GEOMETRIC QUANTIZATION & HAMILTONIAN ANALYSIS

IN FIELD THEORY

V. P. NAIR

CITY COLLEGE OF THE CUNY

15th Saalburg Summer School WOLFERSDORF, GERMANY

September, 2009

V.P. NAIR

Geometric Quantization & Hamiltonians

Quantum theory is defined as a unitary irreducible representation of the algebra of observables. Geometric quantization gives a way to realize this, elucidating the role of the geometry and topology of the phase space.

- Classical phase space dynamics
- Pre-quantum Hilbert space, operators, polarization
- Role of topology: $\mathcal{H}^1(M, \mathbb{R}), \ \mathcal{H}^2(M, \mathbb{R})$
- Quantizing S²
- Configuration space for gauge fields
- Chern-Simons theory
- θ -vacua in gauge theories
- WZW action and the Dirac determinant
- Hamiltonian Analysis of Yang-Mills (2+1)

THE SYMPLECTIC STRUCTURE

Phase space = A smooth even dimensional manifold M endowed with a symplectic structure Ω

- Ω is a differential 2-form on *M* which is closed and nondegenerate.
 - Closed: $d\Omega = 0$
 - Nondegenerate: For any vector field ξ on M, $i_{\xi}\Omega = 0 \Rightarrow \xi = 0$

$$\Omega = \frac{1}{2} \Omega_{\mu\nu} dq^{\mu} \wedge dq^{\nu}$$

• The condition $d\Omega = 0$ becomes

$$d\Omega = \frac{\partial \Omega_{\mu\nu}}{\partial q^{\alpha}} dq^{\alpha} \wedge dq^{\mu} \wedge dq^{\nu}$$

= $\frac{1}{3} \left[\frac{\partial \Omega_{\mu\nu}}{\partial q^{\alpha}} + \frac{\partial \Omega_{\alpha\mu}}{\partial q^{\nu}} + \frac{\partial \Omega_{\nu\alpha}}{\partial q^{\mu}} \right] dq^{\alpha} \wedge dq^{\mu} \wedge dq^{\nu}$
= 0

• Interior contraction with $\xi = \xi^{\mu} (\partial/\partial q^{\mu})$ is

$$i_{\xi}\Omega = \xi^{\mu}\Omega_{\mu\nu}dq^{\nu}$$

 $i_{\xi}\Omega = 0 \Rightarrow \xi = 0 \equiv \xi^{\mu}\Omega_{\mu\nu} = 0 \Rightarrow \xi^{\mu} = 0$; $\iff \Omega$ is nondegenerate as a matrix

THE SYMPLECTIC STRUCTURE (CONT'D.)

Inverse of Ω can be defined by

$$\Omega_{\mu\nu}\;\Omega^{\nu\alpha}=\delta^{\alpha}_{\mu}$$

(If Ω has zero modes, one has gauge symmetries.)

• Since $d\Omega = 0$, we can write

$$\Omega = d\mathcal{A} \qquad \Omega_{\mu\nu} = \frac{\partial}{\partial q^{\mu}} \mathcal{A}_{\nu} - \frac{\partial}{\partial q^{\nu}} \mathcal{A}_{\mu}$$

- What are the qualifications to this statement?
 - If there are noncontractible 2d-surfaces Σ such that

$$\int_{\Sigma} \Omega \neq 0$$

then \mathcal{A} cannot exist globally. (Equivalent to $\mathcal{H}^2(M) \neq 0$; e.g. CS, WZW theories)

- Even if H²(M) = 0, one can have inequivalent A's. For example, A and A + A give same Ω if dA = 0.
 - Evidently $A = d\Lambda$ is one possibility (Canonical transformations)
 - One can have $A \neq d\Lambda$ with $dA = 0 \iff \mathcal{H}^1(M) \neq 0$ (e.g. θ -vacua)

- Transformations of (phase space) coordinates which preserve Ω are canonical transformations.
- For infinitesimal transformations, $q^{\mu} \rightarrow q^{\mu} + \xi^{\mu}$, change in Ω is

$$\begin{split} \delta\Omega &= \left[\frac{1}{2}\Omega_{\mu\nu}(q+\xi)d(q^{\mu}+\xi^{\mu})\wedge d(q^{\nu}+\xi^{\nu}) - \frac{1}{2}\Omega_{\mu\nu}(q)dq^{\mu}\wedge dq^{\nu}\right] \equiv L_{\xi}\Omega \\ &= d(i_{\xi}\Omega) + i_{\xi}d\Omega = d(i_{\xi}\Omega) \\ &= 0 \end{split}$$

The solution is $i_{\xi}\Omega = -df$ (if $\mathcal{H}^1(M) = 0$).

• Conversely, for any function f, one can define $\xi^{\mu} = \Omega^{\mu\nu} \partial_{\nu} f \Longrightarrow L_{\xi} \Omega = 0$.

This leads to

• If ξ and η preserve Ω , so does their Lie commutator

$$[\xi,\eta]^{\mu} = \xi^{\nu}\partial_{\nu}\eta^{\mu} - \eta^{\nu}\partial_{\nu}\xi^{\mu}$$

If ξ ↔ f and η ↔ g, then there is a function corresponding to [ξ, η]; this is called the Poisson bracket -{f, g} and is defined by

$$\{f,g\} = i_{\xi}i_{\eta}\Omega = \eta^{\mu}\xi^{\nu}\Omega_{\mu\nu} = -i_{\xi}dg = i_{\eta}df = \Omega^{\mu\nu}\partial_{\mu}f\partial_{\nu}g$$

• The Poisson bracket obeys

$$\{f,g\} = -\{g,f\}$$

$$\{f,\{g,h\}\} + \{h,\{f,g\}\} + \{g,\{h,f\}\} = 0$$

• Poisson brackets are important because the change in a function on phase space due to a canonical transformation is

$$\delta F = \xi^{\mu} \partial_{\mu} F = \{F, f\}$$

• The change in the canonical 1-form is given by

$$\delta \mathcal{A} = L_{\xi} \mathcal{A} = d(i_{\xi} \mathcal{A} - f) = d\Lambda$$

• Classical dynamics is given by

$$\Omega_{\mu\nu}\frac{\partial q^{\nu}}{\partial t} = \frac{\partial H}{\partial q^{\mu}}$$

This can be obtained from an action

$$S = \int_{t_i}^{t_f} dt \, \left(\mathcal{A}_\mu \frac{dq^\mu}{dt} \, - \, H \right)$$

Variation of the action gives

$$\delta \mathcal{S} = i_{\xi} \mathcal{A}(t_{f}) - i_{\xi} \mathcal{A}(t_{i}) + \int dt \, \left(\Omega_{\mu\nu} \frac{dq^{\nu}}{dt} - \frac{\partial H}{\partial q^{\mu}}\right) \xi^{\mu}$$

Given the action, the boundary term in its variation can be used to identify A and, hence,
 Ω.

Quantum Theory = Unitary Irreducible Representation of the Algebra of Observables

- The problem of quantization is: How do we realize this explicitly?
 - Canonical transformations \iff Unitary transformations

 - Ensure irreducibility
- Geometric quantization provides a way to do this

STRATEGY:

- 1. Define pre-quantum wave functions and pre-quantum operators
- 2. Impose a polarization to achieve irreducibility

• Since canonical transformations are $A \to A + d\Lambda$, we consider wave functions to have the property

$$\Psi(q) \to e^{i\Lambda} \Psi(q), \qquad \mathcal{A} \to \mathcal{A} + d\Lambda$$

- Ψ depends on all phase space coordinates. They are analogous to fields coupled to a *U*(1) gauge field *A*. (They are sections of a line bundle on *M* with curvature Ω.)
- The Ψ's are pre-quantum wave functions and form a (pre-quantum) Hilbert space with the inner product

$$(1|2) = \int d\sigma(M) \Psi_1^* \Psi_2$$

 $d\sigma(M) = \Omega \wedge \Omega \cdots \wedge \Omega \sim \det(\Omega) \ d^{2n}q.$

• How does Ψ change under $q^{\mu} \rightarrow q^{\mu} + \xi^{\mu}$? Under such a change, $\mathcal{A} \rightarrow \mathcal{A} + i_{\xi}\mathcal{A} - f$, so that

$$\begin{split} \delta \Psi &= \xi^{\mu} \partial_{\mu} \Psi - i(i_{\xi} \mathcal{A} - f) \Psi \\ &= \xi^{\mu} \left(\partial_{\mu} - i \mathcal{A}_{\mu} \right) \Psi + i f \Psi = \left(\xi^{\mu} \mathcal{D}_{\mu} + i f \right) \Psi \end{split}$$

The first term gives change of Ψ as a function, the second compensates for the change of A.

