Geometric Quantization \& Hamiltonian Analysis

IN Field THEORY

V. P. NAIR

City College of the CUNY

15th Saalburg Summer School
Wolfersdorf, GERMANY
SEPTEMBER, 2009

Quantum theory is defined as a unitary irreducible representation of the algebra of observables.
Geometric quantization gives a way to realize this, elucidating the role of the geometry and topology of the phase space.

- Classical phase space dynamics
- Pre-quantum Hilbert space, operators, polarization
- Role of topology: $\mathcal{H}^{1}(M, \mathbb{R}), \mathcal{H}^{2}(M, \mathbb{R})$
- Quantizing S^{2}
- Configuration space for gauge fields
- Chern-Simons theory
- θ-vacua in gauge theories
- WZW action and the Dirac determinant
- Hamiltonian Analysis of Yang-Mills (2+1)

The Symplectic Structure

Phase space $=$ A smooth even dimensional manifold M endowed with a symplectic structure Ω

- Ω is a differential 2-form on M which is closed and nondegenerate.
- Closed: $d \Omega=0$
- Nondegenerate: For any vector field ξ on $M, i_{\xi} \Omega=0 \Rightarrow \xi=0$

$$
\Omega=\frac{1}{2} \Omega_{\mu \nu} d q^{\mu} \wedge d q^{\nu}
$$

- The condition $d \Omega=0$ becomes

$$
\begin{aligned}
d \Omega & =\frac{\partial \Omega_{\mu \nu}}{\partial q^{\alpha}} d q^{\alpha} \wedge d q^{\mu} \wedge d q^{\nu} \\
& =\frac{1}{3}\left[\frac{\partial \Omega_{\mu \nu}}{\partial q^{\alpha}}+\frac{\partial \Omega_{\alpha \mu}}{\partial q^{\nu}}+\frac{\partial \Omega_{\nu \alpha}}{\partial q^{\mu}}\right] d q^{\alpha} \wedge d q^{\mu} \wedge d q^{\nu} \\
& =0
\end{aligned}
$$

- Interior contraction with $\xi=\xi^{\mu}\left(\partial / \partial q^{\mu}\right)$ is

$$
i_{\xi} \Omega=\xi^{\mu} \Omega_{\mu \nu} d q^{\nu}
$$

$i_{\xi} \Omega=0 \Rightarrow \xi=0 \equiv \xi^{\mu} \Omega_{\mu \nu}=0 \Rightarrow \xi^{\mu}=0 ; \Longleftrightarrow \Omega$ is nondegenerate as a matrix

The Symplectic Structure (CONT’D.)

- Inverse of Ω can be defined by

$$
\Omega_{\mu \nu} \Omega^{\nu \alpha}=\delta_{\mu}^{\alpha}
$$

(If Ω has zero modes, one has gauge symmetries.)

- Since $d \Omega=0$, we can write

$$
\Omega=d \mathcal{A} \quad \Omega_{\mu \nu}=\frac{\partial}{\partial q^{\mu}} \mathcal{A}_{\nu}-\frac{\partial}{\partial q^{\nu}} \mathcal{A}_{\mu}
$$

- What are the qualifications to this statement?
- If there are noncontractible 2 d -surfaces Σ such that

$$
\int_{\Sigma} \Omega \neq 0
$$

then \mathcal{A} cannot exist globally. (Equivalent to $\mathcal{H}^{2}(M) \neq 0$; e.g. CS, WZW theories)

- Even if $\mathcal{H}^{2}(M)=0$, one can have inequivalent \mathcal{A}^{\prime} s. For example, \mathcal{A} and $\mathcal{A}+A$ give same Ω if $d A=0$.
- Evidently $A=d \Lambda$ is one possibility (Canonical transformations)
- One can have $A \neq d \Lambda$ with $d A=0 \Longleftrightarrow \mathcal{H}^{1}(M) \neq 0$ (e.g. θ-vacua)

CANONICAL TRANSFORMATIONS

- Transformations of (phase space) coordinates which preserve Ω are canonical transformations.
- For infinitesimal transformations, $q^{\mu} \rightarrow q^{\mu}+\xi^{\mu}$, change in Ω is

$$
\begin{aligned}
\delta \Omega & =\left[\frac{1}{2} \Omega_{\mu \nu}(q+\xi) d\left(q^{\mu}+\xi^{\mu}\right) \wedge d\left(q^{\nu}+\xi^{\nu}\right)-\frac{1}{2} \Omega_{\mu \nu}(q) d q^{\mu} \wedge d q^{\nu}\right] \equiv L_{\xi} \Omega \\
& =d\left(i_{\xi} \Omega\right)+i_{\xi} d \Omega=d\left(i_{\xi} \Omega\right) \\
& =0
\end{aligned}
$$

The solution is $i_{\xi} \Omega=-d f \quad$ (if $\mathcal{H}^{1}(M)=0$).

- Conversely, for any function f, one can define $\xi^{\mu}=\Omega^{\mu \nu} \partial_{\nu} f . \Longrightarrow L_{\xi} \Omega=0$.
- This leads to

Generating function of canonical transformation
Hamiltonian vector fields

CANONICAL TRANSFORMATIONS (CONTD.)

- If ξ and η preserve Ω, so does their Lie commutator

$$
[\xi, \eta]^{\mu}=\xi^{\nu} \partial_{\nu} \eta^{\mu}-\eta^{\nu} \partial_{\nu} \xi^{\mu}
$$

- If $\xi \leftrightarrow f$ and $\eta \leftrightarrow g$, then there is a function corresponding to $[\xi, \eta]$; this is called the Poisson bracket $-\{f, g\}$ and is defined by

$$
\{f, g\}=i_{\xi} i_{\eta} \Omega=\eta^{\mu} \xi^{\nu} \Omega_{\mu \nu}=-i_{\xi} d g=i_{\eta} d f=\Omega^{\mu \nu} \partial_{\mu} f \partial_{\nu} g
$$

- The Poisson bracket obeys

$$
\begin{array}{r}
\{f, g\}=-\{g, f\} \\
\{f,\{g, h\}\}+\{h,\{f, g\}\}+\{g,\{h, f\}\}=0
\end{array}
$$

- Poisson brackets are important because the change in a function on phase space due to a canonical transformation is

$$
\delta F=\xi^{\mu} \partial_{\mu} F=\{F, f\}
$$

CANONICAL TRANSFORMATIONS (CONT’D.)

