− + 1

2
:c− T gh

−− : = 1
α′ c

− :∂−X · ∂−X : + :b−− c
−∂−c

− : ,

J+ = c+ TX
++ + 1

2
:c+ T gh

++ : = 1
α′ c

+ :∂+X · ∂+X : + :b++ c
+∂+c

+ : ,
(2.145)

where the coefficient of 1
2

is essential. In terms of oscillators this reads

Q =
∑

n∈Z

(
c−n L

X
n + 1

2
:c−n L

gh
n :

)
+ left-movers (2.146)

=
∑

n,m∈Z

(
:c−n αn−m · αm : − 1

2
(m−n) :c−m c−n bm+n :

)
+ left-movers .

Similarly, the ghost number operator U is given by

U =

∮
dσ

2π
(j− + j+) =

∑

n∈Z

(
:c−n bn : + : c̃−n b̃n :

)
(2.147)

through the ghost-number current components

j− = :c−b−− : and j+ = :c+b++ : , (2.148)

where conventionally our vacuum |0〉 has ghost number zero.
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Exercise 2.17 Use (2.138) (with λ=2) to verify that U † = −U + 3. What can
you conclude for a state |ψ〉 with ghost number u, computing 0 = 〈ψ|U |0〉 = . . . ?

Using the equations of motion (2.130) and the conservation of TX
±±, we see

that these currents are conserved, ∂−J+ = ∂+J− = 0 and ∂−j+ = ∂+j− = 0, so
that both Q and U are conserved quantities. The last line of (2.128) implies that

Ltot
n = {Q, bn} , (2.149)

which demonstrates that the Ltot
n are BRST invariant,

[
Q,Ltot

n

]
= [Q, {Q, bn}] = 1

2
[{Q,Q} , bn] = 0 , (2.150)

as long as Q is nilpotent. In this case a graded Jacobi identity may be employed
to derive a Virasoro algebra,

[Ltot
m , Ltot

n ] = [Ltot
m , {Q, bn}] = {Q, [Ltot

m , bn]} − {[Q,Ltot
m ], bn}

= {Q, (m−n)bm+n} − 0 = (m−n)Ltot
m+n ,

(2.151)

with total central charge ctot = 0 ! Quite generally, adding the generators of
two independent Virasoro algebras, one obtains a new Virasoro algebra, and
the central charges simply add. For our case of Ltot

n = LX
n + Lgh

n , this yields
ctot = D − 26. Hence, Q2 = 0 implies D = 26 again. We learn that outside
the critical dimension the BRST framework breaks down because Q is no longer
nilpotent.

Exercise 2.18 Prove the converse of the above, i.e. c = 0 =⇒ Q2 = 0 (drop-
ping the label ‘tot’). First, use the graded Jacobi identity in (2.151) and the com-
mutator [Lm, bn] = (m−n)bm+n as well as (2.149) to show that {[Q,Lm], bn} = 0.
Apply ghost number grading to argue that this enforces [Q,Lm] = 0. Second, re-
call (2.150) (graded Jacobi again!) to obtain [Q2, bn] = 0. Finally, ghost number
grading once more.

As a general recipe, one can associate a BRST operator Q with any Lie alge-
bra (2.108) of constraints. Just introduce a canonical ghost/antighost pair (ca, ba)
for any generator Ta, with

{ba, cb} = i δa
b and {ba, bb} = 0 = {ca, cb} , (2.152)

and define
Q := ca Ta − 1

2
f c

ab c
acb bc . (2.153)

The nilpotency of Q directly follows from the Jacobi identity for Ta. Indeed,
our BRST operator (2.146) may be found in this fashion with Ta → Ln. Note,
however, that no central charge terms are allowed in this construction, another
reason why they must disappear in (2.151).
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BRST cohomology. According to (2.120) the physical Hilbert space should
result from computing the (so-called absolute) cohomology of the BRST operator,

Q|phys〉 = 0 modulo |null〉 = Q|any〉 . (2.154)

Since the closed-string cohomology is obtained from tensoring two open-string
cohomologies, let us focus on the open string case for simplicity. Our task is
simplified by the observation that the cohomology is graded by the simultaneous
eigenvalues {kµ, h, u} for the set {pµ, Ltot

0 , U} of mutually commuting charges,

H∗(Q) =
⊕

k,u

Hk,u(Q) , (2.155)

where the Ltot
0 eigenvalue is already fixed by the following little argument:

Ltot
0 |h〉 = h|h〉 =⇒ |h〉 = 1

h
Ltot

0 |h〉 = 1
h
{Q, b0}|h〉 = Q

(
1
h
b0|h〉

)
+ 1

h
b0Q|h〉

is applicable when h 6= 0 and shows that a BRST-closed state, Q|h〉=0, is au-
tomatically BRST-exact, |h〉=Q|∗〉. Thus, no cohomology remains when h 6= 0,
and we may restrict ourselves to the h=0 eigenspace,

{Q, b0}|phys, k〉 = Ltot
0 |phys, k〉 =

(
LX

0 + Lgh
0

)
|phys, k〉 = 0 . (2.156)

As expected, one reads off a mass-shell relation (for k2
int+w

2 = 0),

α′M2 = −α′k2 = β2(NX +Ngh) (2.157)

which agrees with the earlier result (2.82) (for Neumann boundary conditions)
when Ngh = −a = −1. Since (2.156) follows already from

b0 |phys〉 = 0 (2.158)

it is consistent to impose the latter as a supplementary condition on the coho-
mology, thereby restricting it to the so-called relative BRST cohomology H∗

rel :=
H∗(Q|b0=0). In fact, this restriction is necessary to remove a doubling of physi-
cal states in the absolute BRST cohomology, which stems from representing the
algebra {b0, c0} = 1 on physical states.

The open-string BRST analysis produces the following result [?]:

• The exceptional cohomology Hk=0,u
rel is represented by the D+2 states

|0〉, αµ
−1c1|0〉, and c−1c1|0〉 at u = 0, 1, 2, respectively.

• For kµ 6= 0 on the mass shell, Hk,u
rel is nonzero only at u = 1.

• Hk,u=1
rel has a representative of the form |phys〉 = |phys〉X ⊗ c1|0〉gh

where |phys〉X satisfies the physical state conditions (2.75) with a=1.
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Indeed, (2.146) shows that

Q
(
|phys〉X⊗c1|0〉gh

)
=

(
c0

(
LX

0 −1
)
+

∑

n>0

c−n L
X
n

)(
|phys〉X⊗c1|0〉gh

)
(2.159)

where the ‘tachyon shift’ a=1 is seen to arise via c0L
gh
0 c1|0〉gh = −c0c1|0〉gh from

the ‘energy’ difference of |0〉 and |Ω〉, on which the physical state representatives
are built. Moreover, the famous null states at D=26 appear as BRST-exact
states,

LX
−1|χ1〉 = Qb−1|χ1〉 ,

(
LX
−2 + 3

2
LX
−1L

X
−1

)
|χ2〉 = Q

(
b−2 + 3

2
LX
−1b−1

)
|χ2〉 .

(2.160)

Finally, let us take a look at the open-string spectrum in this framework.
Abbreviate |k〉 := |k〉X ⊗ c1|0〉gh. At level zero,

Q |k〉 =
(
α′k2 − 1

)
c0 |k〉 = 0 (2.161)

only determines the tachyon mass. Q-exact states cannot exist. At level one, the
general state is

|ε, β, γ, k〉 :=
(
ε · α−1 + β b−1 + γ c−1

)
|k〉

with a norm-squared of ε∗·ε + β∗γ + γ∗β, spanning a D+2 dimensional space
with two timelike directions. Like ε represents a massless vector field, β and γ
are associated with the two Faddeev-Popov ghosts of quantum gauge theory.

Exercise 2.19 Use

Q = c−1(α0·α1) + c0(
1
2
α2

0 + α−1·α1) + c1(α−1·α0)− c−1c0b1 − b−1c0c1 + irrelevant

on |ε, β, γ, k〉 to prove that physical states are subject to k2 = 0, ε · k = 0, and
β = 0. The physical state space is D dimensional including two null directions.

Exercise 2.20 Work out the general null state

Q
(
ε′ · α−1 + β ′ b−1 + γ′ c−1

)
|k〉 = . . .

to show that the BRST-exact terms have γ = anything and ε ∝ k. Modding out
the null states thus yields the positive definite D−2 dimensional Hilbert space of
transversal photons.