• Define the pre-quantum operator corresponding to *f* as

$$\mathcal{P}(f) = -i(\xi \cdot \mathcal{D} + if)$$

In terms of Hamiltonian vector fields, *f* ↔ ξ, *g* ↔ η, {*f*, *g*} ↔ −[ξ, η]; this gives

 $\begin{aligned} [\mathcal{P}(f), \mathcal{P}(g)] &= [-i\xi \cdot \mathcal{D} + f, -i\eta \cdot \mathcal{D} + g] \\ &= -[\xi^{\mu} \mathcal{D}_{\mu}, \eta^{\nu} \mathcal{D}_{\nu}] - i\xi^{\mu} [\mathcal{D}_{\mu}, g] + i\eta^{\mu} [\mathcal{D}_{\mu}, f] \\ &= i\xi^{\mu} \eta^{\nu} \Omega_{\mu\nu} - (\xi^{\mu} \partial_{\mu} \eta^{\nu}) \mathcal{D}_{\nu} + (\eta^{\mu} \partial_{\mu} \xi^{\nu}) \mathcal{D}_{\nu} - i\xi^{\mu} \partial_{\mu} g + i\eta^{\mu} \partial_{\mu} f \\ &= i \left(-\xi^{\mu} \eta^{\nu} \Omega_{\mu\nu} + i[\xi, \eta] \cdot \mathcal{D} \right) \\ &= i \left(-i \left(i_{[\eta, \xi]} \mathcal{D} \right) + \{f, g\} \right) \\ &= i \mathcal{P}(\{f, g\}) \end{aligned}$

 The pre-quantum operators form a representation of the Poisson bracket algebra of functions on the phase space, with [A, B] ~ i{A, B}.

- We get a representation, but this is reducible in general, since Ψ depends on all phase space variables.
- Illustrate by example: Point-particle in one space dimension

$$\Omega = dp \wedge dx, \qquad \mathcal{A} = pdx$$

• Hamiltonian vector fields and pre-quantum operators for q and p are

$$x \leftrightarrow -\frac{\partial}{\partial p}, \qquad p \leftrightarrow \frac{\partial}{\partial x}$$

 $\mathcal{P}(x) = i\frac{\partial}{\partial p} + x, \qquad \mathcal{P}(p) = -i\left(\frac{\partial}{\partial x} - ip\right) + p = -i\frac{\partial}{\partial x}$

 $[\mathcal{P}(x), \mathcal{P}(p)] = i$, so that we have a representation of the Poisson bracket algebra.

Consider a subset of wave functions obeying

$$\frac{\partial \Psi}{\partial p} = 0$$

In this case, $\mathcal{P}(x) = x$, $\mathcal{P}(p) = -i\frac{\partial}{\partial x}$, which still obey $[\mathcal{P}(x), \mathcal{P}(p)] = i$.

We have a representation on a subspace \implies previous representation is reducible.

QUANTIZATION (CONT'D.)

- Choose subsidiary conditions on Ψ which restrict its dependence to half the number of variables (Choice of polarization).
- Choose *n* vector fields $P_i = P_i^{\mu}(\partial/\partial q^{\mu})$, obeying

$$\Omega_{\mu\nu}P_i^{\mu}P_j^{\nu}=0$$

and impose

$$P_i^{\mu} \mathcal{D}_{\mu} \Psi = 0$$

The vectors P_i define the polarization. The restricted wave functions are the true wave functions of the theory.

- Inner product on the true wave functions? Generally difficult, no natural volume measure on restricted subspace of phase space.
- One case where this is possible: *M* is a Kähler space, Ω is the Kähler form.

• For a Kähler space,

$$\Omega = \Omega_{a\bar{a}\bar{a}}dx^a \wedge d\bar{x}^{\bar{a}} = \frac{i}{2}\partial_a\partial_{\bar{a}}K \ dx^a \wedge d\bar{x}^{\bar{a}} = d\mathcal{A}$$
$$\mathcal{A}_a = -\frac{i}{2}\partial_a K, \qquad \mathcal{A}_{\bar{a}} = \frac{i}{2}\partial_{\bar{a}}K$$
Metric $g_{a\bar{a}} = \partial_a\partial_{\bar{a}}K$

• Since $\Omega_{ab} = 0$, choose the (holomorphic or Bargmann) polarization condition

$$\mathcal{D}_{\bar{a}}\Psi = \left(\partial_{\bar{a}} + \frac{1}{2}\partial_{\bar{a}}K\right)\Psi = 0$$
$$\Psi = \exp(-\frac{1}{2}K)F$$

F is holomorphic, with $\partial_{\bar{a}}F = 0$.

• The inner product is

$$\langle 1|2
angle = \int d\sigma(M) \; e^{-K} F_1^* F_2$$

 Operator = Pre-quantum operator subject to polarization if it preserves polarization; otherwise construct matrix element directly.

TOPOLOGICAL FEATURES: $\mathcal{H}^1(M,\mathbb{R})$

Consider A and A + A which lead to same Ω,

$$d\mathcal{A} = \Omega, \quad d(\mathcal{A} + A) = \Omega \implies dA = 0$$

- $A = d\Lambda \implies$ remove it by canonical (unitary) transformation, $\Psi \implies e^{i\Lambda}\Psi$.
- We can have dA = 0 with $A \neq d\Lambda$; this means $\mathcal{H}^1(M, \mathbb{R}) \neq 0$.
- We can try $\Psi = \exp\left(i\int_0^q A\right)\Phi$.

The path-dependence of the phase factor:

- $\int_C A \int_{C'} A = \oint A = \int_S dA = 0$
- If the path C C' is noncontractible with no surface *S* whose boundary is C C', then $\oint A$ can be nonzero.

V.P. NAIR

Geometric Quantization & Hamiltonians

- Using $\Psi = \exp(i \int_0^q A) \Phi$ eliminates A but Φ need not be single-valued.
- Let $A = \theta \alpha$ where θ is a constant and $\int \alpha = 1$ for a single traversal of the basic noncontractible path corresponding to C C' (once around the red dot).
- Then for *n* traversals of the path, $\oint A = \theta n$.
- We can eliminate A and use Φ; but Φ is not single-valued and changes by exp(*iθn*) going around the noncontractible path n times.
- We have an extra constant θ required to define the quantum theory.
- Examples:
 - Fractional statistics in two spatial dimensions
 - Theta vacua in quantum chromodynamics

- This occurs when we have closed 2-forms which are not exact; i.e., $d\Omega = 0$, but $\Omega \neq dA$ for any globally defined A.
- Correspondingly, there are two-surfaces which are closed but are not boundaries of any 3-volumes
- If $\Omega = dA$, with A well-defined globally, for a closed surface Σ ,

$$\int_{\Sigma} \Omega = \int_{\partial \Sigma} \mathcal{A} = 0$$

• If $\Omega \neq dA$, the integral of Ω over a closed noncontractible 2-surface can be nonzero.

$$\begin{split} I(\Sigma) &= \int_{\Sigma} \Omega \\ I(\Sigma) - I(\Sigma') &= \int_{\Sigma - \Sigma'} \Omega = \int_{V} d\Omega = 0 \end{split}$$

- The integral of Ω over any closed two-surface is a topological invariant, invariant under small deformations of the surface.
- If Σ is contractible, deform Σ to zero $\Longrightarrow \int_{\Sigma} \Omega = 0$.
- Otherwise, $I(\Sigma)$ can be nonzero.