- The change in the canonical 1-form is given by

$$
\delta \mathcal{A}=L_{\xi} \mathcal{A}=d\left(i_{\xi} \mathcal{A}-f\right)=d \Lambda
$$

- Classical dynamics is given by

$$
\Omega_{\mu \nu} \frac{\partial q^{\nu}}{\partial t}=\frac{\partial H}{\partial q^{\mu}}
$$

- This can be obtained from an action

$$
\mathcal{S}=\int_{t_{i}}^{t_{f}} d t\left(\mathcal{A}_{\mu} \frac{d q^{\mu}}{d t}-H\right)
$$

- Variation of the action gives

$$
\delta \mathcal{S}=i_{\xi} \mathcal{A}\left(t_{f}\right)-i_{\xi} \mathcal{A}\left(t_{i}\right)+\int d t\left(\Omega_{\mu \nu} \frac{d q^{\nu}}{d t}-\frac{\partial H}{\partial q^{\mu}}\right) \xi^{\mu}
$$

- Given the action, the boundary term in its variation can be used to identify \mathcal{A} and, hence, Ω.

Quantum Theory = Unitary Irreducible Representation of the Algebra of Observables

- The problem of quantization is: How do we realize this explicitly?
- Canonical transformations \Longleftrightarrow Unitary transformations
- (Poisson bracket) classical algebra of observables \Longleftrightarrow Commutator algebra of operators
- Ensure irreducibility
- Geometric quantization provides a way to do this

Strategy:

1. Define pre-quantum wave functions and pre-quantum operators
2. Impose a polarization to achieve irreducibility

QUANTIZATION (CONT’D.)

- Since canonical transformations are $\mathcal{A} \rightarrow \mathcal{A}+d \Lambda$, we consider wave functions to have the property

$$
\Psi(q) \rightarrow e^{i \Lambda} \Psi(q), \quad \mathcal{A} \rightarrow \mathcal{A}+d \Lambda
$$

- Ψ depends on all phase space coordinates. They are analogous to fields coupled to a $U(1)$ gauge field \mathcal{A}. (They are sections of a line bundle on M with curvature Ω.)
- The Ψ^{\prime} s are pre-quantum wave functions and form a (pre-quantum) Hilbert space with the inner product

$$
\begin{aligned}
& (1 \mid 2)=\int d \sigma(M) \Psi_{1}^{*} \Psi_{2} \\
& d \sigma(M)=\Omega \wedge \Omega \cdots \wedge \Omega \sim \operatorname{det}(\Omega) d^{2 n} q .
\end{aligned}
$$

- How does Ψ change under $q^{\mu} \rightarrow q^{\mu}+\xi^{\mu}$? Under such a change, $\mathcal{A} \rightarrow \mathcal{A}+i_{\xi} \mathcal{A}-f$, so that

$$
\begin{aligned}
\delta \Psi & =\xi^{\mu} \partial_{\mu} \Psi-i\left(i_{\xi} \mathcal{A}-f\right) \Psi \\
& =\xi^{\mu}\left(\partial_{\mu}-i \mathcal{A}_{\mu}\right) \Psi+i f \Psi=\left(\xi^{\mu} \mathcal{D}_{\mu}+i f\right) \Psi
\end{aligned}
$$

The first term gives change of Ψ as a function, the second compensates for the change of \mathcal{A}.

- Define the pre-quantum operator corresponding to f as

$$
\mathcal{P}(f)=-i(\xi \cdot \mathcal{D}+i f)
$$

- In terms of Hamiltonian vector fields, $f \leftrightarrow \xi, g \leftrightarrow \eta,\{f, g\} \leftrightarrow-[\xi, \eta]$; this gives

$$
\begin{aligned}
{[\mathcal{P}(f), \mathcal{P}(g)] } & =[-i \xi \cdot \mathcal{D}+f,-i \eta \cdot \mathcal{D}+g] \\
& =-\left[\xi^{\mu} \mathcal{D}_{\mu}, \eta^{\nu} \mathcal{D}_{\nu}\right]-i \xi^{\mu}\left[\mathcal{D}_{\mu}, g\right]+i \eta^{\mu}\left[\mathcal{D}_{\mu}, f\right] \\
& =i \xi^{\mu} \eta^{\nu} \Omega_{\mu \nu}-\left(\xi^{\mu} \partial_{\mu} \eta^{\nu}\right) \mathcal{D}_{\nu}+\left(\eta^{\mu} \partial_{\mu} \xi^{\nu}\right) \mathcal{D}_{\nu}-i \xi^{\mu} \partial_{\mu} g+i \eta^{\mu} \partial_{\mu} f \\
& =i\left(-\xi^{\mu} \eta^{\nu} \Omega_{\mu \nu}+i[\xi, \eta] \cdot \mathcal{D}\right) \\
& =i\left(-i\left(i_{[\eta, \xi]} \mathcal{D}\right)+\{f, g\}\right) \\
& =i \mathcal{P}(\{f, g\})
\end{aligned}
$$

- The pre-quantum operators form a representation of the Poisson bracket algebra of functions on the phase space, with $[A, B] \sim i\{A, B\}$.
- We get a representation, but this is reducible in general, since Ψ depends on all phase space variables.
- Illustrate by example: Point-particle in one space dimension

$$
\Omega=d p \wedge d x, \quad \mathcal{A}=p d x
$$

- Hamiltonian vector fields and pre-quantum operators for q and p are

$$
\begin{array}{cl}
x \leftrightarrow-\frac{\partial}{\partial p}, & p \leftrightarrow \frac{\partial}{\partial x} \\
\mathcal{P}(x)=i \frac{\partial}{\partial p}+x, & \mathcal{P}(p)=-i\left(\frac{\partial}{\partial x}-i p\right)+p=-i \frac{\partial}{\partial x}
\end{array}
$$

$[\mathcal{P}(x), \mathcal{P}(p)]=i$, so that we have a representation of the Poisson bracket algebra.