This mechanism is general. The BRST cohomology removes from the Fock space
quartets of two pairs of unphysical and null states. Schematically,

Q : b −→ αk −→ 0 and αk̄ −→ c −→ 0 (2.162)

where αk̄ and αk denote oscillators in an unphysical and null direction, respec-
tively. Of course, the positive definiteness of the resulting cohomology space is
not guaranteed and has to be checked by other means. Not surprisingly, the
no-ghost theorem may also be proved quite elegantly in the ghost-extended Fock
space.
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3 String Interactions

3.1 First-Quantized Description

So far we have been discussing the free string. In this section we introduce
interactions into the theory of strings. To formulate interactions between quan-
tum objects, a multi-object description seems necessary, in particular for rela-
tivistic systems. Indeed, the multi-particle Fock space is the appropriate arena
for interacting relativistic particles. Such a quantum field theoretical (“second-
quantized”) framework does exist for strings as well, but it is beset with enor-
mous technical difficulties and in a satisfactory stage presently only for the open
bosonic string. Therefore, we refrain from introducing multi-string states here,
but employ a single-string (“first-quantized”) formulation for the emission and
absorption of strings. Despite a certain conceptual awkwardness this method is
relatively simple and easy to apply, once the so-called vertex operators are in
place.

Vertex Operators

Multi-string state space. As for point particles, the multi-string Fock space

F = F0 ⊕ F1 ⊕ F2 ⊕F3 ⊕ . . . (3.1)

decomposes into sectors of definite string number, with n-string product states
labelled as |A1, . . . , An〉 ∈ Fn. In particular, we have the zero-string state (vac-
uum), one-string states and two-string product states

| 〉 ∈ F0 , |A〉 ∈ F1 , |A,B〉 = |A〉 ⊗ |B〉 ∈ F2 , (3.2)

respectively. The number of strings in a state can be altered by applying a string
field operator,

ΨA : Fn → Fn−1 ⊕Fn+1 , in particular ΨA | 〉 = |A〉 . (3.3)

Each n-string sector Fn contains a ground state. In F1 this is simply the vacuum
|0〉 = |0〉X ⊗ |0〉gh of the oscillator and momentum modes of a single string, not
to be confused with the zero-string vacuum | 〉 !

Operator-state correspondence. Any one-string state |A〉 can be obtained
by applying a particular operator VA to the ground state,

VA |0〉 = |A〉 . (3.4)

This operator is called the “vertex operator” of the state |A〉 and establishes
a one-to-one correspondence of operators and states in F1. For example, the
open-string tachyon state (with X ≡ Xopen and α′k2 = 1) is

|T (k)〉 := |k〉X ⊗ c1|0〉gh = lim
τ→−∞(1−i0)

eiτ :c eik·X : |0〉 = VT (k) |0〉 . (3.5)
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More generally, at mass level N (with α′k2 = 1−N) the correspondence takes the
form

(εµα
µ
−N + . . .+ βµ1...µN

αµ1
−1 · · ·αµN

−1 )|k〉X ⊗ c1|0〉gh ⇐⇒ :cPN(Ẋ, Ẍ, . . .) eik·X :
(3.6)

where PN denotes a polynomial homogeneous of degree N in the number of
τ derivatives.

Exercise 3.1 Find the polynomials for the mass levels N=1 and N=2.

The worldsheet of the free open string has the topology of a strip, with a global
‘time’ coordinate τ . The large-τ limit in (3.5) signifies that the our ket states are
created by the action of a vertex operator in the far past. The conjugation

I : F1 → F∗
1 via |A〉 7→ 〈A| (3.7)

based on our scalar product then relates the corresponding bra state to the her-
mitian conjugated vertex operator acting in the far future,

I : VA(k) 7→ V †
A(k) = VA(−k) c0 , (3.8)

since the exponential in (3.5) changes sign. If we agree upon reading all momenta
as incoming, the dagger may be dropped:

|A〉 = VA(k; τ=−∞) |0〉 and 〈A| = 〈0| VA(k; τ=∞) c0 . (3.9)

Note that in F1 physical kets carry ghost number u = 1 while physical bras have
u = 2, to produce u = 3 for the scalar product.

String fusion. While successive application of string field operators creates
multi-string states, e.g.

ΨB ΨA | 〉 = ΨB |A〉 = f(A,B) | 〉 + |A,B〉 , (3.10)

the iteration of vertex operators produces fused one-string states:

VB VA |0〉 = VB |A〉 =: c0 |A+B〉 ∈ F1 . (3.11)

The relation between the two operations defines the 3-string vertex

Υ : F1 ⊗ F1 → F∗
1 via |A,B〉 7→ 〈A+B| , (3.12)

which extends to

Υ : F1 ⊗F1 ⊗ F1 → C via |A,B,C〉 7→ 〈A+B|C〉 . (3.13)

Likewise, the conjugation provides a 2-string vertex (with u=1),

I : F1 ⊗ F1 → C via |A,B〉 7→ 〈A|B〉 . (3.14)

Sometimes the notation I = 〈〈V2| and Υ = 〈〈〈V3| is used. Fusion introduces a
geometric 3-string interaction in F1. It gives the vertex operators an algebraic
structure with structure constants fABC = Υ|A,B,C〉.
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Open-String Tree-Level Correlations.

Multi-String Process. Another form of the 2- and 3-string vertices is

I |A,B〉 = 〈0| VA(∞) c0 VB(−∞) |0〉 and

Υ |A,B,C〉 = 〈0| VA(∞)VB(∞)VC(−∞) |0〉 .
(3.15)

Higher-order interactions, such as a process of elastic 2-string scattering, require
sewing 3-string vertices with internal string propagators. To this end, two-string
fusion must be considered at finite values of τ , which is achieved by evolving the
physical vertex operators via

VA(τ, σ) = ei(τ−τ0)H VA(τ0, σ) e−i(τ−τ0)H with H = Ltot
0 = LX

0 −1 (3.16)

away from their asymptotic reference times τ0 = ±∞. Practically, this amounts
simply to dropping the limit taken in (3.5). As for point particles, the com-
putation of amplitudes for string processes requires an integration over the in-
teraction times. Open-string interactions occur only at the worldsheet bound-
aries, whence we must evaluate its vertex operators at σ = 0 or at σ = π.
We shall see that for tree diagrams we can restrict ourselves to σ = 0. The
string propagation between the interaction events is already described by the im-
plicit factors of e−i∆τ(LX

0 −1), which become explicit when passing from the Heisen-
berg to the Schrödinger picture. (External legs are being amputated.) Indeed,
i
∫ ∞
0

dτ e−iτ(LX
0 −1) = (LX

0 −1)−1 is the relevant Greens function.
There is also the issue of ghost number counting. It is plausible that inverting

the 2-string vertex in (3.15) enforces an extra antighost insertion for every internal
propagator. Employing the machinery of string field theory, one may demonstrate
that these insertions finally amount to removing the ghost factors of all but three
vertex operators in the correlation function. (Note that an r-string tree diagram
features precisely r−3 internal propagators.) Hence, the building blocks for string
scattering amplitudes are the correlation functions of r vertex operators,

〈0| cV X
1 (τ1) cV

X
2 (τ2)V

X
3 (τ3)V

X
4 (τ4) . . . V

X
r−1(τr−1) cV

X
r (τr) |0〉 , (3.17)

where the times are ordered as τ1 > τ2 > · · · > τr and

V X
i (τi) = e(1−Ni)iτ :PNi

(∂∗τX) eiki·X : (τi, 0) . (3.18)

Wick rotation and Koba-Nielsen factor. For technical reasons in the com-
putation of the amplitudes it is convenient to extend the range of τ to the complex
plane, perform a Wick rotation

τ = −i t and define y = eiτ = et ∈ [0,∞] . (3.19)

In this variable, (2.44) for Neumann boundary conditions at σ=0 yields

:eik·X : (y) = e
√

2α′
P

n>0
1
n

k·α−nyn

eik·q y2α′k·p e−
√

2α′
P

n>0
1
n

k·αny−n

. (3.20)
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Standard coherent-state techniques produce (for y1 > y2)

X〈0| : eik1·X : (y1) :eik2·X : (y2) |0〉X
= X〈−k1| y2α′k1·p

1 eik2·q e−
√

2α′
P

n>0
1
n

k1·αny−n
1 e

√
2α′

P

m>0
1
m

k2·α−mym
2 |0〉X

= X〈−k1|k2〉X y2α′k1·k2
1 e

−2α′k1·k2
P

n>0
1
n

(
y2
y1

)n

= X〈−k1|k2〉X e2α′k1·k2 ln(y1−y2) = X〈0|k1+k2〉X (y1 − y2)
2α′k1·k2 .

(3.21)

More generally, for the r-tachyon correlator (α′k2
i = 1) one finds

X〈0|
r∏

i=1

: eiki·X : (yi) |0〉X = δ(26)(k1+ . . .+kr)
∏

i<j

(yi − yj)
2α′ki·kj (3.22)

with yi > yi+1. This expression occurs in all vertex-operator correlation func-
tions and is known as the Koba-Nielsen factor. Its most remarkable property
is an invariance under simultaneous cyclic permutations of the yi and ki, be-
cause pushing the first vertex operator all the way to the right produces a
factor of

∏r
2(−1)2α′k1·ki = (−1)−2α′k2

1 = 1. For higher-level states, one must
in addition take into account contributions from the corresponding polynomials
in e−∗iτ∂∗τX ∼ ∂∗yX. Finally, we need the ghost correlator,

gh〈0| c(y1) c(y2) c(yr) |0〉gh = y−1
1 y−1

2 y−1
r (y1 − y2) (y1 − yr) (y2 − yr) , (3.23)

by virtue of c(y) =
∑

n cny
−n and gh〈0|c−1c0c1|0〉gh = 1 as the only nonvanish-

ing contribution (up to permutations). Therefore, the full primitive r-tachyon
amplitude is given by the product of (3.22) and (3.23), to be integrated with
i
∫

dτi yi . . . =
∫

dyi . . . for all i. After summation over all external leg permuta-
tions involving identical particles one obtains the complete scattering amplitude.