TOPOLOGICAL FEATURES: $\mathcal{H}^2(M,\mathbb{R})$

- Example of Σ as a two-sphere:
 - Cover the surface with two patches, a northern hemisphere and a southern hemisphere, with $\Omega = dA_N$ and $\Omega = dA_S$ on corresponding patches
 - On the overlap region, the equator *E*,

$$\mathcal{A}_{N} = \mathcal{A}_{S} + d\Lambda$$

$$\Psi_{N} = \exp(i\Lambda) \Psi_{S}$$

$$\Delta\Lambda = \oint_{E} d\Lambda = \int_{E} \mathcal{A}_{N} - \mathcal{A}_{S} = \int_{\partial N} \mathcal{A}_{N} + \int_{\partial S} \mathcal{A}_{S} = \int_{N} \Omega + \int_{S} \Omega = \int_{\Sigma} \Omega$$

• Λ is not single-valued on the equator; but Ψ must be. Thus $\exp(i\Delta\Lambda) = 1$, or

$$\int_{\Sigma} \Omega = 2\pi n, \qquad (Dirac; Generalized Bohr-Sommerfeld condition)$$

- Examples of this are:
 - Charged particle in a magnetic monopole background
 - Chern-Simons and WZW theories

We will consider quantization with the holomorphic polarization.

- A phase space which is also Kähler; the symplectic two-form must be a multiple of the Kähler form.
- The polarization condition is chosen as $\mathcal{D}_{\bar{a}} \Psi = 0$.
- The inner product of the prequantum Hilbert space = Square integrability on the phase space ⇒ Inner product on the true Hilbert space in the holomorphic polarization.
- *f*(*q*) which preserves the polarization ⇒ Prequantum operator *P*(*f*) restricted to the true (polarized) wave functions.
- For observables which do not preserve the polarization, one has to construct infinitesimal unitary transformations whose classical limits are the required canonical transformations.
- If the phase space *M* has noncontractible two-surfaces, then the integral of Ω over any of these surfaces must be quantized in units of 2π.
- If H¹(M, R) is not zero, then there are inequivalent A's for the same Ω and we need extra angular parameters to specify the quantum theory completely.

QUANTIZING THE TWO-SPHERE

- Take the phase space as the two-sphere S² ~ CP¹ ~ SU(2)/U(1).
- This is a Kähler manifold; basic parameters are:

Coordinates	$z = x + iy, \bar{z} = x - iy$
Kähler two-form	$\omega = idz \wedge d\bar{z}/(1+z\bar{z})^2$
Metric	$ds^2 = dz d\bar{z}/(1+z\bar{z})^2$
Riemannian curvature	$R_{12} = 4dx \wedge dy/(1+z\bar{z})^2$
Euler number	$\chi = \int (R_{12}/2\pi) = 2$
- 2 - 2 - 2 - 2	

- S^2 has nontrivial $\mathcal{H}^2(S^2, \mathbb{R})$ given by ω .
- The symplectic two-form is taken as

$$\Omega = n \,\omega = i \,n \,\frac{dz \wedge d\bar{z}}{(1 + z\bar{z})^2}$$

where *n* is an integer, in agreement with Dirac-Bohr-Sommerfeld condition.

• The symplectic potential is

$$\mathcal{A} = \frac{in}{2} \left[\frac{z \, d\bar{z} - \bar{z} \, dz}{(1 + z\bar{z})} \right] = \frac{i}{2} \partial_{\bar{z}} K \, d\bar{z} - \frac{i}{2} \partial_{z} K \, dz$$
$$K = n \log(1 + z\bar{z})$$

Choose the polarization condition as

$$(\partial_{\overline{z}} - i\mathcal{A}_{\overline{z}}) \Psi = \left[\partial_{\overline{z}} + \frac{n}{2} \frac{z}{1 + z\overline{z}}\right] \Psi = 0$$

This has the solution

$$\Psi = \exp\left(-\frac{n}{2}\log(1+z\bar{z})\right)f(z)$$

with the inner product

$$\langle 1|2 \rangle = i(n+1) \int \frac{dz \wedge d\bar{z}}{2\pi (1+z\bar{z})^{n+2}} f_1^* f_2$$

Normalizable states correspond to linear combinations of f(z) = 1, z, z², ..., zⁿ;
 dimension of Hilbert space = n + 1. (Inner product normalized so that Tr(1) = n + 1.)

i

 There are three independent vector fields on S² which preserve the metric and ω (Hamiltonian vector fields).

Check one case:

$$\begin{split} \xi_{+} \Omega &= i(\partial_{\overline{z}} + z^{2} \partial_{\overline{z}}) \rfloor in \frac{dz \wedge d\overline{z}}{(1 + z\overline{z})^{2}} \\ &= -n \left[-\frac{dz}{(1 + z\overline{z})^{2}} + \frac{z^{2} d\overline{z}}{(1 + z\overline{z})^{2}} \right] \\ &= -d \left[-\frac{nz}{(1 + z\overline{z})} \right] \end{split}$$

The pre-quantum operators are

$$\begin{aligned} \mathcal{P}(J_{+}) &= \left(z^{2}\partial_{z} - \frac{n\,z}{2}\frac{2+z\bar{z}}{1+z\bar{z}}\right) & -i\xi_{+}^{\bar{z}}\mathcal{D}_{\bar{z}} \\ \mathcal{P}(J_{-}) &= \left(-\partial_{z} - \frac{n}{2}\frac{\bar{z}}{1+z\bar{z}}\right) - i\xi_{-}^{\bar{z}}\mathcal{D}_{\bar{z}} \\ \mathcal{P}(J_{3}) &= \left(z\partial_{z} - \frac{n}{2}\frac{1}{1+z\bar{z}}\right) - i\xi_{3}^{\bar{z}}\mathcal{D}_{\bar{z}} \end{aligned}$$

• On the polarized wave functions, $D_{\bar{z}}\Psi = 0$, giving the quantum operators acting on f(z),

$$\hat{J}_{+} = z^{2}\partial_{z} - n z$$
$$\hat{J}_{-} = -\partial_{z}$$
$$\hat{J}_{3} = z\partial_{z} - \frac{1}{2} n$$

- These obey *SU*(2) algebra.
- The full Hilbert space corresponds to one UIR of SU(2) with j = n/2.

• The form of the action is

$$S = \int dt \,\mathcal{A}_{\mu} \frac{dq^{\mu}}{dt} = i\frac{n}{2} \int dt \,\frac{z\dot{z} - \bar{z}\dot{z}}{1 + z\bar{z}}$$
$$= i\frac{n}{2} \int dt \,\operatorname{Tr}(\sigma_{3} \,g^{-1}\dot{g})$$

 $g \in SU(2)$; explicitly

$$g = \frac{1}{\sqrt{1+z\bar{z}}} \begin{bmatrix} 1 & z \\ -\bar{z} & 1 \end{bmatrix} \begin{bmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{bmatrix}$$

• More generally, one can take, for $g \in G$,

$$S = i \sum_{a} w_a \int dt \operatorname{Tr}(t^a g^{-1} \dot{g}), \qquad \mathcal{A}(g) = i \sum_{a} w_a \operatorname{Tr}(t^a g^{-1} dg)$$

Weights of a UIR Diagonal Generators

 Ω on G/H, H = maximal subgroup of G commuting with $\sum_{a} w_{a}t^{a}$.

• Hilbert space will give one UIR of *G*, highest weights given by *w*_a

CONFIGURATION SPACE FOR GAUGE FIELDS

Analyze topology and geometry of the space of gauge fields in a Hamiltonian description

- Choose A₀ = 0 gauge; we are then left with the spatial components A_i(x) which are Lie-algebra-valued vector fields on space.
- A gauge transformation acts on A_i as $A_i \to A_i^g = g^{-1}A_ig + g^{-1}\partial_ig$, $g \in G$.

Define

$$\begin{split} \tilde{\mathcal{A}} &\equiv \{ \text{Set of all gauge potentials } A_i \} \\ &\equiv \{ \text{Set of all Lie} - \text{algebra} - \text{valued vector fields on space } \mathbb{R}^d \} \\ \mathcal{G} &\equiv \{ \text{Set of all } g(\vec{x}) : \mathbb{R}^d \to G, \text{ such that } g(\vec{x}) \longrightarrow \text{ constant } \in G \text{ as } |\vec{x}| \longrightarrow \infty \} \\ \mathcal{G}_* &\equiv \{ \text{Set of all } g(\vec{x}) : \mathbb{R}^d \to G, \text{ such that } g(\vec{x}) \longrightarrow 1 \text{ as } |\vec{x}| \longrightarrow \infty \} \end{split}$$

- Evidently G/G* = G. This acts as a Noether symmetry classifying charged states in the theory.
- \mathcal{G}_* is the true gauge symmetry, with A_i and A_i^g physically equivalent for $g(x) \in \mathcal{G}_*$.