- Consider a subset of wave functions obeying

$$
\frac{\partial \Psi}{\partial p}=0
$$

In this case, $\mathcal{P}(x)=x, \mathcal{P}(p)=-i \frac{\partial}{\partial x}$, which still obey $[\mathcal{P}(x), \mathcal{P}(p)]=i$.
We have a representation on a subspace \Longrightarrow previous representation is reducible.

QUANTIZATION (CONT'D.)

- Choose subsidiary conditions on Ψ which restrict its dependence to half the number of variables (Choice of polarization).
- Choose n vector fields $P_{i}=P_{i}^{\mu}\left(\partial / \partial q^{\mu}\right)$, obeying

$$
\Omega_{\mu \nu} P_{i}^{\mu} P_{j}^{\nu}=0
$$

and impose

$$
P_{i}^{\mu} \mathcal{D}_{\mu} \Psi=0
$$

The vectors P_{i} define the polarization. The restricted wave functions are the true wave functions of the theory.

- Inner product on the true wave functions? Generally difficult, no natural volume measure on restricted subspace of phase space.
- One case where this is possible: M is a Kähler space, Ω is the Kähler form.
- For a Kähler space,

$$
\begin{aligned}
\Omega & =\Omega_{a \bar{a}} d x^{a} \wedge d \overline{x^{\bar{a}}}=\frac{i}{2} \partial_{a} \partial_{\bar{a}} K d x^{a} \wedge d \overline{x^{\bar{a}}}=d \mathcal{A} \\
\mathcal{A}_{a} & =-\frac{i}{2} \partial_{a} K, \quad \mathcal{A}_{\bar{a}}=\frac{i}{2} \partial_{\bar{a}} K \\
\text { Metric } g_{a \bar{a}} & =\partial_{a} \partial_{\bar{a}} K
\end{aligned}
$$

- Since $\Omega_{a b}=0$, choose the (holomorphic or Bargmann) polarization condition

$$
\begin{aligned}
\mathcal{D}_{\bar{a}} \Psi & =\left(\partial_{\bar{a}}+\frac{1}{2} \partial_{\bar{a}} K\right) \Psi=0 \\
\Psi & =\exp \left(-\frac{1}{2} K\right) F
\end{aligned}
$$

F is holomorphic, with $\partial_{\bar{a}} F=0$.

- The inner product is

$$
\langle 1 \mid 2\rangle=\int d \sigma(M) e^{-K} F_{1}^{*} F_{2}
$$

- Operator $=$ Pre-quantum operator subject to polarization if it preserves polarization; otherwise construct matrix element directly.
- Consider \mathcal{A} and $\mathcal{A}+A$ which lead to same Ω,

$$
d \mathcal{A}=\Omega, \quad d(\mathcal{A}+A)=\Omega \quad \Longrightarrow d A=0
$$

- $A=d \Lambda \Longrightarrow$ remove it by canonical (unitary) transformation, $\Psi \Longrightarrow e^{i \Lambda} \Psi$.
- We can have $d A=0$ with $A \neq d \Lambda$; this means $\mathcal{H}^{1}(M, \mathbb{R}) \neq 0$.
- We can try $\Psi=\exp \left(i \int_{0}^{q} A\right) \Phi$.

- The path-dependence of the phase factor:
- $\int_{C} A-\int_{C^{\prime}} A=\oint A=\int_{S} d A=0$
- If the path $C-C^{\prime}$ is noncontractible with no surface S whose boundary is $C-C^{\prime}$, then $\oint A$ can be nonzero.
- Using $\Psi=\exp \left(i \int_{0}^{q} A\right) \Phi$ eliminates A but Φ need not be single-valued.
- Let $A=\theta \alpha$ where θ is a constant and $\int \alpha=1$ for a single traversal of the basic noncontractible path corresponding to $C-C^{\prime}$ (once around the red dot).
- Then for n traversals of the path, $\oint A=\theta n$.
- We can eliminate A and use Φ; but Φ is not single-valued and changes by $\exp (i \theta n)$ going around the noncontractible path n times.
- We have an extra constant θ required to define the quantum theory.
- Examples:
- Fractional statistics in two spatial dimensions
- Theta vacua in quantum chromodynamics

Topological features: $\mathcal{H}^{2}(M, \mathbb{R})$

- This occurs when we have closed 2-forms which are not exact; i.e., $d \Omega=0$, but $\Omega \neq d \mathcal{A}$ for any globally defined \mathcal{A}.
- Correspondingly, there are two-surfaces which are closed but are not boundaries of any 3 -volumes
- If $\Omega=d \mathcal{A}$, with \mathcal{A} well-defined globally, for a closed surface Σ,

$$
\int_{\Sigma} \Omega=\int_{\partial \Sigma} \mathcal{A}=0
$$

- If $\Omega \neq d \mathcal{A}$, the integral of Ω over a closed noncontractible 2 -surface can be nonzero.

$$
\begin{gathered}
I(\Sigma)=\int_{\Sigma} \Omega \\
I(\Sigma)-I\left(\Sigma^{\prime}\right)=\int_{\Sigma-\Sigma^{\prime}} \Omega=\int_{V} d \Omega=0
\end{gathered}
$$

- The integral of Ω over any closed two-surface is a topological invariant, invariant under small deformations of the surface.
- If Σ is contractible, deform Σ to zero $\Longrightarrow \int_{\Sigma} \Omega=0$.
- Otherwise, $I(\Sigma)$ can be nonzero.