Exercise 3.2 Verify the relations (3.22) and (3.23).

Möbius invariance. Recall that the open-string Fock space carries an action of
the sl(2,R) subalgebra of the Virasoro algebra. The corresponding group action,
the so-called Möbius transformation, leaves the ground state |0〉 invariant and
transforms the vertex operators tensorially, while shifting their argument as

y 7→ ay + b

cy + d
with

(
a b
c d

)
∈ SL(2,R) . (3.24)

This action extends from the σ=0 boundary to the whole parameter space, by
replacing y with

z = ei(τ+σ) = et+iσ , (3.25)

which lives in the upper half plane. Note that that σ=π boundary is included as
the negative real axis (y < 0). In this variable, constant-t slices are semi-circles
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around the origin z=0 ↔ t=−∞. Via z 7→ z−i
z+i

the upper half plane is mapped
conformally to the unit disk, showing that the worldsheet boundary has a single
component and hinting at the cyclic invariance of the amplitude. The Möbius
group (or projective group) SL(2,R) comprises all singularity-free conformal maps
of this tree-level open-string worldsheet onto itself. It captures the residual gauge
invariance in the conformal gauge, which is still to be fixed.

Since the correlation functions are SL(2,R) scalars, they are inert under the
three-parameter family of Möbius transformations. Hence, the integration over
all yi will generate the volume of SL(2,R) as an infinite factor, unless we re-
strict the integration to one representative per Möbius orbit. This is achieved by
fixing the location of three vertex operators and dropping the corresponding τ
integrations. The traditional choice is

y1 = ∞ , y2 = 1 , yr = 0 , (3.26)

in tune with our choice for the remaining ghost locations. Note that the remaining
factor of y1y2yr is cancelled by a part of (3.23). Putting all together, we are to

perform an integration
∏r−1

i=3

∫ 1

0
dyi with 1 > y3 > y4 > . . . > yr−1 > 0 of

y12y1ry2r

∏

i<j

y
2α′ki·kj

ij =
∏

ℓ

[
(1−yℓ)

2α′k2·kℓ y2α′kℓ·kr

ℓ

] ∏

m<n

y2α′km·kn

mn , (3.27)

where ℓ, m and n run from 3 to r−1 only, and we introduced the abbreviation
yij = yi−yj. It is noteworthy that the potential divergence

y
2+2α′

Pr
j=2 k1·kj

1 = y
2−2α′k2

1
1 = y0

1 (3.28)

is tamed by the momentum conservation
∑

i ki = 0 and the mass-shell condition
α′k2

i = 1.

Leg permutations. Although it is no longer obvious, the integrated expression
(3.27) is still invariant under cyclic permutations of the momenta. The sum over
permutations of the external legs of identical particles therefore reduces to a sum
over cyclicly inequivalent orderings {π} only,

T tree(12 . . . r) =
∑

{π}
Atree(π1π2 . . . πr) , (3.29)

where A denotes the primitive amplitude for a fixed leg ordering and T is the
T -matrix element. We have abbreviated the external momentum arguments by
the position labels. Amplitudes containing higher-level states are treated likewise
and yield additional momentum factors as well as shifts of the exponents due to
the modified mass-shell conditions. Finally, for the complete T -matrix element
we should weigh the r-string tree-level amplitude with a factor of gr−2 with g
being the strength of the open-string coupling. In the following we suppress the
momentum delta functions.
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3.2 Tree Amplitudes

Tachyons and Photons

Three-point. The simplest case is r = 3, where the kinematics enforces k1·k2 =
m2

1 + m2
2 −m2

3 plus cyclic permutations. For three tachyons, α′ki · kj = −1 and
the full correlator reduces to unity, hence

Atree
TTT (123) = g −→ T tree

TTT = Atree
TTT (123)+Atree

TTT (213) = 2g . (3.30)

Exercise 3.3 Compute Atree
TTT for a generic choice of y1, y2 and y3.

The case of three photons is more interesting. With the photon vertex operator

V X
γ (ε, k; y) = y :ε · ∂yX eik·X : (y) for ε · k = k · k = 0 , (3.31)

one straightforwardly finds the cyclicly symmetric expression

Atree
γγγ = ig(2α′)2 (ε1·k2 ε2·ε3 + ε2·k3 ε3·ε1 + ε3·k1 ε1·ε2 + 2α′ ε1·k2 ε2·k3 ε3·k1) .

(3.32)
Using momentum conservation and transversality of the polarization, we see that
Atree

γγγ is totally antisymmetric under external leg permutations. Photons being
bosons, the permutation sum makes T tree

γγγ vanish, in agreement with QED. The
nonabelian generalization to the (non-vanishing) 3-gluon coupling, however, re-
quires the implementation of the color charges into the open string, which will
be given shortly. Of course, there are also mixed amplitudes Atree

TTγ and Atree
Tγγ at

this mass level.

Exercise 3.4 Amplitudes including photons are economically computed by means
of the following trick: Write the vertex operator as

V X
γ (ε, k; y) = y : eik·X+ε·∂yX : (y)

∣∣
linear in ε

(3.33)

and verify that

X〈0|
r∏

i=1

: eiki·X+εi·∂yX : (yi) |0〉X ∼
∏

i<j

e
2α′

(
ki·kj ln yij−i

εi·kj−ki·εj
yij

− εi·εj

y2
ij

)
. (3.34)

Apply this formula to confirm (3.32).

Four-point: Veneziano amplitude. Kinematical phase space first occurs for
r = 4. Traditionally, one introduces the Mandelstam variables

s = −(k1+k2)
2 = −(k3+k4)

2 = m2
1 +m2

2 − 2k1·k2 = m2
3 +m2

4 − 2k3·k4 ,

t = −(k2+k3)
2 = −(k1+k4)

2 = m2
2 +m2

3 − 2k2·k3 = m2
1 +m2

4 − 2k1·k4 ,

u = −(k1+k3)
2 = −(k2+k4)

2 = m2
1 +m2

3 − 2k1·k3 = m2
2 +m2

4 − 2k2·k4 ,

(3.35)
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which are related by s+ t+ u =
∑

im
2
i . We also define the “Regge trajectory”

α(x) = α′ x/β2 + α0 with α0 = 1 . (3.36)

The computation of the (primitive) four-tachyon amplitude is a historical high-
light. Specializing (3.27) and writing y3 ≡ x, we obtain (α′m2

i = −1)

Atree
TTTT (1234) = g2

∫ 1

0

dx (1−x)2α′k2·k3 x2α′k3·k4

= g2

∫ 1

0

dx x−α(s)−1 (1−x)−α(t)−1

= g2 Γ(−α(s)) Γ(−α(t))

Γ(−α(s)− α(t))
= g2 Γ(−α(s)) Γ(−α(t))

Γ(1 + α(u))
,

(3.37)

where the ratio of Euler gamma functions is also known as the Euler beta function.
Although the integral diverges for α′s ≥ −1 or α′t ≥ −1, its analytic continuation
features only poles at α′s = n−1 and α′t = n−1 for n ∈ N0.

Exercise 3.5 Compute Atree
TTTT for a generic choice of y1, . . . , y4.

Channel duality. This so-called Veneziano amplitude has wondrous proper-
ties: First, it is symmetric under the s ↔ t interchange, which is equivalent to
the cyclic permutation

(k1, k2, k3, k4) 7→ (k2, k3, k4, k1) . (3.38)

This property is known as duality (in the s and t scattering channels). It im-
plies that, in contrast to point-particle scattering, one does not have to add an
s-channel string diagram and a t-channel string diagram but needs only one of
these since either one captures both! In fact, this is intuitively clear from the
representation of the worldsheet as a disk with four marked boundary points and
fits in with the observation that the string joining and splitting events in space-
time are not Lorentz-invariant. Quite generally, each string diagram combines
many Feynman graphs and degenerates to their sum in the point-particle limit
α′ → 0.

Second and related, the poles due to internal string exchange occur identically
in the s and t channels: The poles of the gamma functions in the numerator
of (3.37) are located at nonnegative integer values of α(s) and α(t),

Atree
TTTT (s, t) = −g2

∞∑

n=0

(α(t)+1)(α(t)+2) · · · (α(t)+n)

n!

1

α(s)− n

= −g2
∞∑

n=0

(α(s)+1)(α(s)+2) · · · (α(s)+n)

n!