- The physical configuration space is C = Ã/G*
- Consider 2 + 1 dimensions

$$\Pi_{2}(\mathcal{C}) = \Pi_{1}(\mathcal{G}_{*}) = \Pi_{3}(G) = \begin{cases} \mathbb{Z} & \text{All compact } G \neq SO(4) \\ \mathbb{Z} \times \mathbb{Z} & G = SO(4) \end{cases}$$

- How does this arise?
 - An element of \mathcal{G}_* is $g(\vec{x})$ with $g \to 1$ at spatial infinity $\Rightarrow \Pi_0(\mathcal{G}_*) = \Pi_2(G) = 0$.
 - For connectivity, examine closed paths starting and ending at g(x
 ⁱ) = 1. Such a path is given by g(x
 ⁱ, λ); 0 ≤ λ ≤ 1 parametrizes path, with g(x
 ⁱ, 0) = g(x
 ⁱ, 1) = 1.
 - g(x, λ) : ℝ³ → G with g → 1 at the 'boundary'. This is equivalent to a map from S³ to G, classified by Π₃(G).
- There are noncontractible two-surfaces in *C* and hence in the phase space.

Gauge theories in 2 + 1 dimensions have $\mathcal{H}^2(M, \mathbb{R}) \neq 0$; they can show Dirac quantization conditions (depending on choice of Ω) Consider 3 + 1 dimensions

$$\Pi_{1}(\mathcal{C}) = \Pi_{0}(\mathcal{G}_{*}) = \Pi_{3}(G) = \begin{cases} \mathbb{Z} & \text{All compact simple } G \neq SO(4) \\ \mathbb{Z} \times \mathbb{Z} & G = SO(4) \end{cases}$$

- How does this arise? Similar reasoning as for 2 + 1 dimensions
- There are noncontractible paths in *C* and hence in phase space.
- The phase space is multiply connected with connectivity given by \mathbb{Z} (or $\mathbb{Z} \times \mathbb{Z}$ for SO(4)).

Gauge theories in 3+1 dimensions have $\mathcal{H}^1(M, \mathbb{R}) \neq 0$; the quantum theory will require additional vacuum angles (θ -vacua) to characterize it.

• The action is given by

$$\begin{split} \mathcal{S} &= -\frac{k}{4\pi} \int_{\Sigma \times [t_i, t_f]} \operatorname{Tr} \left[A \wedge dA + \frac{2}{3} A \wedge A \wedge A \right] \\ &= -\frac{k}{4\pi} \int_{\Sigma \times [t_i, t_f]} d^3x \, \epsilon^{\mu\nu\alpha} \operatorname{Tr} \left[A_\mu \partial_\nu A_\alpha + \frac{2}{3} A_\mu A_\nu A_\alpha \right] \end{split}$$

 Σ is usually taken as a Riemann surface.

• Choose $A_0 = 0$ as a gauge condition; then

$$\mathcal{S} = -\frac{ik}{\pi} \int dt d\mu_{\Sigma} \operatorname{Tr}(A_{\bar{z}} \partial_0 A_z) \qquad \Longrightarrow \qquad \mathcal{A} = -\frac{ik}{\pi} \int_{\Sigma} \operatorname{Tr}(A_{\bar{z}} \delta A_z) + \delta \rho[A]$$

The symplectic two-form is

$$\Omega = -\frac{ik}{\pi} \int_{\Sigma} d\mu_{\Sigma} \operatorname{Tr} \left(\delta A_{\overline{z}} \delta A_{z} \right) = \frac{ik}{2\pi} \int_{\Sigma} d\mu_{\Sigma} \, \delta A_{\overline{z}}^{a} \delta A_{z}^{a}$$

• The space of 2-d gauge potentials is Kähler with the Kähler potential

$$K = \frac{k}{2\pi} \int_{\Sigma} A_{\overline{z}}^{a} A_{\overline{z}}^{a}$$

• (Time-independent) gauge transformations act on the potentials as

$$A^g = gAg^{-1} - dgg^{-1} \approx A - D\theta$$
 infinitesimally

• The infinitesimal transformations are generated by the vector field

$$\xi = -\int_{\Sigma} \left((D_z \theta)^a \frac{\delta}{\delta A_z^a} + (D_{\bar{z}} \theta)^a \frac{\delta}{\delta A_{\bar{z}}^a} \right)$$

Acting on Ω we get

$$\begin{split} i_{\xi}\Omega &= -\int \left((D_{z}\theta)^{a} \frac{\delta}{\delta A_{z}^{a}} + (D_{\bar{z}}\theta)^{a} \frac{\delta}{\delta A_{\bar{z}}^{a}} \right) \rfloor \frac{ik}{2\pi} \int_{\Sigma} d\mu_{\Sigma} \, \delta A_{\bar{z}}^{a} \delta A_{z}^{a} \\ &= -\frac{ik}{2\pi} \int \left[((\bar{D}\theta)^{a} \delta A_{z}^{a} - (D\theta)^{a} \delta A_{\bar{z}}^{a} \right] = \frac{ik}{2\pi} \int \theta^{a} (\bar{D}\delta A_{z} - D\delta A_{\bar{z}})^{a} \\ &= \frac{ik}{2\pi} \int \theta^{a} \delta F_{\bar{z}z}^{a} = -\delta \left[\int \theta^{a} \frac{ik}{2\pi} F_{z\bar{z}}^{a} \right] \end{split}$$

The generator of gauge transformations is

$$G^a = \frac{ik}{2\pi} F^a_{z\overline{z}}$$

This has to vanish on wave functions, $G^a \Psi = 0$.

V.P. NAIR

Geometric Quantization & Hamiltonians

• The prequantum wave functions have the inner product

$$(1|2) = \int d\mu(A_z, A_{\bar{z}}) \Psi_1^*[A_z, A_{\bar{z}}] \Psi_2[A_z, A_{\bar{z}}]$$

• The symplectic potential is

$$\mathcal{A} = -\frac{ik}{2\pi} \int_{\Sigma} \operatorname{Tr} \left(A_{\bar{z}} \delta A_z - A_z \delta A_{\bar{z}} \right) = \frac{ik}{4\pi} \int_{\Sigma} \left(A_{\bar{z}}^a \delta A_z^a - A_z^a \delta A_{\bar{z}}^a \right)$$

• The covariant derivatives with *A* as the potential are

$$abla = rac{\delta}{\delta A_z^a} + rac{k}{4\pi} A_{\overline{z}}^a, \qquad \overline{
abla} = rac{\delta}{\delta A_{\overline{z}}^a} - rac{k}{4\pi} A_z^a$$

• The Bargmann polarization condition is $\nabla \Psi = 0$, with the solution

$$\Psi = \exp\left(-\frac{k}{4\pi}\int A^a_{\overline{z}}A^a_{\overline{z}}\right) \ \psi[A^a_{\overline{z}}] = e^{-\frac{1}{2}K} \ \psi[A^a_{\overline{z}}]$$

 ψ 's are antiholomorphic, depend only on $A_{\overline{z}}$'s.

• The inner product is now

$$\langle 1|2 \rangle = \int [dA_{z}^{a}dA_{z}^{a}] e^{-K(A_{z}^{a},A_{z}^{a})} \psi_{1}^{*} \psi_{2}$$

On the (anti)holomorphic wave functionals $\psi ' {\rm s}$

$$A^a_z \; \psi[A^a_{\overline{z}}] = rac{2\pi}{k} rac{\delta}{\delta A^a_{\overline{z}}} \; \psi[A^a_{\overline{z}}]$$

and the condition of $G^a \Psi = 0$ becomes

$$\left(D_{\overline{z}} \; rac{\delta}{\delta A^a_{\overline{z}}} \; - \; rac{k}{2\pi} \partial_z A^a_{\overline{z}}
ight) \; \psi[A^a_{\overline{z}}] \; = 0.$$

• Construct a noncontracible two-surface in the configuration space. Start with the loop of gauge transformations

$$C = g(x, \lambda), \qquad 0 \le \lambda \le 1, \qquad g(x, 0) = g(x, 1) = 1$$
$$A(x, \lambda, \sigma) = (gAg^{-1} - dgg^{-1})\sigma + (1 - \sigma)A$$

where $0 \le \sigma \le 1$.

