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PLAN

Quantum theory is defined as a unitary irreducible representation of the algebra of observables.

Geometric quantization gives a way to realize this, elucidating the role of the geometry and

topology of the phase space.

Classical phase space dynamics

Pre-quantum Hilbert space, operators, polarization

Role of topology: H1(M,R), H2(M,R)

Quantizing S2

Configuration space for gauge fields

Chern-Simons theory

θ-vacua in gauge theories

WZW action and the Dirac determinant

Hamiltonian Analysis of Yang-Mills (2+1)
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THE SYMPLECTIC STRUCTURE

Phase space = A smooth even dimensional manifold M endowed with a symplectic structure Ω

Ω is a differential 2-form on M which is closed and nondegenerate.

Closed: dΩ = 0

Nondegenerate: For any vector field ξ on M, iξΩ = 0 ⇒ ξ = 0

Ω = 1
2 Ωµνdqµ ∧ dqν

The condition dΩ = 0 becomes

dΩ =
∂Ωµν

∂qα
dqα ∧ dqµ ∧ dqν

=
1
3

»
∂Ωµν

∂qα
+
∂Ωαµ

∂qν
+
∂Ωνα

∂qµ

–
dqα ∧ dqµ ∧ dqν

= 0

Interior contraction with ξ = ξµ(∂/∂qµ) is

iξΩ = ξµΩµνdqν

iξΩ = 0⇒ ξ = 0 ≡ ξµΩµν = 0⇒ ξµ = 0 ;⇐⇒ Ω is nondegenerate as a matrix
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THE SYMPLECTIC STRUCTURE (CONT’D.)

Inverse of Ω can be defined by

Ωµν Ωνα = δαµ

(If Ω has zero modes, one has gauge symmetries.)

Since dΩ = 0, we can write

Ω = dA Ωµν =
∂

∂qµ
Aν −

∂

∂qν
Aµ

What are the qualifications to this statement?

If there are noncontractible 2d-surfaces Σ such thatZ
Σ

Ω 6= 0

thenA cannot exist globally. (Equivalent toH2(M) 6= 0; e.g. CS, WZW theories)

Even ifH2(M) = 0, one can have inequivalentA’s. For example,A andA+ A give

same Ω if dA = 0.

I Evidently A = dΛ is one possibility (Canonical transformations)

I One can have A 6= dΛ with dA = 0⇐⇒H1(M) 6= 0 (e.g. θ-vacua)
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CANONICAL TRANSFORMATIONS

Transformations of (phase space) coordinates which preserve Ω are canonical

transformations.

For infinitesimal transformations, qµ → qµ + ξµ, change in Ω is

δΩ =

»
1
2 Ωµν(q + ξ)d(qµ + ξµ) ∧ d(qν + ξν)− 1

2 Ωµν(q)dqµ ∧ dqν
–
≡ LξΩ

= d(iξΩ) + iξdΩ = d(iξΩ)

= 0

The solution is iξΩ = −df (ifH1(M) = 0).

Conversely, for any function f , one can define ξµ = Ωµν∂ν f . =⇒ LξΩ = 0.

This leads to

Functions on M ⇐⇒ Vector fields which preserve Ω

Generating function of canonical transformation Hamiltonian vector fields
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CANONICAL TRANSFORMATIONS (CONT’D.)

If ξ and η preserve Ω, so does their Lie commutator

[ξ, η]µ = ξν∂νη
µ − ην∂νξµ

If ξ ↔ f and η ↔ g, then there is a function corresponding to [ξ, η]; this is called the

Poisson bracket −{f , g} and is defined by

{f , g} = iξiηΩ = ηµξνΩµν = −iξdg = iηdf = Ωµν∂µf∂νg

The Poisson bracket obeys

{f , g} = − {g, f}

{f , {g, h}}+ {h, {f , g}}+ {g, {h, f}} = 0

Poisson brackets are important because the change in a function on phase space due to a

canonical transformation is

δF = ξµ∂µF = {F, f}
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CANONICAL TRANSFORMATIONS (CONT’D.)

The change in the canonical 1-form is given by

δA = LξA = d(iξA− f ) = dΛ

Classical dynamics is given by

Ωµν
∂qν

∂t
=

∂H
∂qµ

This can be obtained from an action

S =

Z tf

ti

dt
„
Aµ

dqµ

dt
− H

«
Variation of the action gives

δS = iξA(tf )− iξA(ti) +

Z
dt
„

Ωµν
dqν

dt
−
∂H
∂qµ

«
ξµ

Given the action, the boundary term in its variation can be used to identifyA and, hence,

Ω.
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QUANTIZATION

Quantum Theory = Unitary Irreducible Representation of the Algebra of Observables

The problem of quantization is: How do we realize this explicitly?

Canonical transformations⇐⇒ Unitary transformations

(Poisson bracket) classical algebra of observables⇐⇒ Commutator algebra of

operators

Ensure irreducibility

Geometric quantization provides a way to do this

STRATEGY:

1. Define pre-quantum wave functions and pre-quantum operators

2. Impose a polarization to achieve irreducibility
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QUANTIZATION (CONT’D.)

Since canonical transformations areA → A+ dΛ, we consider wave functions to have the

property

Ψ(q)→ eiΛ Ψ(q), A → A+ dΛ

Ψ depends on all phase space coordinates. They are analogous to fields coupled to a U(1)

gauge fieldA. (They are sections of a line bundle on M with curvature Ω.)

The Ψ’s are pre-quantum wave functions and form a (pre-quantum) Hilbert space with the

inner product

(1|2) =

Z
dσ(M) Ψ∗1 Ψ2

dσ(M) = Ω ∧ Ω · · · ∧ Ω ∼ det(Ω) d2nq.

How does Ψ change under qµ → qµ + ξµ? Under such a change,A → A+ iξA− f , so that

δΨ = ξµ∂µΨ − i( iξA− f )Ψ

= ξµ (∂µ − iAµ) Ψ + i f Ψ = (ξµDµ + i f ) Ψ

The first term gives change of Ψ as a function, the second compensates for the change ofA.
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QUANTIZATION (CONT’D.)