Topological features: $\mathcal{H}^{2}(M, \mathbb{R})$

- Example of Σ as a two-sphere:
- Cover the surface with two patches, a northern hemisphere and a southern hemisphere, with $\Omega=d \mathcal{A}_{N}$ and $\Omega=d \mathcal{A}_{S}$ on corresponding patches
- On the overlap region, the equator E,

$$
\begin{aligned}
\mathcal{A}_{N} & =\mathcal{A}_{S}+d \Lambda \\
\Psi_{N} & =\exp (i \Lambda) \Psi_{S}
\end{aligned}
$$

$$
\Delta \Lambda=\oint_{E} d \Lambda=\int_{E} \mathcal{A}_{N}-\mathcal{A}_{S}=\int_{\partial N} \mathcal{A}_{N}+\int_{\partial S} \mathcal{A}_{S}=\int_{N} \Omega+\int_{S} \Omega=\int_{\Sigma} \Omega
$$

- Λ is not single-valued on the equator; but Ψ must be. Thus $\exp (i \Delta \Lambda)=1$, or

$$
\int_{\Sigma} \Omega=2 \pi n, \quad \text { (Dirac; Generalized Bohr-Sommerfeld condition) }
$$

- Examples of this are:
- Charged particle in a magnetic monopole background
- Chern-Simons and WZW theories

We will consider quantization with the holomorphic polarization.

- A phase space which is also Kähler; the symplectic two-form must be a multiple of the Kähler form.
- The polarization condition is chosen as $\mathcal{D}_{\bar{a}} \Psi=0$.
- The inner product of the prequantum Hilbert space $=$ Square integrability on the phase space \Rightarrow Inner product on the true Hilbert space in the holomorphic polarization.
- $f(q)$ which preserves the polarization \Rightarrow Prequantum operator $\mathcal{P}(f)$ restricted to the true (polarized) wave functions.
- For observables which do not preserve the polarization, one has to construct infinitesimal unitary transformations whose classical limits are the required canonical transformations.
- If the phase space M has noncontractible two-surfaces, then the integral of Ω over any of these surfaces must be quantized in units of 2π.
- If $\mathcal{H}^{1}(M, \mathbb{R})$ is not zero, then there are inequivalent \mathcal{A}^{\prime} s for the same Ω and we need extra angular parameters to specify the quantum theory completely.
- Take the phase space as the two-sphere $S^{2} \sim \mathbb{C} P^{1} \sim S U(2) / U(1)$.
- This is a Kähler manifold; basic parameters are:

Coordinates
Kähler two-form
Metric
Riemannian curvature
Euler number

- S^{2} has nontrivial $\mathcal{H}^{2}\left(S^{2}, \mathbb{R}\right)$ given by ω.
- The symplectic two-form is taken as

$$
\Omega=n \omega=i n \frac{d z \wedge d \bar{z}}{(1+z \bar{z})^{2}}
$$

where n is an integer, in agreement with Dirac-Bohr-Sommerfeld condition.

QuANTIZING THE TwO-SPHERE (CONT’D.)

- The symplectic potential is

$$
\begin{aligned}
\mathcal{A} & =\frac{i n}{2}\left[\frac{z d \bar{z}-\bar{z} d z}{(1+z \bar{z})}\right]=\frac{i}{2} \partial_{\bar{z}} K d \bar{z}-\frac{i}{2} \partial_{z} K d z \\
K & =n \log (1+z \bar{z})
\end{aligned}
$$

- Choose the polarization condition as

$$
\left(\partial_{\bar{z}}-i \mathcal{A}_{\bar{z}}\right) \Psi=\left[\partial_{\bar{z}}+\frac{n}{2} \frac{z}{1+z \bar{z}}\right] \Psi=0
$$

- This has the solution

$$
\Psi=\exp \left(-\frac{n}{2} \log (1+z \bar{z})\right) f(z)
$$

with the inner product

$$
\langle 1 \mid 2\rangle=i(n+1) \int \frac{d z \wedge d \bar{z}}{2 \pi(1+z \bar{z})^{n+2}} f_{1}{ }^{*} f_{2}
$$

- Normalizable states correspond to linear combinations of $f(z)=1, z, z^{2}, \cdots, z^{n}$; dimension of Hilbert space $=n+1$. (Inner product normalized so that $\operatorname{Tr}(\mathbf{1})=n+1$.)

QuANTIZING THE TwO-SPHERE (CONT’D.)

- There are three independent vector fields on S^{2} which preserve the metric and ω (Hamiltonian vector fields).

Vector field

$$
\begin{array}{rll}
\xi_{+}=i\left(\frac{\partial}{\partial \bar{z}}+z^{2} \frac{\partial}{\partial z}\right) & J_{+}=-n \frac{z}{1+z \bar{z}} \\
\xi_{-}=i\left(\frac{\partial}{\partial z}+\bar{z}^{2} \frac{\partial}{\partial \bar{z}}\right) & J_{-}=-n \frac{\bar{z}}{1+z \bar{z}} \\
\xi_{3}=i\left(z \frac{\partial}{\partial z}-\bar{z} \frac{\partial}{\partial \bar{z}}\right) & J_{3}=-\frac{n}{2}\left(\frac{1-z \bar{z}}{1+z \bar{z}}\right)
\end{array}
$$

- Check one case:

$$
\begin{aligned}
i_{\xi_{+}} \Omega & \left.=i\left(\partial_{\bar{z}}+z^{2} \partial_{z}\right)\right\rfloor i n \frac{d z \wedge d \bar{z}}{(1+z \bar{z})^{2}} \\
& =-n\left[-\frac{d z}{(1+z \bar{z})^{2}}+\frac{z^{2} d \bar{z}}{(1+z \bar{z})^{2}}\right] \\
& =-d\left[-\frac{n z}{(1+z \bar{z})}\right]
\end{aligned}
$$

QuANTIZING THE TwO-SPHERE (CONT’D.)