1

α(t)− n ,

(3.39)
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which perfectly agrees with the open-string mass spectrum reemerging when an
internal propagator goes on mass-shell, since

X〈phys, k| 1
LX

0 −1
|phys, k〉X blows up at α′k2 = 1− n for n ∈ N0 . (3.40)

It is remarkable that channel duality requires an infinite number of physical poles
(or none at all) and hence cannot be realized with a finite particle spectrum.

High-energy limits. Third, the high-energy behavior of the Veneziano ampli-
tude is more benign than that of any point-particle scattering. For the process
1 + 2→ 3 + 4 one has

s = E2 , t = (4m2 − E2) sin2 θ
2

, u = (4m2 − E2) cos2 θ
2

(3.41)

for the energy E and the scattering angle θ in the 1-2-center-of-mass frame, which
for large s simplifies to −2t

s
= 1 − cos θ. The so-called Regge limit corresponds

to large s at fixed negative t, which is high-energy elastic forward scattering.
Regulating by a small imaginary value for s and using Stirling’s formula, one
gets the Regge behavior

Atree
TTTT (s→∞, t) ∼ Γ(−α(t)) sα(t) ∼ sα′t+1 . (3.42)

For α′t < −1 the amplitude has a power-law fall-off at large s. In point-particle
scattering, the t-channel exchange of a spin-j particle contributes a term ∼ sj

to the amplitude. Therefore, we may interpret (3.42) as the t-channel exchange
of a ficticious particle with t-dependent effective spin j = α(t), summing up
infinitely many t-channel exchanges of arbitrary integer spins at high center-
of-mass energy s. The string excitations are situated on the Regge trajectory
j = α(t) at the integer values j = n, i.e. α′t = n−1. The so-called Regge slope α′

determines the string tension via T = 1
2πα′ . Alternatively, one may consider the

hard scattering limit s→∞ at fixed θ (or t/s), which yields

Atree
TTTT (s→∞, θ) ∼ e−α′(s ln s+t ln t+u lnu) ∼ |f(θ)|−α(s) (3.43)

with a specific function f , i.e. exponential fall-off for fixed-angle scattering at high
energies. Deep-inelastic scattering probes the structure of the scattered objects.
A soft behavior like in (3.43) suggests a smooth object of size

√
α′.

Complete amplitude. The final sum over cyclicly inequivalent permutations,

T tree
TTTT = Atree

TTTT (1234) +Atree
TTTT (1243) +Atree

TTTT (1324)

+ Atree
TTTT (1342) +Atree

TTTT (1423) +Atree
TTTT (1432)

= 2g2
(
Atree

TTTT (s, t) + Atree
TTTT (t, u) + Atree

TTTT (u, s)
)

,

(3.44)
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produces a totally symmetric expression with identical poles in the s, t and
u channels. The high-energy behavior of T tree

TTTT is inherited from that of Atree
TTTT .

It should be clear now how to evaluate four-point amplitudes including non-
tachyonic legs and how to proceed to r > 4. The resulting expressions become
increalingly complicated but share the nice properties of the Veneziano amplitude
(with appropriate obvious adjustments).

Gluons

String theory could not claim to be a unified theory of all interactions if it did
not contain nonabelian gauge bosons (gluons) among its excitations. Since gluons
are self-interacting massless vector particles carrying color degrees of freedom, we
must look for a generalization of the open string which admits such a structure
at least for its massless excitations.

Chan-Paton charges. String theory is a very rigid framework which usually
does not admit any tinkering without loosing consistency. Fortunately, the dis-
tinguished end points of open strings allow for an attachment of so-called Chan-
Paton degrees of freedom, which then reside only on the worldsheet boundary
and do not propagate.4 Having trivial worldsheet dynamics, these do not enter
the energy-momentum tensor and thus do not affect our previous considerations,
but they alter the interactions and hence the spacetime dynamics.

Charging each end of the string with n such degrees of freedom enhances the
Fock space of string states by a tensor factor of Cn2

, and we may label open-string
basis states (with suggestive notation) as

α∗
< b

∗
< c

∗
< |k; ij〉 for i, j = 1, . . . , n , (3.45)

where i and j count the ‘colors’ of the left and right endpoints, respectively.
Since the Chan-Paton labels have no time evolution they remain constant along
the worldsheet boundary, except for the interaction points, where vertex opera-
tors V ij are inserted. Hence, in open-string fusion the right label of the left string
must match with the left label of the right string. Employing a C-complete set
of n2 hermitian matrices λa = (λa

ij), normalized to trλaλb = δab, we reorganize
the basis into

|∗, k; a〉 =

n∑

i,j=1

|∗, k; ij〉 λa
ij for a = 1, . . . , n2 . (3.46)

Color factors and symmetry. A vertex operator V a creating an open-string
state in a color state a just couples the boundaries i and j to a via λa

ij. For the

4This modification seems ad hoc but Chan-Paton charges are natural as D-brane labels.
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r-string correlator we find

〈0| V a1
1 V a2

2 · · ·V ar
r |0〉 =

∑

i1,...,ir
j1,...,jr

λa1
i1j1
λa2

i2j2
· · ·λar

irjr
〈0| V i1j1

1 V i2j2
2 · · ·V irjr

r |0〉

=
∑

i1,...,ir

λa1
i1i2
λa2

i2i3
· · ·λar

iri1
〈0| V1 V2 · · ·Vr |0〉 (3.47)

= tr (λa1 λa2 · · ·λar) 〈0| V1 V2 · · ·Vr |0〉 ,

because V ij differs from the colorless V only by providing the Kronecker deltas
δjsis+1 implementing the sewing conditions. Thus, the complete amplitude now
reads

T tree(12 . . . r) =
∑

{π}
tr (λaπ1λaπ2 · · ·λaπr ) Atree(π1π2 . . . πr) , (3.48)

where π runs over the cyclicly inequivalent permutations of identical external
particles.

We note that the matrices λa form an algebra

λa λb = i
2
f [abc] λc + 1

2
d(abc) λc , (3.49)

which contains the u(n) Lie algebra with real structure constants fabc. The color-
enhanced spectrum and amplitudes of the open string are obviously invariant
under global U(n) transformations acting as λa 7→ UλaU †, under which the states
transform in the adjoint representation. The U(1) phase factor acts trivially,5 and
the corresponding gauge boson decouples from all amplitudes, so that we end up
with scattering for string states all living in the adjoint representation of SU(n).
We shall see that this symmetry is actually a gauge symmetry in the spacetime
dynamics.

Three-point. The full scattering amplitude for colored excitations carries an
adjoint label for each external leg. Accordingly, complete the three-tachyon am-
plitude (3.30) gets modified to

T tree
TTT = tr (λa1λa2λa3)Atree

TTT (123) + tr (λa2λa1λa3)Atree
TTT (213)

= tr ({λa1 , λa2} λa3) g = da1a2a3 g .
(3.50)

For three gluons, we get

T tree
ggg = −fa1a2a3 g(2α′)2 (ε1·k2 ε2·ε3+ε2·k3 ε3·ε1+ε3·k1 ε1·ε2+2α′ ε1·k2 ε2·k3 ε3·k1)

(3.51)
which is now totally symmetric. The leading order in α′ has precisely the struc-
ture of the cubic Yang-Mills coupling for U(n) vector gauge bosons! Thus, g is
really the gauge coupling.

5in pure Minkowski spacetime background
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Four-point. The colored complete Veneziano amplitude takes the form

T tree
TTTT = g2

[
tr (λa1λa2λa3λa4 + λa1λa4λa3λa2) Atree

TTTT (s, t)

+ tr (λa1λa3λa2λa4 + λa1λa4λa2λa3) Atree
TTTT (t, u)

+ tr (λa1λa2λa4λa3 + λa1λa3λa4λa2) Atree
TTTT (u, s)

]
.

(3.52)

Factorization has become nontrivial: The residue of the pole at s = − 1
α′ corre-

sponding to an intermediate on-shell tachyon carries a color factor

tr
(
{λa1 , λa2} {λa3 , λa4}

)
=

∑

a

tr
(
{λa1, λa2} λa

)
tr

(
{λa3 , λa4} λa

)
, (3.53)

which factorizes properly due to the completeness of the λa.

Exercise 3.6 Employ the technique of Exercise 3.4 to calculate the four-gluon
tree amplitude to leading order in α′. Thereby note that α′m2

i = 0 and hence
2α′k3·k4 = −α(s) + 1 etc. for gluons. Identify the constant which remains after
subtracting all poles in s, t and u.

Effective action. Since a string in a physical stationary state propagates like
the particle associated to the corresponding excitation, interactions of strings in
such states can be described by an effective point-particle theory. Although the
full effective theory describes an infinite tower of massive interacting particles,
we may restrict ourselves to a finite subset, e.g. the tachyonic and massless ex-
citations. An effective quantum field theory for these degrees of freedom must
reproduce the string tree amplitudes we computed earlier. Hence, from the knowl-
edge of the string amplitudes we can reconstruct the fundamental vertices of the
effective point-particle field theory, i.e. its action.