Define the pre-quantum operator corresponding to f as

P(f ) = −i(ξ · D + if )

In terms of Hamiltonian vector fields, f ↔ ξ, g↔ η, {f , g} ↔ −[ξ, η]; this gives

[P(f ),P(g)] = [−iξ · D + f ,−iη · D + g]

= − [ξµDµ, ηνDν ]− iξµ[Dµ, g] + iηµ[Dµ, f ]

= iξµηνΩµν − (ξµ∂µη
ν)Dν + (ηµ∂µξ

ν)Dν − iξµ∂µg + iηµ∂µf

= i (−ξµηνΩµν + i[ξ, η] · D)

= i
`
−i (i[η,ξ]D) + {f , g}

´
= iP({f , g})

The pre-quantum operators form a representation of the Poisson bracket algebra of

functions on the phase space, with [A,B] ∼ i{A,B}.
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QUANTIZATION (CONT’D.)

We get a representation, but this is reducible in general, since Ψ depends on all phase

space variables.

Illustrate by example: Point-particle in one space dimension

Ω = dp ∧ dx, A = pdx

Hamiltonian vector fields and pre-quantum operators for q and p are

x↔ −
∂

∂p
, p↔

∂

∂x

P(x) = i
∂

∂p
+ x, P(p) = −i

„
∂

∂x
− ip

«
+ p = −i

∂

∂x

[P(x),P(p)] = i, so that we have a representation of the Poisson bracket algebra.

Consider a subset of wave functions obeying

∂Ψ

∂p
= 0

In this case, P(x) = x, P(p) = −i ∂
∂x , which still obey [P(x),P(p)] = i.

We have a representation on a subspace =⇒ previous representation is reducible.
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QUANTIZATION (CONT’D.)

Choose subsidiary conditions on Ψ which restrict its dependence to half the number of

variables (Choice of polarization).

Choose n vector fields Pi = Pµi (∂/∂qµ), obeying

ΩµνPµi Pνj = 0

and impose

Pµi DµΨ = 0

The vectors Pi define the polarization. The restricted wave functions are the true wave

functions of the theory.

Inner product on the true wave functions? Generally difficult, no natural volume measure

on restricted subspace of phase space.

One case where this is possible: M is a Kähler space, Ω is the Kähler form.
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QUANTIZATION (CONT’D.)

For a Kähler space,

Ω = Ωāadxa ∧ dx̄ā =
i
2
∂a∂āK dxa ∧ dx̄ā = dA

Aa = −
i
2
∂aK, Aā =

i
2
∂āK

Metric gāa = ∂a∂āK

Since Ωab = 0, choose the (holomorphic or Bargmann) polarization condition

DāΨ =
“
∂ā + 1

2∂āK
”

Ψ = 0

Ψ = exp(− 1
2 K) F

F is holomorphic, with ∂āF = 0.

The inner product is

〈1|2〉 =

Z
dσ(M) e−K F∗1 F2

Operator = Pre-quantum operator subject to polarization if it preserves polarization;

otherwise construct matrix element directly.
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TOPOLOGICAL FEATURES: H1(M,R)

ConsiderA andA+ A which lead to same Ω,

dA = Ω, d(A+ A) = Ω =⇒ dA = 0

A = dΛ =⇒ remove it by canonical (unitary) transformation, Ψ =⇒ eiΛΨ.

We can have dA = 0 with A 6= dΛ; this meansH1(M,R) 6= 0.

We can try Ψ = exp
`
i
R q

0 A
´

Φ.

0

q

C

C′

0

q

C

C′

The path-dependence of the phase factor:R
C A−

R
C′ A =

H
A =

R
S dA = 0

If the path C− C′ is noncontractible with no surface S whose boundary is C− C′,

then
H

A can be nonzero.
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TOPOLOGICAL FEATURES: H1(M,R)

Using Ψ = exp
`
i
R q

0 A
´

Φ eliminates A but Φ need not be single-valued.

Let A = θα where θ is a constant and
R
α = 1 for a single traversal of the basic

noncontractible path corresponding to C− C′ (once around the red dot).

Then for n traversals of the path,
H

A = θn.

We can eliminate A and use Φ; but Φ is not single-valued and changes by exp(iθn) going

around the noncontractible path n times.

We have an extra constant θ required to define the quantum theory.

Examples:

Fractional statistics in two spatial dimensions

Theta vacua in quantum chromodynamics
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TOPOLOGICAL FEATURES: H2(M,R)

This occurs when we have closed 2-forms which are not exact; i.e., dΩ = 0, but Ω 6= dA for

any globally definedA.

Correspondingly, there are two-surfaces which are closed but are not boundaries of any

3-volumes

If Ω = dA, withAwell-defined globally, for a closed surface Σ,Z
Σ

Ω =

Z
∂Σ
A = 0

If Ω 6= dA, the integral of Ω over a closed noncontractible 2-surface can be nonzero.

I(Σ) =

Z
Σ

Ω

I(Σ)− I(Σ′) =

Z
Σ−Σ′

Ω =

Z
V

dΩ = 0

The integral of Ω over any closed two-surface is a topological invariant, invariant under

small deformations of the surface.

If Σ is contractible, deform Σ to zero =⇒
R
Σ Ω = 0.

Otherwise, I(Σ) can be nonzero.
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TOPOLOGICAL FEATURES: H2(M,R)

Example of Σ as a two-sphere:

Cover the surface with two patches, a northern hemisphere and a southern

hemisphere, with Ω = dAN and Ω = dAS on corresponding patches

On the overlap region, the equator E,

AN = AS + dΛ

ΨN = exp(iΛ) ΨS

∆Λ =

I
E

dΛ =

Z
E
AN −AS =

Z
∂N
AN +

Z
∂S
AS =

Z
N

Ω +

Z
S

Ω =

Z
Σ

Ω

Λ is not single-valued on the equator; but Ψ must be. Thus exp(i∆Λ) = 1, or

Z
Σ

Ω = 2πn, (Dirac; Generalized Bohr−Sommerfeld condition)

Examples of this are:

Charged particle in a magnetic monopole background

Chern-Simons and WZW theories
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SUMMARIZING QUANTIZATION

We will consider quantization with the holomorphic polarization.