- The pre-quantum operators are

$$
\begin{aligned}
\mathcal{P}\left(J_{+}\right) & =\left(z^{2} \partial_{z}-\frac{n z}{2} \frac{2+z \bar{z}}{1+z \bar{z}}\right)-i \xi_{+}^{\bar{z}} \mathcal{D}_{\bar{z}} \\
\mathcal{P}\left(J_{-}\right) & =\left(-\partial_{z}-\frac{n}{2} \frac{\bar{z}}{1+z \bar{z}}\right)-i \xi_{-}^{\bar{z}} \mathcal{D}_{\bar{z}} \\
\mathcal{P}\left(J_{3}\right) & =\left(z \partial_{z}-\frac{n}{2} \frac{1}{1+z \bar{z}}\right)-i \xi_{3}^{\bar{z}} \mathcal{D}_{\bar{z}}
\end{aligned}
$$

- On the polarized wave functions, $\mathcal{D}_{\bar{z}} \Psi=0$, giving the quantum operators acting on $f(z)$,

$$
\begin{aligned}
& \hat{J}_{+}=z^{2} \partial_{z}-n z \\
& \hat{J}_{-}=-\partial_{z} \\
& \hat{J}_{3}=z \partial_{z}-\frac{1}{2} n
\end{aligned}
$$

- These obey $S U(2)$ algebra.
- The full Hilbert space corresponds to one UIR of $\operatorname{SU(2)}$ with $j=n / 2$.

QuANTIZING THE TwO-SPHERE (CONT’D.)

- The form of the action is

$$
\begin{aligned}
\mathcal{S} & =\int d t \mathcal{A}_{\mu} \frac{d q^{\mu}}{d t}=i \frac{n}{2} \int d t \frac{z \dot{\bar{z}}-\bar{z} \dot{z}}{1+z \bar{z}} \\
& =i \frac{n}{2} \int d t \operatorname{Tr}\left(\sigma_{3} g^{-1} \dot{g}\right)
\end{aligned}
$$

$g \in S U(2) ;$ explicitly

$$
g=\frac{1}{\sqrt{1+z \bar{z}}}\left[\begin{array}{cc}
1 & z \\
-\bar{z} & 1
\end{array}\right]\left[\begin{array}{cc}
e^{i \theta} & 0 \\
0 & e^{-i \theta}
\end{array}\right]
$$

- More generally, one can take, for $g \in G$,

$$
\mathcal{S}=i \sum_{a} \underbrace{}_{\text {Weights of a UIR }} w_{a} \int d t \operatorname{Tr}\left(t^{\left.t^{a} g^{-1} \dot{g}\right),} \quad \underset{\text { Diagonal Generators }}{\mathcal{A}(g)=i \sum_{a} w_{a} \operatorname{Tr}\left(t^{a} g^{-1} d g\right)}\right.
$$

Ω on $G / H, H=$ maximal subgroup of G commuting with $\sum_{a} w_{a} t^{a}$.

- Hilbert space will give one UIR of G, highest weights given by w_{a}

Analyze topology and geometry of the space of gauge fields in a Hamiltonian description

- Choose $A_{0}=0$ gauge; we are then left with the spatial components $A_{i}(x)$ which are Lie-algebra-valued vector fields on space.
- A gauge transformation acts on A_{i} as $A_{i} \rightarrow A_{i}^{g}=g^{-1} A_{i} g+g^{-1} \partial_{i} g, g \in G$.
- Define

$$
\begin{aligned}
\tilde{\mathcal{A}} & \equiv\left\{\text { Set of all gauge potentials } A_{i}\right\} \\
& \equiv\left\{\text { Set of all Lie }- \text { algebra }- \text { valued vector fields on space } \mathbb{R}^{d}\right\} \\
\mathcal{G} & \equiv\left\{\text { Set of all } g(\vec{x}): \mathbb{R}^{d} \rightarrow G, \text { such that } g(\vec{x}) \longrightarrow \text { constant } \in G \text { as }|\vec{x}| \longrightarrow \infty\right\} \\
\mathcal{G}_{*} & \equiv\left\{\text { Set of all } g(\vec{x}): \mathbb{R}^{d} \rightarrow G, \text { such that } g(\vec{x}) \longrightarrow 1 \text { as }|\vec{x}| \longrightarrow \infty\right\}
\end{aligned}
$$

- Evidently $\mathcal{G} / \mathcal{G}_{*}=G$. This acts as a Noether symmetry classifying charged states in the theory.
- \mathcal{G}_{*} is the true gauge symmetry, with A_{i} and A_{i}^{g} physically equivalent for $g(x) \in \mathcal{G}_{*}$.
- The physical configuration space is $\mathcal{C}=\tilde{\mathcal{A}} / \mathcal{G}_{*}$
- Consider $2+1$ dimensions

$$
\Pi_{2}(\mathcal{C})=\Pi_{1}\left(\mathcal{G}_{*}\right)=\Pi_{3}(G)=\left\{\begin{array}{cc}
\mathbb{Z} & \text { All compact } G \neq S O(4) \\
\mathbb{Z} \times \mathbb{Z} & G=S O(4)
\end{array}\right.
$$

- How does this arise?
- An element of \mathcal{G}_{*} is $g(\vec{x})$ with $g \rightarrow 1$ at spatial infinity $\Rightarrow \Pi_{0}\left(\mathcal{G}_{*}\right)=\Pi_{2}(G)=0$.
- For connectivity, examine closed paths starting and ending at $g(\vec{x})=1$. Such a path is given by $g(\vec{x}, \lambda) ; 0 \leq \lambda \leq 1$ parametrizes path, with $g(\vec{x}, 0)=g(\vec{x}, 1)=1$.
- $g(\vec{x}, \lambda): \mathbb{R}^{3} \rightarrow G$ with $g \rightarrow 1$ at the 'boundary'. This is equivalent to a map from S^{3} to G, classified by $\Pi_{3}(G)$.
- There are noncontractible two-surfaces in \mathcal{C} and hence in the phase space.