If we ignore the tachyon (it will be absent in the superstring) and concentrate
on the (hermitian u(n)-valued) gluon field Aµ only, the result (3.51) implies that

Seff[Aµ] =

∫
dDx tr

[
1
2
Aµ(η

µν
✷− ∂µ∂ν)Aν + ig [Aµ, Aν ] ∂

µAν

− 2
3
ig α′(∂µAν−∂νA

µ)(∂νAρ−∂ρA
ν)(∂ρAµ−∂µA

ρ) + O(g2)
] (3.54)

where we have disregarded the overall normalization for the string amplitudes.6

To order (α′)0, the O(g2) term may be inferred from the result of Exercise 3.6 as
1
4
g2

∫
tr [Aµ, Aν ][A

µ, Aν ] which precisely completes the first two terms under the
trace in (3.54) to

−1
4
FµνF

µν with Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] . (3.55)

It is nontrivial that the relative normalization of the three- and four-point string
amplitudes reproduces the coupling constant universality, i.e. the proper ratio

6With unitarity considerations this can be fixed.
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between the three- and four-gluon coupling in the Yang-Mills action. Summariz-
ing, in the zero-slope limit, α′ → 0, the massless open string dynamics reduces
exactly to the nonabelian gauge dynamics of SU(n) gluons. Remarkably, the
global Chan-Paton U(n) invariance of the worldsheet theory gave rise to a local
gauge invariance in the spacetime dynamics!

Anticipating gauge invariance also for the higher orders in α′, we are led to
complete the O(α′) term in (3.54), arriving at

Seff[Aµ] =

∫
dDx tr

[
−1

4
FµνF

µν − 2
3
ig α′ F µ

ν F
ν
ρ F

ρ
µ + O(α′2g2F 4)

]
. (3.56)

Since the combination α′F is dimensionless, the remaining part of the α′ expan-
sion starts as indicated. This is our first example of string corrections to gauge
theories (and gravity). We close by noting that the gauge coupling has dimension

[g] = [L
D
2
−2] and may be scaled out of Seff as an overall factor of g−2.

Unoriented strings

Worldsheet parity. So far our open and closed strings are oriented: the
σ parametrization increases from the left to the right end of the open string
and determines a direction along the closed string. In the transversal gauge fix-
ing, we were left with constant σ shifts for the closed strings, but did not consider
the worldsheet orientation reversal

σ 7→ βπ − σ and τ 7→ τ . (3.57)

This transformation is generated by the worldsheet parity or twist operator Ω,
which squares to unity and (ignoring the ghosts) acts as

Ωαµ
n Ω = (−1)n αµ

n in the open string ,

Ωαµ
n Ω = α̃µ

n in the closed string .
(3.58)

It can be employed to attach open-string vertex operators at the σ=π end via

V (σ=π) = ΩV (σ=0) Ω . (3.59)

We assign the eigenvalue Ω = +1 to the ground states |k〉 and note that Ω
interchanges the left and right end Chan-Paton labels. For a given mass level
N = Ñ = 1+ 1

β2α
′M2, this implies

Ω |∗, k; ij〉 = (−1)N |∗, k; ji〉 in the open string ,

Ω |∗, k〉 = |∗, k〉|L↔R in the closed string .
(3.60)

In the closed string massless sector, the exchange of left and right movers induces
a map eij 7→ eji, thus from (2.103) we see that Ω = +1 on the graviton and the

52



scalar (the dilaton) while Ω = −1 on the antisymmetric two-tensor. To construct
Ω eigenstates for the open string, we take a basis for the λa matrices in which
1
2
n(n−1) of them are antisymmetric (spanning an so(n) Lie subalgebra), sa = −1,

and the remaining 1
2
n(n+1) ones are symmetric, sa = +1. Then,

Ω |∗, k; a〉 = (−1)N sa |∗, k; a〉 , (3.61)

so that the gluon states have eigenvalue Ω = −sa.

Other gauge groups. With the above ground state assignment, worldsheet
parity is multiplicatively conserved in string interactions. Hence, it makes sense
to project onto the Ω= + 1 part of the spectrum, i.e. removing all Ω=− 1 states
and keeping only the Ω=+1 excitations. The result is called an unoriented (open
or closed) string. It still contains the tachyon as its lowest mode. On the massless
level, the unoriented closed string lacks the antisymmetric two-tensor excitation,
and the unoriented open string keeps the gluons for the SO(n) subgroup of U(n)
only. The ficticious quark and antiquark at the two ends transform in the funda-
mental and antifundamental representation of SO(n), respectively, so that their
antisymmetric tensor product yields the adjoint representation as required.

In fact, more orientation-reversing symmetries can be constructed by combin-
ing Ω with a U(n) rotation of the Chan-Paton labels. After some analysis, one
concludes that for the gluons of an unoriented string the only other possibility
besides SO(n) is the symplectic group Sp(n). The same list results from a uni-
tarity consideration, which concludes that a subset of matrices {λa} is consistent
only if the combinations

λa1λa2 · · ·λap − (−1)pλap · · ·λa2λa1 ∀p (3.62)

is also in the subset. For p = 2 this condition requires the subset to form a Lie
algebra, but for p > 2 it is more subtle. A theorem of Wedderburn yields the
above list as the only solutions. We remark that unoriented strings do not couple
to oriented ones.

At the one-loop level, however, all these gauge interactions become anomalous
except for the group SO(32). In the closed strings with supersymmetry, we shall
find other ways to implement Yang-Mills symmetry, including exceptional gauge
groups. Yet, also in this case quantum anomalies rule out most of them, leaving
only SO(32)/Z2 and E8×E8.

Closed-String Tree-Level Correlations

Left-right factorization. In a heuristic sense, closed strings may be viewed as
a marriage of two open strings, one left- and one right-moving. This fact shows
in the construction of closed-string vertex operators,

Vcl(k; z, z̄) = VR(k
2
; z) VL(k

2
; z̄) , (3.63)
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or linear combinations thereof, where now

z = ei(τ−σ) = et−iσ = y e−iσ ∈ C , (3.64)

and VR (VL) is a function ofXR and c− (XL and c+) only (see (2.37)). Ignoring the
constraint wµ=0 for a moment, we may regard left- and right-movers including
their zero modes as independent, provided we put

[qµ
L , p

ν
L] = 2i ηµν = [qµ

R , p
ν
R] and others vanish . (3.65)

Then, closed-string correlators factorize into a left- and right-moving part, which
depend on the location variables in a meromorphic and anti-meromorphic fash-
ion, respectively. Comparing (2.37) with (2.44) we observe that Xµ

R(τ−σ) has
the same quantum properties as Xµ

open(τ, σ=0)|τ→τ−σ, and likewise for Xµ
L(τ+σ).

Therefore, we may recycle the open-string correlators computed earlier and write

〈0| V 1
cl(k1; z1, z̄1) · · ·V r

cl(kr; zr, z̄r) |0〉 = (3.66)

= 〈0| V 1
op(

k1

2
; z1) · · ·V r

op(
kr

2
; zr) |0〉 〈0| V̄ 1

op(
k1

2
; z̄1) · · · V̄ r

op(
kr

2
; z̄r) |0〉

with obvious notation and without position ordering. Both factors live on the
full complex plane.

Beyond the convenient factorization (3.66) of the closed-string correlators
it is possible to derive relations between open- and closed-string amplitudes,
after integrating over r−3 vertex operator locations, by exploiting identities like
Γ(x)Γ(1−x) sin(πx) = π [?].

Closed-string vertex operators. Recalling the form of closed-string states,
the corresponding vertex operators at mass level N = Ñ take the form

Vcl(k; z, z̄) = zz̄ : c− c+ PN, eN(∂∗zXclosed, ∂
∗
z̄Xclosed) eik·Xclosed : (z, z̄) (3.67)

=
(
z : c− PN (1

2
∂∗zXR) e

i
2
k·XR : (z)

) (
z̄ : c+ P

eN(1
2
∂∗z̄XL) e

i
2
k·XL : (z̄)

)

or linear combinations thereof. The graviton, for instance, is generated by

VG(e, k; z, z̄) = zz̄ c− c+ 1
4
e(µν) : ∂zX

µ
R ∂z̄X

ν
L e

i
2
k·(XR+XL) : (z, z̄) (3.68)

with a symmetric, traceless and transverse polarization tensor (e(µν)). Ubiquitous
is the r-tachyon correlator

X〈0|
r∏

i=1

: e
i
2
ki·(XR+XL) : (zi, z̄i) |0〉X = δ(26)(k1+ . . .+kr)

∏

i<j

|zi−zj |α
′ki·kj (3.69)

as well as the ghost correlator

gh〈0| c−(z1)c
+(z̄1) c

−(z2)c
+(z̄2) c

−(zr)c
+(z̄r) |0〉gh =

∣∣∣(z1−z2)(z1−zr)(z2−zr)

z1 z2 zr

∣∣∣
2

(3.70)
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resulting from putting the c-type vertex operators at the locations z1, z2 and zr.
Again, the prescription to keep three factors of c−c+ and to integrate

2i ∫ dtℓ dσℓ zℓz̄ℓ . . . = ∫ dzℓ dz̄ℓ . . . for ℓ = 3, . . . , r−1 (3.71)

can be motivated from string field theory. In summary, the ghost-number count
is twice that of the open string.