A phase space which is also Kähler; the symplectic two-form must be a multiple of the

Kähler form.

The polarization condition is chosen as Dā Ψ = 0.

The inner product of the prequantum Hilbert space = Square integrability on the phase

space⇒ Inner product on the true Hilbert space in the holomorphic polarization.

f (q) which preserves the polarization⇒ Prequantum operator P(f ) restricted to the true

(polarized) wave functions.

For observables which do not preserve the polarization, one has to construct infinitesimal

unitary transformations whose classical limits are the required canonical transformations.

If the phase space M has noncontractible two-surfaces, then the integral of Ω over any of

these surfaces must be quantized in units of 2π.

IfH1(M,R) is not zero, then there are inequivalentA’s for the same Ω and we need extra

angular parameters to specify the quantum theory completely.
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QUANTIZING THE TWO-SPHERE

Take the phase space as the two-sphere S2 ∼ CP1 ∼ SU(2)/U(1).

This is a Kähler manifold; basic parameters are:

Coordinates z = x + iy, z̄ = x− iy

Kähler two-form ω = i dz ∧ dz̄/(1 + zz̄)2

Metric ds2 = dz dz̄/(1 + zz̄)2

Riemannian curvature R1 2 = 4 dx ∧ dy/(1 + zz̄)2

Euler number χ =
R

(R12/2π) = 2

S2 has nontrivialH2(S2,R) given by ω.

The symplectic two-form is taken as

Ω = n ω = i n
dz ∧ dz̄

(1 + zz̄)2

where n is an integer, in agreement with Dirac-Bohr-Sommerfeld condition.
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QUANTIZING THE TWO-SPHERE (CONT’D.)

The symplectic potential is

A =
in
2

»
z dz̄− z̄ dz
(1 + zz̄)

–
=

i
2
∂z̄K dz̄−

i
2
∂zK dz

K = n log(1 + zz̄)

Choose the polarization condition as

(∂z̄ − iAz̄) Ψ =

»
∂z̄ +

n
2

z
1 + zz̄

–
Ψ = 0

This has the solution

Ψ = exp
„
−

n
2

log(1 + zz̄)

«
f (z)

with the inner product

〈1|2〉 = i(n + 1)

Z
dz ∧ dz̄

2π(1 + zz̄)n+2
f1∗f2

Normalizable states correspond to linear combinations of f (z) = 1, z, z2, · · · , zn;

dimension of Hilbert space = n + 1. (Inner product normalized so that Tr(1) = n + 1.)
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QUANTIZING THE TWO-SPHERE (CONT’D.)

There are three independent vector fields on S2 which preserve the metric and ω

(Hamiltonian vector fields).

Vector field Function on phase space

ξ+ = i
„
∂

∂z̄
+ z2 ∂

∂z

«
J+ = −n

z
1 + zz̄

ξ− = i
„
∂

∂z
+ z̄2 ∂

∂z̄

«
J− = −n

z̄
1 + zz̄

ξ3 = i
„

z
∂

∂z
− z̄

∂

∂z̄

«
J3 = −

n
2

„
1− zz̄
1 + zz̄

«
Check one case:

iξ+Ω = i(∂z̄ + z2∂z) c in
dz ∧ dz̄

(1 + zz̄)2

= −n
»
−

dz
(1 + zz̄)2

+
z2dz̄

(1 + zz̄)2

–
= −d

»
−

nz
(1 + zz̄)

–
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QUANTIZING THE TWO-SPHERE (CONT’D.)

The pre-quantum operators are

P(J+) =

„
z2∂z −

n z
2

2 + zz̄
1 + zz̄

«
− iξz̄

+Dz̄

P(J−) =

„
−∂z −

n
2

z̄
1 + zz̄

«
− iξz̄
−Dz̄

P(J3) =

„
z∂z −

n
2

1
1 + zz̄

«
− iξz̄

3Dz̄

On the polarized wave functions, Dz̄Ψ = 0, giving the quantum operators acting on f (z),

Ĵ+ = z2∂z − n z

Ĵ− = −∂z

Ĵ3 = z∂z − 1
2 n

These obey SU(2) algebra.

The full Hilbert space corresponds to one UIR of SU(2) with j = n/2.
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QUANTIZING THE TWO-SPHERE (CONT’D.)

The form of the action is

S =

Z
dtAµ

dqµ

dt
= i

n
2

Z
dt

z ˙̄z− z̄ż
1 + zz̄

= i
n
2

Z
dt Tr(σ3 g−1ġ)

g ∈ SU(2); explicitly

g =
1

√
1 + zz̄

264 1 z

−z̄ 1

375
264eiθ 0

0 e−iθ

375
More generally, one can take, for g ∈ G,

S = i
X

a
wa

Z
dt Tr( ta g−1ġ), A(g) = i

X
a

waTr(tag−1dg)

Weights of a UIR Diagonal Generators

Ω on G/H, H = maximal subgroup of G commuting with
P

a wata.

Hilbert space will give one UIR of G, highest weights given by wa
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CONFIGURATION SPACE FOR GAUGE FIELDS

Analyze topology and geometry of the space of gauge fields in a Hamiltonian description

Choose A0 = 0 gauge; we are then left with the spatial components Ai(x) which are

Lie-algebra-valued vector fields on space.

A gauge transformation acts on Ai as Ai → Ag
i = g−1Aig + g−1∂ig, g ∈ G.

Define

Ã ≡ {Set of all gauge potentials Ai}

≡ {Set of all Lie− algebra− valued vector fields on space Rd}

G ≡ {Set of all g(~x) : Rd → G, such that g(~x) −→ constant ∈ G as |~x| −→ ∞}

G∗ ≡ {Set of all g(~x) : Rd → G, such that g(~x) −→ 1 as |~x| −→ ∞}

Evidently G/G∗ = G. This acts as a Noether symmetry classifying charged states in the

theory.