Gauge theories in $2+1$ dimensions have $\mathcal{H}^{2}(M, \mathbb{R}) \neq 0$; they can show Dirac quantization conditions (depending on choice of Ω)

- Consider $3+1$ dimensions

$$
\Pi_{1}(\mathcal{C})=\Pi_{0}\left(\mathcal{G}_{*}\right)=\Pi_{3}(G)=\left\{\begin{array}{cc}
\mathbb{Z} & \text { All compact simple } G \neq S O(4) \\
\mathbb{Z} \times \mathbb{Z} & G=S O(4)
\end{array}\right.
$$

- How does this arise? Similar reasoning as for $2+1$ dimensions
- There are noncontractible paths in \mathcal{C} and hence in phase space.
- The phase space is multiply connected with connectivity given by \mathbb{Z} (or $\mathbb{Z} \times \mathbb{Z}$ for $S O$ (4)).

Gauge theories in $3+1$ dimensions have $\mathcal{H}^{1}(M, \mathbb{R}) \neq 0$; the quantum theory will require additional vacuum angles $(\theta$-vacua) to characterize it.

The Chern-Simons Theory in $2+1$ Dimensions

- The action is given by

$$
\begin{aligned}
\mathcal{S} & =-\frac{k}{4 \pi} \int_{\Sigma \times\left[t_{i}, t_{f}\right]} \operatorname{Tr}\left[A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right] \\
& =-\frac{k}{4 \pi} \int_{\Sigma \times\left[t_{i}, t_{f}\right]} d^{3} x \epsilon^{\mu \nu \alpha} \operatorname{Tr}\left[A_{\mu} \partial_{\nu} A_{\alpha}+\frac{2}{3} A_{\mu} A_{\nu} A_{\alpha}\right]
\end{aligned}
$$

Σ is usually taken as a Riemann surface.

- Choose $A_{0}=0$ as a gauge condition; then

$$
\mathcal{S}=-\frac{i k}{\pi} \int d t d \mu_{\Sigma} \operatorname{Tr}\left(A_{\bar{z}} \partial_{0} A_{z}\right) \quad \Longrightarrow \quad \mathcal{A}=-\frac{i k}{\pi} \int_{\Sigma} \operatorname{Tr}\left(A_{\bar{z}} \delta A_{z}\right)+\delta \rho[A]
$$

- The symplectic two-form is

$$
\Omega=-\frac{i k}{\pi} \int_{\Sigma} d \mu_{\Sigma} \operatorname{Tr}\left(\delta A_{\bar{z}} \delta A_{z}\right)=\frac{i k}{2 \pi} \int_{\Sigma} d \mu_{\Sigma} \delta A_{\bar{z}}^{a} \delta A_{z}^{a}
$$

- The space of 2-d gauge potentials is Kähler with the Kähler potential

$$
K=\frac{k}{2 \pi} \int_{\Sigma} A_{\bar{z}}^{a} A_{z}^{a}
$$

The Chern-Simons Theory in 2+1 Dimensions (CONTD.)

- (Time-independent) gauge transformations act on the potentials as

$$
A^{g}=g A g^{-1}-d g g^{-1} \approx A-D \theta \quad \text { infinitesimally }
$$

- The infinitesimal transformations are generated by the vector field

$$
\xi=-\int_{\Sigma}\left(\left(D_{z} \theta\right)^{a} \frac{\delta}{\delta A_{z}^{a}}+\left(D_{\bar{z}} \theta\right)^{a} \frac{\delta}{\delta A_{\bar{z}}^{a}}\right)
$$

Acting on Ω we get

$$
\begin{aligned}
i_{\xi} \Omega & \left.=-\int\left(\left(D_{z} \theta\right)^{a} \frac{\delta}{\delta A_{z}^{a}}+\left(D_{\bar{z}} \theta\right)^{a} \frac{\delta}{\delta A_{\bar{z}}^{a}}\right)\right\rfloor \frac{i k}{2 \pi} \int_{\Sigma} d \mu_{\Sigma} \delta A_{\bar{z}}^{a} \delta A_{z}^{a} \\
& =-\frac{i k}{2 \pi} \int\left[\left((\bar{D} \theta)^{a} \delta A_{z}^{a}-(D \theta)^{a} \delta A_{\bar{z}}^{a}\right]=\frac{i k}{2 \pi} \int \theta^{a}\left(\bar{D} \delta A_{z}-D \delta A_{\bar{z}}\right)^{a}\right. \\
& =\frac{i k}{2 \pi} \int \theta^{a} \delta F_{\bar{z} z}^{a}=-\delta\left[\int \theta^{a} \frac{i k}{2 \pi} F_{z \bar{z}}^{a}\right]
\end{aligned}
$$

- The generator of gauge transformations is

$$
G^{a}=\frac{i k}{2 \pi} F_{z \bar{z}}^{a}
$$

This has to vanish on wave functions, $G^{a} \Psi=0$.

The Chern-Simons Theory in 2+1 Dimensions (CONTD.)