• For simplicity, take the starting point as A = 0 to get

$$A(x,\lambda,\sigma) = - dg g^{-1} \sigma$$

$$\delta A(x,\lambda,\sigma) = g \, d(g^{-1}\delta g) \, g^{-1}\sigma \, + \, dg \, g^{-1}d\sigma$$

• The integral of Ω over this surface is

$$\begin{split} \int \Omega &= \frac{k}{4\pi} \int \operatorname{Tr}(\delta A \wedge \delta A) \\ &= \frac{k}{4\pi} 2 \int \operatorname{Tr}\left[d(g^{-1}\delta g)g^{-1}dg\right] \int \sigma d\sigma \\ &= -2\pi \, k \, Q[g] \\ Q[g] &= \frac{1}{24\pi^2} \int \operatorname{Tr}(dgg^{-1})^3 \end{split}$$

Q[g] = Winding number of the map $g: S^3 \rightarrow G \in \mathbb{Z}$

Dirac condition \implies *k* must be an integer.

Geometric Quantization & Hamiltonians

θ -vacua in 3+1 Dimensions

• Start with the Yang-Mills action and choose $A_0 = 0$,

$$S = \frac{1}{4} \int d^4x \, F^a_{\mu\nu} F^{a\mu\nu} = \frac{1}{2} \int d^4x \, \partial_0 A^a_i \, \partial_0 A^a_i + \cdots$$
$$E^a_i$$

• The symplectic potential is $\mathcal{A} = \int d^3x E_i^a \, \delta A_i^a$ and

$$\Omega = \int d^3x \, \delta E_i^a \, \delta A_i^a = -2 \int d^3x \, \mathrm{Tr} \left(\delta E_i \, \delta A_i \right)$$

The condition of gauge invariance (under $g \approx 1 + \varphi$) is the Gauss law given by

$$G(\varphi)\Psi = \int d^3x \,\varphi^a (D_i E_i)^a \,\Psi = 0$$

An element of *G*_{*} is a map *g*(*x*) : ℝ³ → *G* with the condition *g* → 1 at spatial infinity. These are equivalent to maps *S*³ → *G* and are characterized by the winding number *Q*[*g*].

$$\mathcal{G}_* = \sum_{Q=-\infty}^{+\infty} \oplus \mathcal{G}_{*Q}$$

This leads to $\Pi_1(\mathcal{C}) = \mathbb{Z}$.

Construct a one-form on C which is closed but not exact.

$$K[A] = -\frac{1}{4\pi^2} \int \text{Tr}(F \wedge \delta A) = \frac{1}{16\pi^2} \int d^3x \, \epsilon^{ijk} \, F^a_{jk} \, \delta A^a_i$$

• Closure: $K[A] = \delta(S_{CS}/2\pi)$, so using $\delta^2 = 0$, $\delta K = 0$

- But *K* is not exact, even though *K* = δ(S_{CS}/2π), because S_{CS} is not gauge-invariant. It is not a function on C.
- *K*[*A*] is the generating element of *H*¹(*C*, ℝ).
- An example of the noncontractible loop:

$$A_i(x,\tau) = (gA_ig^{-1} - \partial_i g g^{-1})\tau + A_i(x)(1-\tau), \qquad 0 \le \tau \le 1$$

This is an open path in \tilde{A} ; the end-points are gauge transforms of each other, so it is closed in C. If the path is contractible, it is deformable to

$$A_i(x,\tau) = A(x)^{g(x,\tau)},$$
 $g(x,0) = 1, g(x,1) = g(x)$

 $g(x, \tau)$ makes g(x) homotopic to g = 1. This is not possible if $Q[g] \neq 0$.

• Integrate *K* along such a curve,

$$\oint K[A] = \frac{1}{2\pi} \left(S_{CS}[A^g] - S_{CS}[A] \right)$$

$$= -\frac{1}{8\pi^2} \int \text{Tr}(F \wedge F) \qquad \text{(Instanton number)}$$

$$= -\frac{1}{32\pi^2} \int d^4x \, \text{Tr}(F_{\mu\nu}F_{\alpha\beta}) \epsilon^{\mu\nu\alpha\beta}$$

• Since $\delta K = 0$, we get the same Ω for \mathcal{A} and $\mathcal{A} + \theta K$.

$$\mathcal{A} = \int d^3x \, E_i^a \delta A_i^a \, + \, \theta \, K[A]$$

We need an additional parameter θ to characterize the quantum theory.

- $\oint K$ is an integer, so we can take $0 \le \theta \le 2\pi$.
- This is equivalent to using

$$S = S_{YM} + \theta \left[-\frac{1}{8\pi^2} \int \operatorname{Tr}(F \wedge F) \right]$$

This is defined by an action functional in 2 Euclidean (or 1 + 1) dimensions,

$$S_{WZW} = \frac{1}{8\pi} \int_{\mathcal{M}^2} d^2 x \sqrt{g} g^{ab} \operatorname{Tr}(\partial_a M \partial_b M^{-1}) + \Gamma[M]$$

$$\Gamma[M] = \frac{i}{12\pi} \int_{\mathcal{M}^3} d^3 x \, \epsilon^{\mu\nu\alpha} \operatorname{Tr}(M^{-1}\partial_\mu M M^{-1}\partial_\nu M M^{-1}\partial_\alpha M)$$

$$= \frac{i}{12\pi} \int_{\mathcal{M}^3} \operatorname{Tr}(M^{-1}dM)^3$$

 $M(x) \in GL(N, \mathbb{C})$ (or suitable subgroups)

- Γ[M] = Wess-Zumino term, defined by integration over M³ with ∂M³ = M².
- Many \mathcal{M}^3 's with the same boundary \mathcal{M}^2 possible \equiv Different ways to extend M(x) to \mathcal{M}^3 .
- If *M* and *M'* are two different extensions of the same field, then *M'* = *MN*, with *N* = 1 on *M*²,

$$\Gamma[MN] = \Gamma[M] + \Gamma[N] - \frac{i}{4\pi} \int_{\mathcal{M}^2} d^2 x \, \epsilon^{ab} \operatorname{Tr} \underbrace{(M^{-1}\partial_a M \, \partial_b N N^{-1})}_{= 0}$$

N = 1 on $\partial \mathcal{M}^3 \Longrightarrow N$ is (equivalent to) a map $N : S^3 \to G$, classified by $\Pi_3(G)$ (or Q[N]).

- Independence of the extension follows from:
 - 1. $\Gamma[N] = 0$ for $N \approx 1$ (to linear order in ∂NN^{-1}).

By successive transformations, $\Gamma[M]$ is independent of the extension to \mathcal{M}^3 for all N connected to identity.

- If N is homotopically nontrivial, Γ[N] = 2πi Q[N] (exp(-k Γ[M]) is independent of the extension, if k ∈ Z. So S = k S_{WZW} can be used as the action for a theory, the WZW theory with level number k.)
- In complex coordinates

$$S_{WZW} = \frac{1}{2\pi} \int_{\mathcal{M}^2} \operatorname{Tr}(\partial_z M \partial_{\bar{z}} M^{-1}) + \Gamma[M]$$
$$S_{WZW}[M h] = S_{WZW}[M] + S_{WZW}[h] - \frac{1}{\pi} \int_{\mathcal{M}^2} \operatorname{Tr}(M^{-1} \partial_{\bar{z}} M \partial_z h h^{-1})$$
(Polyakov-Wiegmann identity)

Chiral splitting: Antiholomorphic derivative of *M*, holomorphic derivative of *h*

• Another important property $M \longrightarrow M + \delta M = (1 + \theta)M$, $\theta = \delta M M^{-1}$ infinitesimal.

$$\begin{split} \delta \mathcal{S}_{WZW} &= -\frac{1}{\pi} \int \operatorname{Tr} \left(\partial_{\bar{z}} (\delta M M^{-1}) \partial_{z} M M^{-1} \right) \\ &= -\frac{1}{\pi} \int \operatorname{Tr} (\delta M M^{-1} \partial_{\bar{z}} A_{z}) \\ &= -\frac{1}{\pi} \int \operatorname{Tr} (\delta M M^{-1} D_{z} \bar{C}) \\ &= -\frac{1}{\pi} \int \operatorname{Tr} (\bar{C} \, \delta A_{z}) = \frac{1}{2\pi} \bar{C}^{a} \delta A_{z}^{a} \end{split}$$

$$A_z = -\partial_z M M^{-1}, \quad \bar{C} = -\partial_{\bar{z}} M M^{-1}$$

$$D_z \bar{C} = \partial_z \bar{C} + [A_z, \bar{C}]$$

• A_z and \overline{C} obey the equation

$$\partial_{\bar{z}}A_z - \partial_z \bar{C} + [\bar{C}, A_z] = 0, \qquad D_z \left[\frac{\delta S_{WZW}}{\delta A_z} \right] = \frac{1}{2\pi} \partial_{\bar{z}}A_z$$

This will be useful for evaluating Dirac determinants.