G∗ is the true gauge symmetry, with Ai and Ag
i physically equivalent for g(x) ∈ G∗.
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CONFIGURATION SPACE FOR GAUGE FIELDS (CONT’D.)

The physical configuration space is C = Ã/G∗

Consider 2 + 1 dimensions

Π2(C) = Π1(G∗) = Π3(G) =

8><>: Z All compact G 6= SO(4)

Z× Z G = SO(4)

How does this arise?

An element of G∗ is g(~x) with g→ 1 at spatial infinity⇒ Π0(G∗) = Π2(G) = 0.

For connectivity, examine closed paths starting and ending at g(~x) = 1. Such a path

is given by g(~x, λ); 0 ≤ λ ≤ 1 parametrizes path, with g(~x, 0) = g(~x, 1) = 1.

g(~x, λ) : R3 → G with g→ 1 at the ‘boundary’. This is equivalent to a map from S3

to G, classified by Π3(G).

There are noncontractible two-surfaces in C and hence in the phase space.

Gauge theories in 2 + 1 dimensions haveH2(M,R) 6= 0; they can

show Dirac quantization conditions (depending on choice of Ω)
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CONFIGURATION SPACE FOR GAUGE FIELDS (CONT’D.)

Consider 3 + 1 dimensions

Π1(C) = Π0(G∗) = Π3(G) =

8><>: Z All compact simple G 6= SO(4)

Z× Z G = SO(4)

How does this arise? Similar reasoning as for 2 + 1 dimensions

There are noncontractible paths in C and hence in phase space.

The phase space is multiply connected with connectivity given by Z (or Z× Z for SO(4)).

Gauge theories in 3+1 dimensions haveH1(M,R) 6= 0; the quan-

tum theory will require additional vacuum angles (θ-vacua) to

characterize it.
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THE CHERN-SIMONS THEORY IN 2+1 DIMENSIONS

The action is given by

S = −
k

4π

Z
Σ×[ti,tf ]

Tr
»

A ∧ dA +
2
3

A ∧ A ∧ A
–

= −
k

4π

Z
Σ×[ti,tf ]

d3x εµνα Tr
»

Aµ∂νAα +
2
3

AµAνAα
–

Σ is usually taken as a Riemann surface.

Choose A0 = 0 as a gauge condition; then

S = −
ik
π

Z
dtdµΣ Tr(Az̄∂0Az) =⇒ A = −

ik
π

Z
Σ

Tr
`
Az̄δAz

´
+ δρ[A]

The symplectic two-form is

Ω = −
ik
π

Z
Σ

dµΣ Tr
`
δAz̄δAz

´
=

ik
2π

Z
Σ

dµΣ δAa
z̄δAa

z

The space of 2-d gauge potentials is Kähler with the Kähler potential

K =
k

2π

Z
Σ

Aa
z̄Aa

z
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THE CHERN-SIMONS THEORY IN 2+1 DIMENSIONS (CONT’D.)

(Time-independent) gauge transformations act on the potentials as

Ag = gAg−1 − dgg−1 ≈ A− Dθ infinitesimally

The infinitesimal transformations are generated by the vector field

ξ = −
Z

Σ

`
(Dzθ)

a δ

δAa
z

+ (Dz̄θ)
a δ

δAa
z̄

´
Acting on Ω we get

iξΩ = −
Z `

(Dzθ)
a δ

δAa
z

+ (Dz̄θ)
a δ

δAa
z̄

´
c

ik
2π

Z
Σ

dµΣ δAa
z̄δAa

z

= −
ik
2π

Z ˆ
((D̄θ)aδAa

z − (Dθ)aδAa
z̄
˜

=
ik
2π

Z
θa(D̄δAz − DδAz̄)

a

=
ik
2π

Z
θaδFa

z̄z = −δ
»Z

θa ik
2π

Fa
z̄z

–
The generator of gauge transformations is

Ga =
ik
2π

Fa
z̄z

This has to vanish on wave functions, GaΨ = 0.
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THE CHERN-SIMONS THEORY IN 2+1 DIMENSIONS (CONT’D.)

The prequantum wave functions have the inner product

(1|2) =

Z
dµ(Az,Az̄) Ψ∗1 [Az,Az̄] Ψ2[Az,Az̄]

The symplectic potential is

A = −
ik
2π

Z
Σ

Tr
`
Az̄δAz − AzδAz̄

´
=

ik
4π

Z
Σ

`
Aa

z̄δAa
z − Aa

zδAa
z̄
´

The covariant derivatives withA as the potential are

∇ =
δ

δAa
z

+
k

4π
Aa

z̄, ∇ =
δ

δAa
z̄
−

k
4π

Aa
z

The Bargmann polarization condition is∇ Ψ = 0, with the solution

Ψ = exp
„
−

k
4π

Z
Aa

z̄Aa
z

«
ψ[Aa

z̄] = e−
1
2 K

ψ[Aa
z̄]

ψ’s are antiholomorphic, depend only on Az̄’s.
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THE CHERN-SIMONS THEORY IN 2+1 DIMENSIONS (CONT’D.)

The inner product is now

˙
1|2
¸

=

Z
[dAa

z̄dAa
z] e−K(Aa

z̄,A
a
z) ψ∗1 ψ2

On the (anti)holomorphic wave functionals ψ’s

Aa
z ψ[Aa

z̄] =
2π
k

δ

δAa
z̄
ψ[Aa

z̄]

and the condition of GaΨ = 0 becomes„
Dz̄

δ

δAa
z̄
−

k
2π
∂zAa

z̄

«
ψ[Aa

z̄] = 0.

Construct a noncontracible two-surface in the configuration space. Start with the loop of

gauge transformations

C = g(x, λ), 0 ≤ λ ≤ 1, g(x, 0) = g(x, 1) = 1

A(x, λ, σ) = (gAg−1 − dgg−1) σ + (1− σ)A

where 0 ≤ σ ≤ 1.
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THE CHERN-SIMONS THEORY IN 2+1 DIMENSIONS (CONT’D.)