From the disk to the sphere. The closed-string Fock space admits an ac-
tion of two copies of the sl(2,R) subalgebra of the Virasoro algebra, generated by

{L−1, L0, L+1} and by {L̃−1, L̃0, L̃+1}, which kill the ground state. The cor-
responding group SO(2,2) turns into SL(2,C) after the Wick rotation (3.64)
and acts via fractional linear transformations on the complex z plane includ-
ing the point at infinity, i.e. the Riemann sphere. By a conformal rescaling,
dzdz̄ 7→ (1+zz̄)−2dzdz̄, we obtain the standard round unit sphere. Indeed,
SL(2,C) is the conformal automorphism group of the sphere, and the integra-
tion over the vertex operator locations overcounts by its infinite volume, unless
we fix three points on the sphere, typically

z1 = ∞ , z2 = 1 , zr = 0 . (3.72)

Again, the first location (z1=∞) comes with a vanishing power in the amplitude,
due to the closed-string mass-shell condition α′k2

1 = 4(1−N). In contrast to the
open string, the vertex operator locations are not ordered, and so integrating
over them already takes care of the permutation invariance for identical external
legs. Finally, we denote the cubic closed-string coupling by κ, hence the r-string
tree-level amplitude comes with a factor of κr−2.

Tachyons and Gravitons

Three-point. Three closed-string tachyons obviously couple with a strength
T tree

TTT = κ. For three gravitons, we can essentially square the three-photon corre-
lator (3.32) and (with ki·ei = 0 = ei·ki and

∑
i ki = 0 ) obtain

T tree
GGG = κ (α

′

2
)4

[
e1:e2 k2·e3·k1 + k3·e1·e2·e3·k1 + k1·e3·e2·e1·k3 (3.73)

− 2α′

2
k3·e1·e2·k3 k2·e3·k1 + cyclic + (α

′

2
)2 k3·e1·k2 k1·e2·k3 k2·e3·k1

]

where the dots signify Lorentz contractions so that e1:e2 = e1(µν)e2(ρλ)η
µρηνλ. It

is totally symmetric in the three leg labels; no Chan-Paton factors are possible
or needed. It can be shown that for a judicious gauge choice the three-graviton
coupling of Einstein relativity is precisely proportional to the first line of (3.73).
This is nontrivial evidence that the dynamics of the spin-two closed-string exci-
tation is indeed the standard gravitational one! In other words, the closed-string
effective action for the space-time metric field Gµν should take the form

Seff[Gµν ] = 1
2κ2

∫
dDx

√
− detG··

[
R(G) + O(α′)

]
, (3.74)
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where κ is the gravitational coupling. From (3.73) we infer that the part of the
string correction to the Einstein-Hilbert action which is cubic in the graviton
consists of terms only quadratic and cubic in the Riemann tensor.

Exercise 3.7 Verify (3.73) starting with (3.32).

Four-point: Virasoro-Shapiro amplitude. The closed-string analog of the
Veneziano amplitude is a slightly more complicated integral. Recalling that
α′m2

i = −4 in (3.35) and β = 2 in (3.36), we obtain (writing z3 ≡ z),

T tree
TTTT = κ2

∫

C

d2z |1−z|α′k2·k3 |z|α′k3·k4

= κ2

∫

C

d2z |z|−α′s/2−4 |1−z|−α′t/2−4

= κ2

∫

C

d2z |z|−2α(s)−2 |1−z|−2α(t)−2

= κ2 2π Γ(−α(s)) Γ(−α(t)) Γ(−α(u))

Γ(−α(s)− α(t)) Γ(−α(t)− α(u)) Γ(−α(u)− α(s))

= κ2 2π Γ(−α(s)) Γ(−α(t)) Γ(−α(u))

Γ(1 + α(s)) Γ(1 + α(t)) Γ(1 + α(u))
,

(3.75)

with the kinematical relation

α(s) + α(t) + α(u) = α′

4
(s+ t+ u) + 3 = −1 . (3.76)

Clearly, this expression is totally symmetric in all four legs and hence manifestly
crossing symmetric, so no external leg sum is required. It also features the correct
closed-string poles at 1

4
α′s = n−1 and 1

4
α′t = n−1 and 1

4
α′u = n−1 for n ∈ N0.

For completeness, we mention the Regge limit

T tree
TTTT (s→∞, t) ∼ Γ(−α(t))

Γ(1+α(t))
s2α(t) ∼ s

1
2
α′t+2 (3.77)

as well as the hard-scattering limit

T tree
TTTT (s→∞, θ) ∼ e−

1
2
α′(s ln s+t ln t+u ln u) ∼ |f(θ)|−2α(s) . (3.78)

The computation of the four-graviton amplitude is a more tedious task. As
we shall show later, the result is actually simpler in the superstring.

Target-Space Field Theory

Strings in curved spacetime. The scattering amplitudes we have derived are
well defined only on-shell. The mass-shell condition was enforced by the Virasoro
constraints and also arises naturally from considering asymptotic pointlike string
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sources, as we implemented using vertex operators and computing S-matrix ele-
ments. It is possible, however, to define off-shell amplitudes after fixing a gauge
or directly in string field theory after picking a particular string-field interac-
tion. Here, we shall remain on-shell but remember that the reconstruction of the
target-space effective action from the S matrix is subject to the ambiguity of field
redefinition.

The example of (3.68) and (3.74) illustrates that the excitation of a coherent
superposition of plane-wave gravitons via inserting the exponential

eκ
R

d2z V X
G (e,k;z,z̄) = e−2κ

R

d2ξ ηαβ :∂αXµ ∂βXν eik·X : e(µν) (3.79)

into the correlator is equivalent to modifying in the corresponding path integral
the gauge-fixed Polyakov action (2.17) according to

Sgf
0 [X; ηµν → Gµν(X)] with Gµν(X) = ηµν + 8πα′κ e(µν) eik·X . (3.80)

Performing the same shift in the Polyakov action S0[X, h; ηµν ] defined in (2.11),
we can even read off the graviton vertex operator on a curved worldsheet. Further-
more, the plane wave may be replaced by a more general graviton wave function
with impunity. We learn that an appropriately excited string in flat spacetime
behaves like a string in a curved target space! This suggests that spacetime itself
is somehow built from strings. Similar to general relativity, not only is the string
motion governed by the spacetime background, but the target space itself is also
severely constrained by admitting the string, as we shall see.

Closed-string backgrounds. It is natural to generalize the relationship of
the graviton vertex operator with the spacetime metric to the other massless
closed-string excitations, i.e. the Kalb-Ramond state and the dilaton state.7 The
corresponding background degrees of freedom, Bµν(X) and Φ(X), extend the
target spacetime metric Gµν(X) by additional data. In this way, one obtains the
Polyakov action in a general (massless) background,

S[X, h] = − 1
4πα′

∫

Σ

d2ξ
√
−h

[(
hαβGµν(X)+ ǫαβBµν(X)

)
∂αX

µ ∂βX
ν +α′RΦ(X)

]
,

(3.81)
where (ǫαβ) is the Levi-Civita tensor on the worldsheet. The dilaton Φ couples to
the worldsheet curvature scalar R=R(hαβ) because its (dimensionally regularized)
vertex operator reads

V X
Φ (k) ∼

√
−h

[
hαβ ∂αX

µ ∂βX
ν ηµν + D

4
α′R(h)

]
eik·X . (3.82)

Exercise 3.8 Show that S[X, h] is the most general action invariant under rigid
Weyl transformations, This limits the possible background degrees of freedom to
G, B and Φ.

7Again we ignore the tachyons. Open-string backgrounds will be discussed later.
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It is intriguing that there exists a one-to-one correspondence between background
data and (massless) string excitations. Actions like (3.81) are known from nonlin-
ear sigma models; therefore, string theory in such backgrounds is also named the
“string sigma model”. Its background functionals can be interpreted as an infi-
nite collection of coupling constants. For anything but very special backgrounds,
this is an interacting theory which does not lend itself to exact solutions.

Symmetries. By construction, the sigma-model action (3.81) is invariant un-
der worldsheet reparametrizations, but also under global transformations which
leave the background invariant, e.g. Poincaré transformations (2.31) in Minkowski
space. Generic backgrounds, however, do not admit such isometries, except for

δBµν(X) = ∂µζν(X)− ∂νζµ(X) , (3.83)

which generalizes the usual (spacetime) electromagnetic gauge transformations.
Note that global worldsheet symmetries are tied to local spacetime invariances.
The gauge invariant object is the field strength

Hµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν . (3.84)

Exercise 3.9 Perform a general string coordinate redefinition Xµ → X ′µ(X)
and verify that the action (3.81) is not invariant but retains its form, i.e.