• If we use M^{\dagger} , we get C rather than \overline{C} .

$$D_z rac{\delta \mathcal{S}_{WZW}}{\delta A^a_{ar{z}}} = rac{1}{2\pi} \partial_z A_{ar{z}}$$

• Comparing with wave function for CS theory,

$$\psi[\bar{A}] = \exp\left[k \,\mathcal{S}_{WZW}(M^{\dagger})\right]$$

provided we can parametrize a general 2-dimensional gauge field as $A_z = -\partial_z M M^{-1}$.

THE DIRAC DETERMINANT IN TWO DIMENSIONS

Massless fermions in irreducible representation R of U(N), coupled to a U(N)-gauge field.

• Dirac matrices:
$$\sigma_i$$
, $i = 1, 2$, $\sigma_i \sigma_j + \sigma_j \sigma_i = 2 \delta_{ij}$.

$$\mathcal{L} = \bar{\psi}(D_1 + iD_2)\psi + \bar{\chi}(D_1 - iD_2)\chi = 2\bar{\psi}D_z\psi + 2\bar{\chi}D_{\bar{z}}\chi$$

 ψ , χ : chiral components of $\Psi = (\psi, \chi)$

• A parametrization for gauge potentials

$$A_z = -\partial_z M M^{-1} \qquad \qquad A_{\bar{z}} = M^{\dagger - 1} \partial_{\bar{z}} M^{\dagger}$$

M is a complex matrix. (det M = 1 if gauge group is SU(N).)

- For U(1), use elementary result $A_i = \partial_i \theta + \epsilon_{ij} \partial_j \phi$. $\Longrightarrow M = \exp(\phi + i \theta)$.
- One can invert ∂_z via

$$\left(\frac{1}{\partial_z}\right)_{xx'} = \frac{1}{\pi(\bar{z} - \bar{z}')}$$

• Write $\partial_z M = -A_z M$,

$$M(x) = 1 - \int_{x'} \left(\frac{1}{\partial_z}\right)_{xx'} A_z(x')M(x')$$

= $1 - \int (\partial_z)^{-1} A_z + \int (\partial_z)^{-1} A_z(\partial_z)^{-1} A_z + \cdots$

• $A \to A^g = gAg^{-1} - dg g^{-1} \Longrightarrow M^g = gM$

- Comment: Space not simply connected ⇒ ∃ zero modes for ∂_z ⇒ ∃ flat potentials *a*, not gauge equivalent to zero.
- Example: Torus S¹ × S¹. Real coordinates ξ₁, ξ₂, 0 ≤ ξ_i ≤ 1, with ξ₁ = 0 ~ ξ₁ = 1, same for ξ₂.

 $z = \xi_1 + \tau \xi_2, \quad \tau =$ modular parameter

• For the torus, the generalized parametrization is

$$A_z = M \left[\frac{i\pi a}{\mathrm{Im} \tau} \right] M^{-1} - \partial_z M M^{-1}$$

- Ambiguity: *M* and $MV(\bar{z}) \Longrightarrow$ same A_z . (Must ensure this does not affect physical results)
- For determinant we need regularized version of (Dz)⁻¹

$$(\partial_z)_{xx'}^{-1} = G(x, x') = \frac{1}{\pi(\bar{x} - \bar{x}')}$$

$$D_z\phi = (\partial_z - \partial_z M M^{-1})\phi = M \partial_z (M^{-1}\phi) \implies D_z^{-1}(x, x') = \frac{M(x)M^{-1}(x')}{\pi(\bar{x} - \bar{x}')}$$

Regularized version

$$D_z^{-1}(x, x')_{Reg} \equiv \mathcal{G}(x, x') = \int d^2 y \, \frac{M(x)M^{-1}(y)}{\pi(\bar{x} - \bar{y})} \, \sigma(x', y; \epsilon)$$

$$\sigma(x', y; \epsilon) = \frac{1}{\pi\epsilon} \exp\left(-\frac{|x' - y|^2}{\epsilon}\right) \implies \delta^{(2)}(x - x')$$

• The computation of the determinant:

$$S_{eff} \equiv \log \det D_z = \operatorname{Tr} \log D_z$$

$$\frac{\delta S_{eff}}{\delta A_z^a(x)} = \operatorname{Tr} \left[D_z^{-1}(x, x')(-it^a) \right]_{x' \to x} = \operatorname{Tr} \left[\mathcal{G}(x, x)(-it^a) \right]_{\epsilon \to 0}$$

$$\mathcal{G}(x, x) = \int d^2 y \, \frac{\sigma(x, y)}{\pi} \left[\frac{1}{(\bar{x} - \bar{y})} - M \partial_z M^{-1}(x) \left(\frac{x - y}{\bar{x} - \bar{y}} \right) - M \partial_{\bar{z}} M^{-1} + \cdots \right]$$

$$\delta S_{eff} = \int d^2 x \operatorname{Tr} \left[\mathcal{G}(x, x)(-it^a) \right]_{\epsilon \to 0} \delta A_z^a(x)$$

$$= \frac{1}{\pi} \int d^2 x \operatorname{Tr} \left[\partial_{\bar{z}} M M^{-1} \delta A_z \right] = -\frac{1}{\pi} \int d^2 x \operatorname{Tr}(\bar{C} \, \delta A_z)$$

 $\operatorname{Tr}(t^a t^b)_R = A_R \operatorname{Tr}(t^a t^b)_F, \quad A_R = \operatorname{index} \text{ of the representation } R.$

$$\delta S_{eff} = -\frac{A_R}{\pi} \int d^2 x \operatorname{Tr}(\bar{C} \, \delta A_z)_F$$
$$= A_R \, \delta S_{WZW}(M)$$

 $\implies \det D_z = \det(\partial_z) \, \exp[A_R \, \mathcal{S}_{WZW}(M)]$

THE DIRAC DETERMINANT IN TWO DIMENSIONS (CONT'D)

• Our answer is not gauge-invariant; under $M \rightarrow g M \approx (1 + \varphi)M$,

$$\delta S_{WZW} = -\frac{1}{\pi} \int d^2 x \operatorname{Tr}(\partial_{\bar{z}} A_z \, \delta g \, g^{-1})$$

This is the two-dimensional gauge anomaly.

The gauge-invariant expression is given by

 $\det(D_z D_{\bar{z}}) = \det(\partial_z \partial_{\bar{z}}) \exp\left[A_R \,\mathcal{S}_{WZW}(M^{\dagger}M)\right]$

$$\mathcal{S}_{WZW}(M^{\dagger}M) = \mathcal{S}_{WZW}(M) + \mathcal{S}_{WZW}(M^{\dagger}) + \frac{1}{\pi} \underbrace{\int d^{2}x \operatorname{Tr}(A_{\bar{z}}A_{z})}_{\mathcal{Z}}$$

local counterterm

 ● Abelian version: This corresponds to 2-dim. QED (the Schwinger model) ⇒ mass term for gauge field.

$$\det(D_z D_{\overline{z}}) = \det(\partial_z \partial_{\overline{z}}) \exp\left[-\frac{1}{4\pi} \int_{x,y} F_{\mu\nu}(x) G(x-y) F_{\mu\nu}(y)\right]$$
$$G(x-y) = \int \frac{d^2 p}{(2\pi)^2} \frac{1}{p^2} \exp[ip \cdot (x-y)]$$

HAMILTONIAN IN FIELD THEORY

- In a Hamiltonian approach, we deal with the Hamiltonian operator and wave functions.
- In field theory, these have to be regularized and renormalized.
- The wave functional is defined on a time-slice; needs counterterms defined at fixed time, in addition to the familiar counterterms from the Hamiltonian/action.
 - For the usual φ^4 -theory, upon integrating modes, of $\mu_1 < k \le \mu$,

$$\begin{split} \Psi(\varphi) &= & U \int [d\chi] \, \Psi_0(\chi)^* \Psi(\varphi,\chi) \\ & U &\simeq & 1 - i \frac{3\lambda^{(0)}}{16\pi^2} \log(\mu^2/\mu_1^2) \int d^3x \, (\varphi\pi + \pi\varphi) + \dots \end{split}$$

- In the Hamiltonian, *T* and *V* cannot be independently regularized.
 - Their regularizations are correlated by Lorentz symmetry.
 - One has to check the Dirac-Schwinger condition

$$[T^{00}(x), T^{00}(y)] = i(T^{0i}(x) + T^{0i}(y))\partial_x^i \delta(x - y)$$

This can be a delicate task.