For simplicity, take the starting point as A = 0 to get

A(x, λ, σ) = − dg g−1 σ

δA(x, λ, σ) = g d(g−1δg) g−1σ + dg g−1dσ

The integral of Ω over this surface isZ
Ω =

k
4π

Z
Tr(δA ∧ δA)

=
k

4π
2
Z

Tr
ˆ
d(g−1δg)g−1dg

˜ Z
σdσ

= −2π k Q[g]

Q[g] =
1

24π2

Z
Tr(dgg−1)3

Q[g] = Winding number of the map g : S3 → G ∈ Z

Dirac condition =⇒ k must be an integer.
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θ-VACUA IN 3+1 DIMENSIONS

Start with the Yang-Mills action and choose A0 = 0,

S =
1
4

Z
d4x Fa

µνFaµν =
1
2

Z
d4x ∂0Aa

i ∂0Aa
i + · · ·

Ea
i

The symplectic potential isA =
R

d3x Ea
i δAa

i and

Ω =

Z
d3x δEa

i δAa
i = − 2

Z
d3x Tr (δEi δAi)

The condition of gauge invariance (under g ≈ 1 + ϕ) is the Gauss law given by

G(ϕ)Ψ =

Z
d3x ϕa(DiEi)

a Ψ = 0

An element of G∗ is a map g(x) : R3 → G with the condition g→ 1 at spatial infinity. These

are equivalent to maps S3 → G and are characterized by the winding number Q[g].

G∗ =

+∞X
Q=−∞

⊕G∗Q

This leads to Π1(C) = Z.
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θ-VACUA IN 3+1 DIMENSIONS (CONT’D.)

Construct a one-form on C which is closed but not exact.

K[A] = −
1

4π2

Z
Tr(F ∧ δA) =

1
16π2

Z
d3x εijk Fa

jk δAa
i

Closure: K[A] = δ(SCS/2π), so using δ2 = 0, δK = 0

But K is not exact, even though K = δ(SCS/2π), because SCS is not gauge-invariant.

It is not a function on C.

K[A] is the generating element ofH1(C,R).

An example of the noncontractible loop:

Ai(x, τ) = (gAig−1 − ∂ig g−1)τ + Ai(x)(1− τ), 0 ≤ τ ≤ 1

This is an open path in Ã; the end-points are gauge transforms of each other, so it is closed

in C. If the path is contractible, it is deformable to

Ai(x, τ) = A(x)g(x,τ), g(x, 0) = 1, g(x, 1) = g(x)

g(x, τ) makes g(x) homotopic to g = 1. This is not possible if Q[g] 6= 0.
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θ-VACUA IN 3+1 DIMENSIONS (CONT’D.)

Integrate K along such a curve,I
K[A] =

1
2π

“
SCS[Ag]− SCS[A]

”
= −

1
8π2

Z
Tr(F ∧ F) (Instanton number)

= −
1

32π2

Z
d4x Tr(FµνFαβ)εµναβ

Since δK = 0, we get the same Ω forA andA+ θK.

A =

Z
d3x Ea

i δAa
i + θ K[A]

We need an additional parameter θ to characterize the quantum theory.H
K is an integer, so we can take 0 ≤ θ ≤ 2π.

This is equivalent to using

S = SYM + θ

»
−

1
8π2

Z
Tr(F ∧ F)

–
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THE WESS-ZUMINO-WITTEN THEORY

This is defined by an action functional in 2 Euclidean (or 1 + 1) dimensions,

SWZW =
1

8π

Z
M2

d2x
√

g gab Tr(∂aM ∂bM−1) + Γ[M]

Γ[M] =
i

12π

Z
M3

d3x εµνα Tr(M−1∂µM M−1∂νM M−1∂αM)

=
i

12π

Z
M3

Tr(M−1dM)3

M(x) ∈ GL(N,C) (or suitable subgroups)

Γ[M] = Wess-Zumino term, defined by integration overM3 with ∂M3 =M2.

ManyM3’s with the same boundaryM2 possible≡ Different ways to extend M(x) toM3.

If M and M′ are two different extensions of the same field, then M′ = MN, with N = 1 on

M2,

Γ[MN] = Γ[M] + Γ[N]−
i

4π

Z
M2

d2x εabTr (M−1∂aM ∂bNN−1)| {z }
= 0

N = 1 on ∂M3 =⇒ N is (equivalent to) a map N : S3 → G, classified by Π3(G) (or Q[N]).
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THE WESS-ZUMINO-WITTEN THEORY (CONT’D)

Independence of the extension follows from:

1. Γ[N] = 0 for N ≈ 1 ( to linear order in ∂NN−1).

By successive transformations, Γ[M] is independent of the extension toM3 for all N

connected to identity.

2. If N is homotopically nontrivial, Γ[N] = 2πi Q[N]

(exp(−k Γ[M]) is independent of the extension, if k ∈ Z. So S = k SWZW can be used

as the action for a theory, the WZW theory with level number k.)

In complex coordinates

SWZW =
1

2π

Z
M2

Tr(∂zM∂z̄M−1) + Γ[M]

SWZW [M h] = SWZW [M] + SWZW [h]−
1
π

Z
M2

Tr(M−1∂z̄M ∂zh h−1)

(Polyakov-Wiegmann identity)

Chiral splitting: Antiholomorphic derivative of M, holomorphic derivative of h
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THE WESS-ZUMINO-WITTEN THEORY (CONT’D)

Another important property M −→ M + δM = (1 + θ)M, θ = δM M−1 infinitesimal.

δSWZW = −
1
π

Z
Tr
“
∂z̄(δMM−1)∂zMM−1

”
= −

1
π

Z
Tr(δMM−1∂z̄Az)

= −
1
π

Z
Tr(δMM−1DzC̄)

= −
1
π

Z
Tr(C̄ δAz) =

1
2π

C̄aδAa
z

Az = −∂zMM−1, C̄ = −∂z̄M M−1

DzC̄ = ∂zC̄ + [Az, C̄]

Az and C̄ obey the equation

∂z̄Az − ∂zC̄ + [C̄,Az] = 0, Dz

»
δSWZW

δAz

–
=

1
2π
∂z̄Az

This will be useful for evaluating Dirac determinants.
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THE WESS-ZUMINO-WITTEN THEORY (CONT’D)

If we use M†, we get C rather than C̄.