S[X, h;G,B,Φ] = S[X ′, h;G′, B′,Φ′] , (3.85)

where the background fields have been subject to the corresponding tensorial trans-
formations induced by the coordinate change.

Sigma models related by coordinate redefinitions are different theories from the
worldsheet point of view, but they describe string dynamics on the same target
spacetime and may thus be identified.

Local Weyl invariance and background constraints. Less obvious is the
fate of local Weyl invariance (2.14) in general backgrounds. We have seen that
Weyl invariance is broken by a quantum anomaly already on the flat background,
with a coefficient of D−26. In curved backgrounds this anomaly is more serious
because background-field dependent. However, for the right choice of background
it can be made to cancel with the explicit Weyl non-invariance of the dilaton term
in (3.81),

R(eΛh..) = e−Λ
[
R(h..)− hαβ∇α∂βΛ

]
. (3.86)

The explicit α′ factor of the Φ term in (3.81) is not a convention. Noting that α′

takes the role of ~ in the worldsheet actions, a power series in α′ is nothing but
a semiclassical or loop expansion. In this worldsheet sense, the dilaton term is
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introduced in (3.81) and (3.82) as a one-loop counterterm, at O(α′) just like the
Weyl anomaly.

By the little argument in (2.24) the Weyl variation of the action is proportional
to the (integrated) trace of the energy-momentum tensor. A careful quantum
computation of the latter in a general massless closed-string background finally
yields

δΛSqu[X, h] = 1
8πα′

∫

Σ

d2ξ
√
−h

[(
hαββG

µν + ǫαββB
µν

)
∂αX

µ ∂βX
ν + α′βΦR(h)

]
Λ

(3.87)
with the so-called beta functions

βG
µν = α′Rµν(G) + 2α′∇µ∂νΦ − α′

4
H ρλ

µ Hνρλ + O(α′2) ,

βB
µν = −α′

2
∇ρHρµν + α′(∂ρΦ)Hρµν + O(α′2) , (3.88)

βΦ = D−26
6
− α′

2
∇µ∂µΦ + α′(∂µΦ)(∂µΦ) − α′

24
HµνρHµνρ + O(α′2) ,

where ∇µ denotes the gravitationally covariant derivative in spacetime and Rµν

is the associated Ricci tensor. Note that the dilaton beta function is defined one
order in α′ higher than the other ones; its O(α′) contributions above required a
two-loop computation in the sigma model.

Local Weyl invariance is essential for the quantum consistency of the world-
sheet theory. Therefore, we are forced to impose on the background fields the
conditions

βG
µν = βB

µν = βΦ = 0 . (3.89)

These constraints are very reasonable to leading order in α′. The first one, for
example, can be rearranged into

Rµν(G)− 1
2
GµνR(G) = Tµν(B,Φ) , (3.90)

which is nothing but Einstein’s equation in the presence of B and Φ “matter”
sources. Also the other two equations are precisely the equations of motion for
Bµν and for Φ with the standard couplings to the other fields.

When pushing the computation of the beta functions to higher order in α′ we
find stringy corrections to the familiar contraints (3.89) on the background. The
prime example is

βG
µν = α′Rµν + 1

2
α′2R ρλσ

µ Rνρλσ + O(α′3) + O(∂Φ, H) (3.91)

and involves a square of the Riemann tensor. On a target space with characteris-
tic curvature radius Rc the effective dimensionless expansion parameter is α′/R2

c .
Therefore, the α′ expansion will be reasonable if the string scale

√
α′ is much

smaller than Rc. In this situation, the internal structure of the string is unim-
portant because the excitation of massive states is strongly suppressed, and it
makes sense to restrict ourselves to massless backgrounds.
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The string coupling. So far the dilaton enters only with its gradient, but
the average 〈Φ〉 plays an important role as well. Clearly, for the “empty” flat
spacetime (G=η, B=0, Φ=Φ0=const) one recovers the Polyakov action (2.11),

S[X, h]
flat−→ S0[X, h] − χΦ0 , (3.92)

plus a topological term because

1
4π

∫

Σ

d2ξ
√
−hR(h) = χ(Σ) (3.93)

is the Euler number χ = 2− 2g of a genus-g worldsheet Σ. Since the Euclidean
action is minus the Minkowskian action, this implies that the weight of e+S in
the Euclidean path integrals which compute the closed-string scattering ampli-
tudes produces a factor of e−χΦ0 . This topological weight allows us to generate
the closed-string coupling κ: An r-string g-loop amplitude needs r+2g−2 string
interactions, hence carries a weight of κr+2g−2. By using rescaled vertex opera-
tors κV , we can produce a factor of κr. The remaining factor appears when we
identify

( κ
κ0

)2g−2 = e(2g−2)Φ0 −→ κ = eΦ0 κ0 , (3.94)

where κ0 takes care of the dimension [κ2] = [LD−2] by setting κ0 = α′(D−2)/4.
In this way, we have absorbed the dimensionless coupling constant κ/α′(D−2)/4

into the average value of the dilaton field, e.g. its vacuum expectation value.
This means that the strength of the string interaction is not a free parameter
but determined by the dynamics, which for instance might provide an effective
potential for the dilaton. Again we see that different backgrounds (distinguished
by the value of 〈Φ〉) describe the same theory, only at different coupling strength.
As a result, there are no dimensionless parameters in string theory. The only
free parameter is the Regge slope α′ which sets the string scale and thus provides
dimensionalities.

Spacetime actions. At first sight it is intriguing that the background condi-
tions (3.89) can be obtained from a variational principle. They are the equations
of motion for the “spacetime action”

Sstring = 1
2κ2

0

∫
dDx

√
− detG·· e−2Φ

[
−D−26

3α′/2
+ R(G) + 4(∂µΦ)(∂µΦ)

− 1
12
HµνρHµνρ + O(α′)

] (3.95)

for the massless closed-string background fields, where X has been degraded to
a coordinate x.

Exercise 3.10 Derive the background field equations (3.89) with (3.88) by ex-
tremizing the action (3.95). Hint: It is convenient to consider the combination

βΦ− 1
4
GµνβG

µν = D−26
6
−α′∇µ∂µΦ+α′(∂µΦ)(∂µΦ)+ α′

48
HµνρHµνρ− α′

4
R(G)+ . . . .

(3.96)
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For H=0 and Φ=Φ0 in D=26 this action coincides with the effective action
Seff[Gµν ] of (3.74). This nontrivial match between strings coupling to a back-
ground (or external potential) and strings interacting with one another is further
evidence that the background itself is made of string!

For a non-constant dilaton, (3.95) differs from the standard Einstein-Hilbert
form by a conformal field redefinition

G̃µν(x) = eΩ(x)Gµν(x) (3.97)

with a suitable function Ω. One refers to Gµν as the string metric and to G̃µν as
the Einstein metric.

Exercise 3.11 Employ the formula

R(G̃) = e−Ω
[
R(G) − (D−1)∇µ∂µΩ − 1

4
(D−1)(D−2)(∂µΩ)(∂µΩ)

]
(3.98)

with the choice Ω = 4
D−2

(Φ0−Φ) =: −4
D−2

Φ̃ to compute SEH[G̃µν ] = Sstring[Gµν(G̃)].

Using (3.94) the result of this spacetime Weyl transformation is

SEH = 1
2κ2

∫
dDx

√
− det G̃··

[
−D−26

3α′/2
e

4
D−2

eΦ + R(G̃) + 4
D−2

(∂̃µΦ̃)(∂µΦ̃)

− 1
12

e−
8

D−2
eΦ H̃µνρHµνρ + O(α′)

]
,

(3.99)

where the tildes serve to remind us that indices have been raised with G̃µν . It is
noteworthy that the non-minimal coupling of the dilaton violates the equivalence
principle. To remain phenomenologically viable, higher-order effects must (and
do!) provide a dilaton mass, thus keeping this violation under control.

Finally, the average value of the dilaton appears in (3.95) just in the overall
factor e−2Φ, which is precisely the correct form required for a tree-level amplitudes
(g=0 for the sphere topology). We therefore expect eventual contributions from
other worldsheet topologies to the spacetime action to come with a factor of e−χΦ.
Since in (3.99) the role of ~ is played by κ2, the closed-string loop expansion (in
powers of κ2) is indeed the topological one (in powers of e2Φ0).