An example which illustrates many features of what we discussed is the YM theory in 2 + 1 dimensions.

Why is this theory interesting?

- Interesting in its own right
 - YM(1+1) is exactly solvable, but has no propagating degrees of freedom
 - YM(3+1) is highly nontrivial and difficult
 - YM(2+1) has propagating degrees of freedom, it is nontrivial. Can be amenable to a Hamiltonian analysis.
 - It has a dimensional coupling constant and is super-renormalizable. This helps to simplify it.
- A real physical context for YM(2+1)
 - Mass gap of YM(2+1) ≈ Magnetic screening mass of YM(3+1) at high temperatures
- We will use a Hamiltonian approach because some exact calculations are possible

Collaborators: Dimitra Karabali, Chanju Kim, Abhishek Agarwal, Alexander Yelnikov

• We choose $A_0 = 0$ and use complex coordinates $z = x_1 - ix_2$ with

$$\frac{1}{2}(A_1 + iA_2) = -\partial M M^{-1}, \quad \frac{1}{2}(A_1 - iA_2) = M^{\dagger - 1}\bar{\partial}M^{\dagger}$$

 $M \in SL(N, \mathbb{C})$, for gauge group SU(N). (More generally, $G \Rightarrow G^{\mathbb{C}}$.)

- Since M → g M under a gauge transformation, g ∈ SU(N), H = M[†]M ∈ SL(N, C)/SU(N) is gauge-invariant.
- We first calculate the volume of the gauge-invariant subspace:

$$\delta A = -\partial(\delta M M^{-1}) + [\partial M M^{-1}, \delta M M^{-1}]$$

= $-D(\delta M M^{-1})$
 $\delta \bar{A} = \bar{D}(M^{\dagger - 1} \delta M^{\dagger})$
 $ds_{\bar{A}}^2 = \int d^2 x \operatorname{Tr}(\delta A \ \delta \bar{A})$
= $\int \operatorname{Tr} \left[(M^{\dagger - 1} \delta M^{\dagger}) (-\bar{D}D) (\delta M M^{-1}) \right]$
 $ds_{SL(N,\mathbb{C})}^2 = \int \operatorname{Tr}(M^{\dagger - 1} \delta M^{\dagger} \ \delta M M^{-1})$

HAMILTONIAN ANALYSIS OF YM(2+1) (CONT'D.)

• From the structure of the metric

$$d\mu_{\tilde{\mathcal{A}}} = \det(-\bar{D}D) \, d\mu_{SL(N,\mathbb{C})}(M,M^{\dagger})$$

• One can do a polar decomposition $M = U \rho$, U unitary and ρ hermitian.

$$d\mu_{SL(N,\mathbb{C})} = (\underline{dMM^{-1}) \wedge \dots \wedge (dMM^{-1})}_{(N^2 - 1) \text{ times}} \wedge (\underline{M^{\dagger - 1}dM^{\dagger}) \wedge \dots \wedge (M^{\dagger - 1}dM^{\dagger})}_{(N^2 - 1) \text{ times}}$$
$$= d\mu(H) d\mu(U) \sqrt{}$$
Volume of $SL(N, \mathbb{C})/SU(N)$ Volume of $SU(N)$

• Thus the volume the gauge-invariant configuration space is

$$d\mu(\mathcal{C}) = d\mu(H) \det(-\overline{D}D) = d\mu(H) \exp[2 c_A S_{WZW}(H)]$$
$$d\mu(H) = [d\varphi] \det R$$

 $H = e^{t^a \varphi^a}, \quad H^{-1} \delta H = \delta \varphi^a R_{ab}(\varphi) t^b.$

• Wave functions are gauge-invariant (Gauss law), depend on $H = M^{\dagger}M$ with the inner product

$$\langle 1|2\rangle = \int d\mu(H) \exp[2 c_A S_{WZW}(H)] \Psi_1^* \Psi_2$$

This leads to an intuitive argument for a nonzero mass gap:

• The Hamiltonian has the form

$$\mathcal{H} = \int \frac{1}{2} \left[e^2 E^2 + B^2 / e^2 \right]$$

 $[E, B] \sim p$ (in momentum space) $\Longrightarrow \Delta E \Delta B \sim p$, or $\Delta E \sim p/\Delta B$

$$\mathcal{E} = \langle \mathcal{H} \rangle \approx \frac{1}{2} \left[e^2 \frac{p^2}{(\Delta B)^2} + \frac{(\Delta B)^2}{e^2} \right]$$

Minimize with respect to $\Delta B \implies (\Delta B)^2 \sim p \implies \mathcal{E} \sim p$. This is the photon.

For us

$$\langle \mathcal{H} \rangle = \int d\mu(H) \exp\left[2 c_A S_{WZW}(H)\right] \int \frac{1}{2} \left[e^2 E^2 + B^2/e^2\right]$$

Expanding the WZW action

$$\langle \mathcal{H} \rangle \approx \int d\mu(H) \exp\left[-\frac{c_A}{2\pi} \int B \frac{1}{p^2} B + ...\right] \int \frac{1}{2} \left[e^2 E^2 + \frac{B^2}{e^2}\right]$$

Gaussian $\implies (\Delta B)^2 \sim \pi p^2/c_A \implies \text{mass gap} \sim e^2 c_A/2\pi.$

- More detailed analysis confirms $m = e^2 c_A / 2\pi$.
- The Wilson loop operator is given by

$$W(C) = \operatorname{Tr} \mathcal{P}e^{-\oint A} = \operatorname{Tr} \mathcal{P} \exp\left(\frac{e}{2}\oint J\right)$$

All gauge-invariant quantities can be made from the current $J = (2/e)\partial H H^{-1}$.

• The Hamiltonian and the wave functions can be expressed as functions of the current $J = (2/e)\partial H H^{-1}$.

THE HAMILTONIAN OPERATOR

• The Hamiltonian is given by

$$\mathcal{H} = \underbrace{\frac{e^2}{2} \int E^a E^a}_{\equiv} + \underbrace{\frac{1}{2e^2} \int B^a B^a}_{T}$$

• The potential energy is easy to simplify,

$$V = \frac{1}{2e^2} \int B^a B^a = \frac{1}{2} \int_x : \bar{\partial} J^a(x) \ \bar{\partial} J^a(x) :$$

• The kinetic term is simplified via the chain rule

$$\begin{split} T \ \Psi &= -\frac{e^2}{2} \int_x \frac{\delta^2}{\delta A(x) \delta \bar{A}(x)} \ \Psi \\ &= -\frac{e^2}{2} \left[\int \underbrace{\frac{\delta J(u)}{\delta A(x)} \frac{\delta J(v)}{\delta \bar{A}(x)}}_{\Omega} \frac{\delta^2 \Psi}{\delta J(u) \delta J(v)} + \int \underbrace{\frac{\delta^2 J(u)}{\delta A(x) \delta \bar{A}(x)}}_{\omega} \frac{\delta \Psi}{\delta J(u)} \right] \\ &= -\int \Omega_{ab}(u,v) \frac{\delta^2 \Psi}{\delta J^a(u) \delta J^b(v)} + \int \omega^a(u) \frac{\delta \Psi}{\delta J^a(u)} \end{split}$$

• $\omega^a(u)$ needs regularization

$$\omega^{a} = -\frac{e^{2}}{2} \int_{x} \frac{\delta^{2} J^{a}(u)}{\delta A^{b}(x) \delta \bar{A}^{b}(x)} = \left(e^{2} c_{A}/2\pi\right) M^{\dagger}_{am}(x) \operatorname{Tr}\left[t^{m} \bar{D}^{-1}_{reg}(y,x)\right]_{y \to x}$$
$$= m J^{a}$$