Dz
δSWZW

δAa
z̄

=
1

2π
∂zAz̄

Comparing with wave function for CS theory,

ψ[Ā] = exp
h

k SWZW(M†)
i

provided we can parametrize a general 2-dimensional gauge field as Az = −∂zM M−1.
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THE DIRAC DETERMINANT IN TWO DIMENSIONS

Massless fermions in irreducible representation R of U(N), coupled to a U(N)-gauge field.

Dirac matrices: σi, i = 1, 2, σiσj + σjσi = 2 δij.

L = ψ̄(D1 + iD2)ψ + χ̄(D1 − iD2)χ = 2ψ̄Dzψ + 2χ̄Dz̄χ

ψ, χ: chiral components of Ψ = (ψ, χ)

A parametrization for gauge potentials

Az = −∂zM M−1 Az̄ = M†−1∂z̄M†

M is a complex matrix. (det M = 1 if gauge group is SU(N).)

For U(1), use elementary result Ai = ∂iθ + εij∂jφ. =⇒M = exp(φ+ i θ).

One can invert ∂z via „
1
∂z

«
xx′

=
1

π(z̄− z̄′)
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THE DIRAC DETERMINANT IN TWO DIMENSIONS (CONT’D)

Write ∂zM = −AzM,

M(x) = 1−
Z

x′

„
1
∂z

«
xx′

Az(x′)M(x′)

= 1−
Z

(∂z)
−1 Az +

Z
(∂z)
−1 Az(∂z)

−1 Az + · · ·

A→ Ag = gAg−1 − dg g−1 =⇒ Mg = gM

Comment: Space not simply connected =⇒ ∃ zero modes for ∂z =⇒ ∃ flat potentials a,

not gauge equivalent to zero.

Example: Torus S1 × S1. Real coordinates ξ1, ξ2, 0 ≤ ξi ≤ 1, with ξ1 = 0 ∼ ξ1 = 1, same

for ξ2.

τ

ξ1

ξ2

z = ξ1 + τξ2, τ = modular parameter
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THE DIRAC DETERMINANT IN TWO DIMENSIONS (CONT’D)

For the torus,the generalized parametrization is

Az = M
»

iπ a
Im τ

–
M−1 − ∂zM M−1

Ambiguity: M and MV(z̄) =⇒ same Az. (Must ensure this does not affect physical results)

For determinant we need regularized version of (Dz)−1

(∂z)
−1
xx′ = G(x, x′) =

1
π(x̄− x̄′)

Dzφ = (∂z − ∂zMM−1)φ = M∂z(M−1φ) =⇒ D−1
z (x, x′) =

M(x)M−1(x′)
π(x̄− x̄′)

Regularized version

D−1
z (x, x′)Reg ≡ G(x, x′) =

Z
d2y

M(x)M−1(y)

π(x̄− ȳ)
σ(x′, y; ε)

σ(x′, y; ε) =
1
πε

exp
„
−
|x′ − y|2

ε

«
=⇒ δ(2)(x− x′)
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THE DIRAC DETERMINANT IN TWO DIMENSIONS (CONT’D)

The computation of the determinant:

Seff ≡ log det Dz = Tr log Dz

δSeff

δAa
z(x)

= Tr
h

D−1
z (x, x′)(−ita)

i
x′→x

= Tr [G(x, x)(−ita)]ε→0

G(x, x) =

Z
d2y

σ(x, y)

π

»
1

(x̄− ȳ)
−M∂zM−1(x)

„
x− y
x̄− ȳ

«
−M∂z̄M−1 + · · ·

–

δSeff =

Z
d2xTr [G(x, x)(−ita)]ε→0 δAa

z(x)

=
1
π

Z
d2x Tr

h
∂z̄MM−1δAz

i
= −

1
π

Z
d2x Tr(C̄ δAz)

Tr(tatb)R = AR Tr(tatb)F, AR = index of the representation R.

δSeff = −
AR

π

Z
d2x Tr(C̄ δAz)F

= AR δSWZW(M)

=⇒ det Dz = det(∂z) exp
ˆ
AR SWZW(M)

˜
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THE DIRAC DETERMINANT IN TWO DIMENSIONS (CONT’D)

Our answer is not gauge-invariant; under M→ g M ≈ (1 + ϕ)M,

δSWZW = −
1
π

Z
d2x Tr(∂z̄Az δg g−1)

This is the two-dimensional gauge anomaly.

The gauge-invariant expression is given by

det(DzDz̄) = det(∂z∂z̄) exp
ˆ
AR SWZW(M†M)

˜
SWZW(M†M) = SWZW(M) + SWZW(M†) +

1
π

Z
d2x Tr(Az̄Az)| {z }

local counterterm

Abelian version: This corresponds to 2-dim. QED (the Schwinger model) =⇒ mass term

for gauge field.

det(DzDz̄) = det(∂z∂z̄) exp

"
−

1
4π

Z
x,y

Fµν(x)G(x− y)Fµν(y)

#

G(x− y) =

Z
d2p

(2π)2

1
p2

exp[ip · (x− y)]

V.P. NAIR Geometric Quantization & Hamiltonians September 6-9, 2009 43 / 58



HAMILTONIAN IN FIELD THEORY

In a Hamiltonian approach, we deal with the Hamiltonian operator and wave functions.

In field theory, these have to be regularized and renormalized.

The wave functional is defined on a time-slice; needs counterterms defined at fixed time,

in addition to the familiar counterterms from the Hamiltonian/action.

For the usual ϕ4-theory, upon integrating modes, of µ1 < k ≤ µ,

Ψ(ϕ) = U
Z

[dχ] Ψ0(χ)∗Ψ(ϕ, χ)

U ' 1− i
3λ(0)

16π2
log(µ2/µ2

1)

Z
d3x (ϕπ + πϕ) + ...