- The prequantum wave functions have the inner product

$$
(1 \mid 2)=\int d \mu\left(A_{z}, A_{\bar{z}}\right) \Psi_{1}^{*}\left[A_{z}, A_{\bar{z}}\right] \Psi_{2}\left[A_{z}, A_{\bar{z}}\right]
$$

- The symplectic potential is

$$
\mathcal{A}=-\frac{i k}{2 \pi} \int_{\Sigma} \operatorname{Tr}\left(A_{\bar{z}} \delta A_{z}-A_{z} \delta A_{\bar{z}}\right)=\frac{i k}{4 \pi} \int_{\Sigma}\left(A_{\bar{z}}^{a} \delta A_{z}^{a}-A_{z}^{a} \delta A_{\bar{z}}^{a}\right)
$$

- The covariant derivatives with \mathcal{A} as the potential are

$$
\nabla=\frac{\delta}{\delta A_{z}^{a}}+\frac{k}{4 \pi} A_{\bar{z}}^{a}, \quad \bar{\nabla}=\frac{\delta}{\delta A_{\bar{z}}^{a}}-\frac{k}{4 \pi} A_{z}^{a}
$$

- The Bargmann polarization condition is $\nabla \Psi=0$, with the solution

$$
\Psi=\exp \left(-\frac{k}{4 \pi} \int A_{\bar{z}}^{a} A_{z}^{a}\right) \psi\left[A_{\bar{z}}^{a}\right]=e^{-\frac{1}{2} K} \psi\left[A_{\bar{z}}^{a}\right]
$$

ψ^{\prime} s are antiholomorphic, depend only on $A_{z}{ }^{\prime}$'s.

The Chern-Simons Theory in 2+1 Dimensions (CONTD.)

- The inner product is now

$$
\langle 1 \mid 2\rangle=\int\left[d A_{\bar{z}}^{a} d A_{z}^{a}\right] e^{-K\left(A_{\bar{z}}^{a}, A_{z}^{a}\right)} \psi_{1}^{*} \psi_{2}
$$

On the (anti)holomorphic wave functionals ψ^{\prime} s

$$
A_{z}^{a} \psi\left[A_{\bar{z}}^{a}\right]=\frac{2 \pi}{k} \frac{\delta}{\delta A_{\bar{z}}^{a}} \psi\left[A_{\bar{z}}^{a}\right]
$$

and the condition of $G^{a} \Psi=0$ becomes

$$
\left(D_{\bar{z}} \frac{\delta}{\delta A_{\bar{z}}^{a}}-\frac{k}{2 \pi} \partial_{z} A_{\bar{z}}^{a}\right) \psi\left[A_{\bar{z}}^{a}\right]=0 .
$$

- Construct a noncontracible two-surface in the configuration space. Start with the loop of gauge transformations

$$
\begin{gathered}
C=g(x, \lambda), \quad 0 \leq \lambda \leq 1, \quad g(x, 0)=g(x, 1)=1 \\
A(x, \lambda, \sigma)=\left(g A g^{-1}-d g g^{-1}\right) \sigma+(1-\sigma) A
\end{gathered}
$$

where $0 \leq \sigma \leq 1$.

The Chern-Simons Theory in 2+1 Dimensions (CONT’d.)

- For simplicity, take the starting point as $A=0$ to get

$$
\begin{gathered}
A(x, \lambda, \sigma)=-d g g^{-1} \sigma \\
\delta A(x, \lambda, \sigma)=g d\left(g^{-1} \delta g\right) g^{-1} \sigma+d g g^{-1} d \sigma
\end{gathered}
$$

- The integral of Ω over this surface is

$$
\begin{aligned}
\int \Omega & =\frac{k}{4 \pi} \int \operatorname{Tr}(\delta A \wedge \delta A) \\
& =\frac{k}{4 \pi} 2 \int \operatorname{Tr}\left[d\left(g^{-1} \delta g\right) g^{-1} d g\right] \int \sigma d \sigma \\
& =-2 \pi k Q[g] \\
Q[g] & =\frac{1}{24 \pi^{2}} \int \operatorname{Tr}\left(d g g^{-1}\right)^{3}
\end{aligned}
$$

$$
Q[g]=\text { Winding number of the map } g: S^{3} \rightarrow G \in \mathbb{Z}
$$

$$
\text { Dirac condition } \Longrightarrow k \text { must be an integer. }
$$

- Start with the Yang-Mills action and choose $A_{0}=0$,

$$
\mathcal{S}=\frac{1}{4} \int d^{4} x F_{\mu \nu}^{a} F^{a \mu \nu}=\frac{1}{2} \int d^{4} x \partial_{0}^{a} A_{i}^{a} \partial_{0} A_{i}^{a}+\cdots
$$

- The symplectic potential is $\mathcal{A}=\int d^{3} x E_{i}^{a} \delta A_{i}^{a}$ and

$$
\Omega=\int d^{3} x \delta E_{i}^{a} \delta A_{i}^{a}=-2 \int d^{3} x \operatorname{Tr}\left(\delta E_{i} \delta A_{i}\right)
$$

The condition of gauge invariance (under $g \approx 1+\varphi$) is the Gauss law given by

$$
G(\varphi) \Psi=\int d^{3} x \varphi^{a}\left(D_{i} E_{i}\right)^{a} \Psi=0
$$

- An element of \mathcal{G}_{*} is a map $g(x): \mathbb{R}^{3} \rightarrow G$ with the condition $g \rightarrow 1$ at spatial infinity. These are equivalent to maps $S^{3} \rightarrow G$ and are characterized by the winding number $Q[g]$.

$$
\mathcal{G}_{*}=\sum_{Q=-\infty}^{+\infty} \oplus \mathcal{G}_{* Q}
$$

This leads to $\Pi_{1}(\mathcal{C})=\mathbb{Z}$.