The kinetic energy is thus given by

$$T = m \left[\int J^a \frac{\delta}{\delta J^a} + \int \Omega_{ab}(u,v) \frac{\delta^2}{\delta J^a(u)\delta J^b(v)} \right]$$
$$\Omega_{ab}(u,v) = \frac{c_A}{\pi^2} \frac{\delta_{ab}}{(u-v)^2} - i \frac{f_{abc}J^c(v)}{u-v} + \mathcal{O}(\epsilon)$$

• The Hamiltonian is $\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_1$ with

$$\begin{aligned} \mathcal{H}_0 &= m \int_z J_a(\vec{z}) \frac{\delta}{\delta J_a(\vec{z})} + \frac{2}{\pi} \int_{z,w} \frac{1}{(z-w)^2} \frac{\delta}{\delta J_a(\vec{w})} \frac{\delta}{\delta J_a(\vec{z})} \\ &+ \frac{1}{2} \int_x : \bar{\partial} J^a(x) \bar{\partial} J^a(x) : \\ \mathcal{H}_1 &= i \, e f_{abc} \int_{z,w} \frac{J^c(\vec{w})}{\pi(z-w)} \frac{\delta}{\delta J_a(\vec{w})} \frac{\delta}{\delta J_b(\vec{z})} \end{aligned}$$

AN ASIDE ON REGULARIZATION

All calculations are done with proper regularization.

• Start with a regularization of the δ -function

$$\delta^{(2)}(u,w) \Longrightarrow \sigma(\vec{u},\vec{w},\epsilon) = \frac{1}{\pi\epsilon} \exp\left(-\frac{|u-w|^2}{\epsilon}\right)$$

This is equivalent to

$$\begin{split} \bar{G}(\vec{x}, \vec{y}) &= \frac{1}{\pi(x - y)} \\ \implies \bar{\mathcal{G}}(\vec{x}, \vec{y}) &= \int_{u} \bar{G}(\vec{x}, \vec{u}) \ \sigma(\vec{u}, \vec{y}; \epsilon) H(u, \bar{y}) H^{-1}(y, \bar{y}) \end{split}$$

This simplifies as

$$\overline{\mathcal{G}}_{ma}(x,y) = \frac{1}{\pi(x-y)} \left[\delta_{ma} - e^{-\frac{(x-y)^2}{\epsilon}} \left[H(x,\bar{y}) H^{-1}(y,\bar{y}) \right]_{ma} \right]$$

One can check all results using regularized expressions, with a single regulator from beginning to end.

• One can solve the Schrödinger equation to get the vacuum wave function as $\Psi_0 = \exp\left[\frac{1}{2}F(H)\right]$,

$$F(H) = -\int \bar{\partial} J_a \left[\frac{1}{(m + \sqrt{m^2 - \nabla^2})} \right] \bar{\partial} J_a + 2 f_{abc} \int f^{(3)}(\vec{x}, \vec{y}, \vec{z}) J_a(\vec{x}) J_b(\vec{y}) J_c(\vec{z}) + \mathcal{O}(J^4)$$

• This has the correct expected limits

$$\begin{split} \Psi_0 &\approx \exp\left[-\frac{1}{2e^2}\int B\frac{1}{\sqrt{-\nabla^2}}B\right] & \qquad \frac{k}{m} \gg 1 \\ &\approx \exp\left[-\frac{1}{4e^2m}\int B^2\right] & \qquad \frac{k}{m} \ll 1 \end{split}$$

 $\mathcal{O}(J^3,J^4)$ terms are small at $k\gg e^2$ and at $k\ll e^2$

• The high *k* limit agrees with perturbation theory

For quantities involving low momentum modes

$$\begin{array}{ll} \langle \mathcal{O} \rangle & = & \int \Psi_0^* \Psi_0 \, \mathcal{O} = \operatorname{int} \exp\left[-\frac{1}{4g^2} F_{ij}^a F^{aij}\right] \, \mathcal{O} \\ & = & \langle \mathcal{O} \rangle_{2dYM} \end{array}$$

 $g^2 = me^2 = e^4 c_A/2\pi.$

● Since YM_{2d} confines

$$\langle W_R(C) \rangle = \exp\left[-\sigma_R \mathcal{A}_C\right]$$

 A_C = area of the closed curve *C*.

This gave values of string tension

$$\sqrt{\sigma_R} = e^2 \sqrt{\frac{c_A c_R}{4\pi}},$$

in agreement with lattice values to within 1 - 3%.

Group	Representations						
	k=1	k=2	k=3	k=2	k=3	k=3	
	Fund.	antisym	antisym	sym	sym	mixed	
SU(2)	0.345						
	0.335						
SU(3)	0.564						
	0.553						
SU(4)	0.772	0.891		1.196			
	0.759	0.883		1.110			
SU(5)	0.977						
	0.966						
SU(6)	1.180	1.493	1.583	1.784	2.318	1.985	
	1.167	1.484	1.569	1.727	2.251	1.921	
SU(N)	0.1995 N						
$N \to \infty$	0.1976 N						

Comparison of $\sqrt{\sigma}/e^2$ with lattice estimates (lower entry, in red) from LUCINI & TEPER, BRINGOLTZ

& TEPER. *k* is the rank of the representation.

THE WAVE FUNCTION: A DIFFERENT ARGUMENT

• Absorb $\exp(2c_A S_{WZW})$ from the inner product into the wave function by $\Psi = e^{-c_A S_{WZW}(H)} \Phi$. The Hamiltonian acting on Φ is

$$\mathcal{H} \to e^{-c_A S_{WZW}(H)} \mathcal{H} e^{-c_A S_{WZW}(H)}$$

• Consider $H = e^{t^a \varphi^a} \approx 1 + t^a \varphi^a + \cdots$, a small φ limit appropriate for a (resummed) perturbation theory. The new Hamiltonian is

$$\mathcal{H} = \frac{1}{2} \int \left[-\frac{\delta^2}{\delta \phi^2} + \phi(-\nabla^2 + m^2)\phi + \cdots \right]$$

where $\phi_a(\vec{k}) = \sqrt{c_A k \bar{k} / (2\pi m)} \varphi_a(\vec{k})$.

The vacuum wave function is

$$\Phi_0 \approx \exp\left[-\frac{1}{2}\int \phi^a \sqrt{m^2 - \nabla^2} \phi^a\right]$$

Transforming back to Ψ,

$$\Psi_0 \approx \exp\left[-\frac{c_A}{\pi m}\int (\bar{\partial}\partial\varphi^a)\left[\frac{1}{m+\sqrt{m^2-\nabla^2}}\right](\bar{\partial}\partial\varphi^a)+\cdots\right]$$

• The full wave function must be a functional of *J*. The only form consistent with the above is

$$\Psi_0 = \exp\left[-\frac{2\pi^2}{e^2c_A^2}\int \bar{\partial}J^a(x)\left[\frac{1}{m+\sqrt{m^2-\nabla^2}}\right]_{x,y}\bar{\partial}J^a(y) + \cdots\right]$$

since $J \approx (c_A/\pi)\partial\varphi + \mathcal{O}(\varphi^2)$.

- This indicates the robustness of the Gaussian term in Ψ₀, since this argument only presumes
 - 1. Existence of a regulator, so that the transformation $\Psi \iff \Phi$ can be carried out
 - 2. The two-dimensional anomaly calculation

STATUS REPORT

- Some things which can be calculated/understood
 - A clear gauge-invariant Hamiltonian formulation
 - Computation of the vacuum wave function
 - String tensions: lowest order, with a systematic expansion for higher order corrections (of the order a few percent)
 - Possibility of screening of $W_R(C)$ via string-breaking in some representations
 - Results on magnetic screening mass, glueballs
 - Extension to Yang-Mills-Chern-Simons Theory, Formulation on $\mathbb{R} \times S^2$
- But there are also unclear issues, more questions
 - Improving higher order corrections to string tension, better handle on glueballs
 - Calculations on the torus to understand the theory at finite temperature
 - Connecting the formulation on $\mathbb{R} \times S^2$ to the duality-matrix model approach
 - Fermions, supersymmetric cases
 - Geometrical properties of the configuration space \$\tilde{\mathcal{A}} / \mathcal{G}_*\$