In the Hamiltonian, T and V cannot be independently regularized.

Their regularizations are correlated by Lorentz symmetry.

One has to check the Dirac-Schwinger condition

[T00(x), T00(y)] = i(T0i(x) + T0i(y))∂i
xδ(x− y)

This can be a delicate task.
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YANG-MILLS THEORY IN 2 + 1 DIMENSIONS

An example which illustrates many features of what we discussed is the YM theory in 2 + 1

dimensions.

Why is this theory interesting?

Interesting in its own right

YM(1+1) is exactly solvable, but has no propagating degrees of freedom

YM(3+1) is highly nontrivial and difficult

YM(2+1) has propagating degrees of freedom, it is nontrivial. Can be amenable to a

Hamiltonian analysis.

It has a dimensional coupling constant and is super-renormalizable. This helps to

simplify it.

A real physical context for YM(2+1)

Mass gap of YM(2+1) ≈Magnetic screening mass of YM(3+1) at high temperatures

•We will use a Hamiltonian approach because some exact calculations are possible

Collaborators: DIMITRA KARABALI, CHANJU KIM, ABHISHEK AGARWAL, ALEXANDER YELNIKOV
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HAMILTONIAN ANALYSIS OF YM(2+1)

We choose A0 = 0 and use complex coordinates z = x1 − ix2 with

1
2 (A1 + iA2) = −∂M M−1, 1

2 (A1 − iA2) = M†−1∂̄M†

M ∈ SL(N,C), for gauge group SU(N). (More generally, G⇒ GC.)

Since M→ g M under a gauge transformation, g ∈ SU(N), H = M†M ∈ SL(N,C)/SU(N)

is gauge-invariant.

We first calculate the volume of the gauge-invariant subspace:

δA = −∂(δMM−1) + [∂MM−1, δMM−1]

= −D(δMM−1)

δĀ = D̄(M†−1δM†)

ds2
Ã =

Z
d2x Tr(δA δĀ)

=

Z
Tr
h
(M†−1δM†)(−D̄D)(δMM−1)

i
ds2

SL(N,C) =

Z
Tr(M†−1δM† δMM−1)
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HAMILTONIAN ANALYSIS OF YM(2+1) (CONT’D.)

From the structure of the metric

dµÃ = det(−D̄D) dµSL(N,C)(M,M†)

One can do a polar decomposition M = U ρ, U unitary and ρ hermitian.

dµSL(N,C) = (dMM−1) ∧ · · · ∧ (dMM−1)| {z } ∧ (M†−1dM†) ∧ · · · ∧ (M†−1dM†)| {z }
(N2 − 1) times (N2 − 1) times

= dµ(H) dµ(U)

Volume of SL(N,C)/SU(N) Volume of SU(N)

Thus the volume the gauge-invariant configuration space is

dµ(C) = dµ(H) det(−D̄D) = dµ(H) exp[2 cA SWZW(H)]

dµ(H) = [dϕ] det R

H = etaϕa
, H−1δH = δϕaRab(ϕ)tb.
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HAMILTONIAN ANALYSIS OF YM(2+1) (CONT’D.)

Wave functions are gauge-invariant (Gauss law), depend on H = M†M with the inner

product

〈1|2〉 =

Z
dµ(H) exp[2 cA SWZW(H)] Ψ∗1 Ψ2

This leads to an intuitive argument for a nonzero mass gap:

The Hamiltonian has the form

H =

Z
1
2

ˆ
e2E2 + B2/e2˜

[E,B] ∼ p (in momentum space) =⇒∆E ∆B ∼ p, or ∆E ∼ p/∆B

E = 〈H〉 ≈
1
2

»
e2 p2

(∆B)2
+

(∆B)2

e2

–
Minimize with respect to ∆B =⇒ (∆B)2 ∼ p =⇒ E ∼ p. This is the photon.

For us

〈H〉 =

Z
dµ(H) exp [2 cASWZW(H)]

Z
1
2

ˆ
e2E2 + B2/e2˜
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HAMILTONIAN ANALYSIS OF YM(2+1) (CONT’D.)

Expanding the WZW action

〈H〉 ≈
Z

dµ(H) exp
»
−

cA

2π

Z
B

1
p2

B + ...

– Z
1
2

h
e2E2 + B2

e2

i
Gaussian =⇒ (∆B)2 ∼ πp2/cA =⇒mass gap ∼ e2cA/2π.

More detailed analysis confirms m = e2cA/2π.

The Wilson loop operator is given by

W(C) = Tr Pe−
H

A = Tr P exp
„

e
2

I
J
«

All gauge-invariant quantities can be made from the current J = (2/e)∂H H−1.

The Hamiltonian and the wave functions can be expressed as functions of the current

J = (2/e)∂H H−1.
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THE HAMILTONIAN OPERATOR

The Hamiltonian is given by

H =
e2

2

Z
EaEa| {z } +

1
2e2

Z
BaBa| {z }

≡ T + V

The potential energy is easy to simplify,

V =
1

2e2

Z
BaBa =

1
2

Z
x

: ∂̄Ja(x) ∂̄Ja(x) :

The kinetic term is simplified via the chain rule

T Ψ = −
e2

2

Z
x

δ2

δA(x)δĀ(x)
Ψ

= −
e2

2

"Z
δJ(u)

δA(x)

δJ(v)

δĀ(x)| {z }
δ2Ψ

δJ(u)δJ(v)
+

Z
δ2J(u)

δA(x)δĀ(x)| {z }
δΨ

δJ(u)

#

Ω ω

=

Z
Ωab(u, v)

δ2Ψ

δJa(u)δJb(v)
+

Z
ωa(u)

δΨ

δJa(u)
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THE HAMILTONIAN OPERATOR (cont’d.)