Open-string backgrounds. The previous considerations can be extended to
open strings, by allowing for a photon background degree of freedom Aµ(X), via
adding to the Polyakov action the term

∫

∂Σ

dτ Aµ(X) ∂τX
µ . (3.100)

As an open-string excitation, the gauge boson Aµ is attached to the worldsheet
boundary.8 Generalizing (3.92) and (3.93) to worldsheets with boundaries, the

8For gluons we should instead consider the Wilson loop P e−S .
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geodesic curvature of ∂Σ also contributes to the dilaton coupling, which we sub-
sume in the bulk term − 1

4π

∫
Σ

√
−hRΦ. Evident is the spacetime gauge transfor-

mation and field strength, namely

δAµ(X) = ∂µλ(X) and Fµν = ∂µAν − ∂νAµ . (3.101)

Note that a full massless background (G,B,Φ, A) is attributed to a theory of
both open and closed strings. The worldsheet equation of motion (2.18) and the
Neumann boundary conditions (2.42) in such a case generalize to

{[
Gµν∂α + Γµνλ(∂αX

λ)
]√
−hhαβ + 1

2
Hµνλ(∂αX

λ) ǫαβ
}
∂βX

ν = 0 , (3.102)

[
∂nX

µ + Bµ
ν∂tX

ν
]∣∣

σ=0,π
= 0 , (3.103)

respectively, where Γµ
νλ are the Christoffel symbols for the metric G,

∂n = nα

√
−hhαβ ∂β and ∂t = nα ǫ

αβ ∂β (3.104)

denote the worldsheet derivatives normal and tangent to the boundary, and

Bµν = Bµν + 2πα′ Fµν (3.105)

is a combination invariant under

δBµν = ∂µζν − ∂νζµ and δAµ = − 1
2πα′ ζµ , (3.106)

which generalizes the gauge transformation (3.83) for worldsheets with bound-
aries. Similarly, in the conformal gauge, the Γ and H terms in (3.102) combine
to the generalized connections Γ± 1

2
H . It is noteworthy that the boundary con-

dition (3.103) interpolates between Neumann and Dirichlet.

Brane actions. Interestingly, when gradient-expanding the photon beta func-
tion βA

µ (F ), the leading term can be computed to all orders in α′,

βA
µ = (∇νB λ

µ )
[
G−B2

]−1

λν
+ 1

2
BµνH

νλρ
[ B

G−B2

]
λρ

+ 1
2
(∇νΦ)Bµν +O(∇2) (3.107)

which involves B and A only in the combinations H and B. Thus for slowly-
varying fields, the vanishing of βA

µ is the equation of motion for the spacetime
action

SDBI = −TD−1

∫
dDx e−Φ

√
− det(G·· + B··)

= −TD−1
κ0

κ

∫
dDx e

D+2
D−2

eΦ

√
− det(G̃·· + e−

4
D−2

eΦB··) ,

(3.108)
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known as the Dirac-Born-Infeld action. TD−1 is the tension of the space-filling
(D−1)-brane. This action is also appropriate for branes of lower space dimension
p < D−1. One simply substitutes for G and B the fields induced on the p-
brane via the embedding of the brane worldvolume into the ambient spacetime,
integrates over the worldvolume and multiplies with the brane tension Tp.

Expanding the square root for B ≪ G and abbreviating GµρBρν =: Mµ
ν ,

SDBI = TD−1

∫
dDx e−Φ

√
− detG··

[
−1 + 1

4
trM2 + 1

8
trM4 − 1

32
(trM2)2 + . . .

]

(3.109)
since odd powers of M trace to zero. For purely open-string (abelian) back-
grounds (G,Φ,B) = (η,Φ0, 2πα

′F ), this spacetime action precisely matches with
the effective action (3.56) in the abelian case (F 3=0), after a rescaling of the
fields and identification of the couplings.

Exercise 3.12 Vary the purely open-string spacetime action

S0
DBI = −TD−1

κ0

κ

∫
dDx

√
− det(1 + 2πα′F··) (3.110)

with respect to the gauge potential. You should arrive at

δS0
DBI

δAµ
∼

[
1− (2πα′F )2

]−1

µν

(
∂ρF λ

µ

) [
1− (2πα′F )2

]−1

λρ
. (3.111)

For a common theory of closed and open strings, one expects the total space-
time action to be the sum of Sstring and SDBI. The Dirac-Born-Infeld term
then modifies the closed-string spacetime equations of motion, because the gauge
field Aµ acts as a source for the closed-string fields. However, such a modification
of the closed-string beta functions cannot arise from a tree-level worldsheet com-
putation, because these beta functions do not get altered by worldsheet boundary
effects. Therefore, the influence of the open string on the closed-string beta func-
tions must be a string loop effect, i.e. due to divergences of the string sigma model
on higher topologies in the string loop expansion. Indeed, the prefactors

e−2Φ ∼ κ−2 and e−Φ ∼ κ−1 (3.112)

of Sstring and SDBI, respectively, already reflect the different topologies of the
relevant leading worldsheets, namely the sphere (χ=2) versus the disk (χ=1).

By investigating the divergences from a small handle and from the sphere
with a shrinking hole, one may in fact reproduce the expected modifications:
The metric beta function, for example, picks up a cosmological constant and
a photon energy-momentum tensor, to leading order in α′. The Weyl anomaly
created by such a background shift just cancels the one stemming from the world-
sheet topological fluctuations. Thus, a consistent string sigma model requires the
topological expansion.
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Tachyon potential. So far we have ignored the presence of the open- and
closed-string tachyons among the background fields. Since the tachyons couple
to the worldsheet volume and boundary perimeter via∫

Σ

d2ξ
√
−h Tcl(X) and

∫

∂Σ

dτ Top(X) , (3.113)

respectively, they violate the conformal invariance of the string sigma model but
represent a relevant perturbation of it. String-field computations yield a potential
for the open-string tachyon which is consistent with the decay of the ground state
(the space-filling brane) into a new vacuum devoid of open-string excitations!

Open-Closed String Interactions

Higher topologies. The possible worldsheet topologies are realized by Rie-
mann surfaces, oriented or not, with or without boundaries, and with marked
points in the interior and/or on the boundaries. The oriented surfaces without
boundary are fully classified by the Euler number χ = 2−2g where the genus g
counts the number of handles. The simplest ones are the sphere S2 (g=0) and the
torus T2 (g=1). Cutting a hole (window) into such a surface produces a bound-
ary and lowers the Euler number by one unit. To generate an unoriented surface,
one replaces at least one boundary component with a cross-cap, meaning that
one identifies antipodal points along the boundary component, which eliminates
it. The Euler number of a surface with g handles, b boundary components and
c cross caps becomes

χ = 2 − 2g − b − c . (3.114)

Combining the attributes closed/open and oriented/unoriented we have four
types of string theories, with different topological expansions, because open-string
legs require b 6= 0 and oriented strings need c = 0. For Euler numbers 2, 1 and
0, the following table emerges:

string type χ: 2 1 0
closed oriented S2 D2 T2, C2

open oriented D2 C2

closed unoriented S2 D2, P2 T2, C2, M2, K2

open unoriented D2 C2, M2

with the surfaces

name symbol g b c
sphere S2 0 0 0
disk D2 0 1 0
projective plane P2 0 0 1
torus T2 1 0 0
cylinder=annulus C2 0 2 0
Möbius strip M2 0 1 1
Klein bottle K2 0 0 2
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Note that by admitting holes in closed-string topologies we allow closed strings to
form open-string intermediate states. Excluding this possibility eliminates D2,
C2 and M2 from the closed-string topologies in the table above. In contrast,
open strings always give rise to intermediate closed strings at the loop level by a
suitable choice of the temporal slices of the worldsheets.

Exercise 3.13 Write down simplicial decompositions of all above surfaces with
the appropriate edge identifications and convince yourself that the list is complete
for χ ≥ 0.

Open-closed string coupling. In addition to the fundamental closed-string
and open-string cubic couplings κ and g (not to be confused with the genus),
mixed scattering amplitudes introduce a third basic coupling λ of one closed
with two open strings, stemming from the disk with one bulk and two boundary
vertex operators inserted. The breaking up of a closed string into an open one
is therefore weighted with λ/g. The three string vertices are displayed above.
Unitarity considerations relate those three coupling. First, look at the four-point
amplitude with two open and two closed strings in leading topology, i.e. on the
disk. Depending on the channel, the intermediate state is an open or a closed
string. The respective decompositions into two cubic interactions connected by
the intermediate string are depicted below; equating the corresponding weights
yields λκ ∼ λ2. Second, study the four-point open-string amplitude in subleading

λκ = λ
2
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= g4λ2

topology, i.e. on the cylinder, with two open-string legs attached to either bound-
ary component. As shown above, the string diagram can be viewed in two ways,
either as two open strings joining to form a closed string and breaking again into
two open strings (a tree-level configuration), or else as two open strings scatter-
ing via exchanging two open strings (a one-loop configuration!) with a couple of
twists put in (a nonplanar diagram). This diagram is the prototype for demon-
strating that closed-string channels necessarily appear on the one-loop level in
open-string theories. Unitarity here dictates λ2 ∼ g4. Hence together, putting in
the dimensions for space-filling branes we have (up to numerical coefficients)

λ = κ and κ = α′ 6−D
4 g2 . (3.115)

The first relation underscores the universality of gravity (everything couples to
closed strings with the same strength), while the second relation connects the
gauge to the gravitational coupling, another surprise of string theory!

3.3 Loop Amplitudes

...
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