ωa(u) needs regularization

ωa = −
e2

2

Z
x

δ2Ja(u)

δAb(x)δĀb(x)
=
“

e2cA/2π
”

M†am(x) Tr
ˆ
tmD̄−1

reg (y, x)
˜

y→x

= m Ja

The kinetic energy is thus given by

T = m
»Z

Ja δ

δJa +

Z
Ωab(u, v)

δ2

δJa(u)δJb(v)

–
Ωab(u, v) =

cA

π2

δab

(u− v)2
− i

fabcJc(v)

u− v
+ O(ε)

The Hamiltonian isH = H0 + H1 with

H0 = m
Z

z
Ja(~z)

δ

δJa(~z)
+

2
π

Z
z,w

1
(z− w)2

δ

δJa(~w)

δ

δJa(~z)

+
1
2

Z
x

: ∂̄Ja(x) ∂̄Ja(x) :

H1 = i e fabc

Z
z,w

Jc(~w)

π(z− w)

δ

δJa(~w)

δ

δJb(~z)
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AN ASIDE ON REGULARIZATION

All calculations are done with proper regularization.

Start with a regularization of the δ-function

δ(2)(u,w) =⇒ σ(~u, ~w, ε) =
1
πε

exp
„
−
|u− w|2

ε

«
This is equivalent to

Ḡ(~x,~y) =
1

π(x− y)

=⇒ Ḡ(~x,~y) =

Z
u

Ḡ(~x,~u) σ(~u,~y; ε)H(u, ȳ)H−1(y, ȳ)

This simplifies as

Gma(x, y) =
1

π(x− y)

»
δma − e−

(x−y)2

ε [H(x, ȳ)H−1(y, ȳ)]ma

–
One can check all results using regularized expressions, with a single regulator from

beginning to end.
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HAMILTONIAN ANALYSIS OF YM(2+1) (cont’d.)

One can solve the Schrödinger equation to get the vacuum wave function as

Ψ0 = exp
h

1
2 F(H)

i
,

F(H) = −
Z
∂̄Ja

"
1`

m +
p

m2 −∇2
´# ∂̄Ja

+ 2 fabc

Z
f (3)(~x,~y,~z) Ja(~x) Jb(~y) Jc(~z) +O(J4)

This has the correct expected limits

Ψ0 ≈ exp

"
−

1
2e2

Z
B

1p
−∇2

B

#
k
m
� 1

≈ exp
»
−

1
4e2m

Z
B2
–

k
m
� 1

O(J3, J4) terms are small at k� e2 and at k� e2

The high k limit agrees with perturbation theory
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HAMILTONIAN ANALYSIS OF YM(2+1) (cont’d.)

For quantities involving low momentum modes

〈O〉 =

Z
Ψ∗0 Ψ0 O = int exp

»
−

1
4g2

Fa
ijF

aij
–
O

= 〈O〉2dYM

g2 = me2 = e4cA/2π.

Since YM2d confines

〈WR(C)〉 = exp [−σR AC]

AC = area of the closed curve C.

This gave values of string tension

√
σR = e2

r
cAcR

4π
,

in agreement with lattice values to within 1− 3%.
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STRING TENSION

Group Representations
k=1 k=2 k=3 k=2 k=3 k=3
Fund. antisym antisym sym sym mixed

SU(2)
0.345

0.335

SU(3)
0.564

0.553

SU(4)
0.772 0.891 1.196

0.759 0.883 1.110

SU(5)
0.977

0.966

SU(6)
1.180 1.493 1.583 1.784 2.318 1.985

1.167 1.484 1.569 1.727 2.251 1.921
SU(N) 0.1995 N
N →∞

0.1976 N

Comparison of
√
σ/e2 with lattice estimates (lower entry, in red) from LUCINI &TEPER, BRINGOLTZ

& TEPER. k is the rank of the representation.
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THE WAVE FUNCTION: A DIFFERENT ARGUMENT

Absorb exp(2cASWZW) from the inner product into the wave function by

Ψ = e−cASWZW(H)Φ. The Hamiltonian acting on Φ is

H → e−cASWZW(H) H e−cASWZW(H)

Consider H = etaϕa ≈ 1 + taϕa + · · · , a small ϕ limit appropriate for a (resummed)

perturbation theory. The new Hamiltonian is

H =
1
2

Z »
−
δ2

δφ2
+ φ(−∇2 + m2)φ+ · · ·

–

where φa(~k) =
q

cAkk̄/(2πm) ϕa(~k).

The vacuum wave function is

Φ0 ≈ exp
»
−

1
2

Z
φa
p

m2 −∇2 φa
–
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THE WAVE FUNCTION: A DIFFERENT ARGUMENT (cont’d.)

Transforming back to Ψ,

Ψ0 ≈ exp

"
−

cA

πm

Z
(∂̄∂ϕa)

"
1

m +
p

m2 −∇2

#
(∂̄∂ϕa) + · · ·

#

The full wave function must be a functional of J. The only form consistent with the above is

Ψ0 = exp

24− 2π2

e2c2
A

Z
∂̄Ja(x)

"
1

m +
p

m2 −∇2

#
x,y

∂̄Ja(y) + · · ·

35
since J ≈ (cA/π)∂ϕ+O(ϕ2).

This indicates the robustness of the Gaussian term in Ψ0, since this argument only

presumes

1. Existence of a regulator, so that the transformation Ψ⇐⇒ Φ can be carried out

2. The two-dimensional anomaly calculation
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STATUS REPORT

Some things which can be calculated/understood

A clear gauge-invariant Hamiltonian formulation

Computation of the vacuum wave function

String tensions: lowest order,with a systematic expansion for higher order

corrections (of the order a few percent)

Possibility of screening of WR(C) via string-breaking in some representations

Results on magnetic screening mass, glueballs

Extension to Yang-Mills-Chern-Simons Theory, Formulation on R× S2

But there are also unclear issues, more questions

Improving higher order corrections to string tension, better handle on glueballs

Calculations on the torus to understand the theory at finite temperature

Connecting the formulation on R× S2 to the duality-matrix model approach

Fermions, supersymmetric cases

Geometrical properties of the configuration space Ã/G∗
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