- Construct a one-form on \mathcal{C} which is closed but not exact.

$$
K[A]=-\frac{1}{4 \pi^{2}} \int \operatorname{Tr}(F \wedge \delta A)=\frac{1}{16 \pi^{2}} \int d^{3} x \epsilon^{i j k} F_{j k}^{a} \delta A_{i}^{a}
$$

- Closure: $K[A]=\delta\left(\mathcal{S}_{C S} / 2 \pi\right)$, so using $\delta^{2}=0, \delta K=0$
- But K is not exact, even though $K=\delta\left(\mathcal{S}_{C S} / 2 \pi\right)$, because $\mathcal{S}_{C S}$ is not gauge-invariant. It is not a function on \mathcal{C}.
- $K[A]$ is the generating element of $\mathcal{H}^{1}(\mathcal{C}, \mathbb{R})$.
- An example of the noncontractible loop:

$$
A_{i}(x, \tau)=\left(g A_{i} g^{-1}-\partial_{i} g g^{-1}\right) \tau+A_{i}(x)(1-\tau), \quad 0 \leq \tau \leq 1
$$

This is an open path in $\tilde{\mathcal{A}}$; the end-points are gauge transforms of each other, so it is closed in \mathcal{C}. If the path is contractible, it is deformable to

$$
A_{i}(x, \tau)=A(x)^{g(x, \tau)}, \quad g(x, 0)=1, \quad g(x, 1)=g(x)
$$

$g(x, \tau)$ makes $g(x)$ homotopic to $g=1$. This is not possible if $Q[g] \neq 0$.

θ-VACUA IN 3+1 DIMENSIONS (CONT'D.)

- Integrate K along such a curve,

$$
\begin{aligned}
\oint K[A] & =\frac{1}{2 \pi}\left(\mathcal{S}_{C S}\left[A^{g}\right]-\mathcal{S}_{C S}[A]\right) \\
& =-\frac{1}{8 \pi^{2}} \int \operatorname{Tr}(F \wedge F) \quad \text { (Instanton number) } \\
& =-\frac{1}{32 \pi^{2}} \int d^{4} x \operatorname{Tr}\left(F_{\mu \nu} F_{\alpha \beta}\right) \epsilon^{\mu \nu \alpha \beta}
\end{aligned}
$$

- Since $\delta K=0$, we get the same Ω for \mathcal{A} and $\mathcal{A}+\theta K$.

$$
\mathcal{A}=\int d^{3} x E_{i}^{a} \delta A_{i}^{a}+\theta K[A]
$$

We need an additional parameter θ to characterize the quantum theory.

- $\oint K$ is an integer, so we can take $0 \leq \theta \leq 2 \pi$.
- This is equivalent to using

$$
\mathcal{S}=\mathcal{S}_{Y M}+\theta\left[-\frac{1}{8 \pi^{2}} \int \operatorname{Tr}(F \wedge F)\right]
$$

- This is defined by an action functional in 2 Euclidean (or $1+1$) dimensions,

$$
\begin{aligned}
\mathcal{S}_{W Z W} & =\frac{1}{8 \pi} \int_{\mathcal{M}^{2}} d^{2} x \sqrt{g} g^{a b} \operatorname{Tr}\left(\partial_{a} M \partial_{b} M^{-1}\right)+\Gamma[M] \\
\Gamma[M] & =\frac{i}{12 \pi} \int_{\mathcal{M}^{3}} d^{3} x \epsilon^{\mu \nu \alpha} \operatorname{Tr}\left(M^{-1} \partial_{\mu} M M^{-1} \partial_{\nu} M M^{-1} \partial_{\alpha} M\right) \\
& =\frac{i}{12 \pi} \int_{\mathcal{M}^{3}} \operatorname{Tr}\left(M^{-1} d M\right)^{3}
\end{aligned}
$$

$M(x) \in G L(N, \mathbb{C})$ (or suitable subgroups)

- $\Gamma[M]=$ Wess-Zumino term, defined by integration over \mathcal{M}^{3} with $\partial \mathcal{M}^{3}=\mathcal{M}^{2}$.
- Many $\mathcal{M}^{3 \prime}$ s with the same boundary \mathcal{M}^{2} possible \equiv Different ways to extend $M(x)$ to \mathcal{M}^{3}.
- If M and M^{\prime} are two different extensions of the same field, then $M^{\prime}=M N$, with $N=1$ on \mathcal{M}^{2},

$$
\Gamma[M N]=\Gamma[M]+\Gamma[N]-\frac{i}{4 \pi} \int_{\mathcal{M}^{2}} d^{2} x \epsilon^{a b} \operatorname{Tr} \underbrace{\left(M^{-1} \partial_{a} M \partial_{b} N N^{-1}\right)}_{=0}
$$

$N=1$ on $\partial \mathcal{M}^{3} \Longrightarrow N$ is (equivalent to) a map $N: S^{3} \rightarrow G$, classified by $\Pi_{3}(G)$ (or $Q[N]$).

- Independence of the extension follows from:

1. $\Gamma[N]=0$ for $N \approx 1$ (to linear order in $\partial N N^{-1}$).

By successive transformations, $\Gamma[M]$ is independent of the extension to \mathcal{M}^{3} for all N connected to identity.
2. If N is homotopically nontrivial, $\Gamma[N]=2 \pi i Q[N]$
$\left(\exp (-k \Gamma[M])\right.$ is independent of the extension, if $k \in \mathbb{Z}$. So $\mathcal{S}=k \mathcal{S}_{W Z W}$ can be used as the action for a theory, the WZW theory with level number k.)

- In complex coordinates

$$
\begin{gathered}
\mathcal{S}_{W Z W}=\frac{1}{2 \pi} \int_{\mathcal{M}^{2}} \operatorname{Tr}\left(\partial_{z} M \partial_{\bar{z}} M^{-1}\right)+\Gamma[M] \\
\mathcal{S}_{W Z W}[M h]=\mathcal{S}_{W Z W}[M]+\mathcal{S}_{W Z W}[h]-\frac{1}{\pi} \int_{\mathcal{M}^{2}} \operatorname{Tr}\left(M^{-1} \partial_{\bar{z}} M \partial_{z} h h^{-1}\right) \\
\quad \text { (Polyakov-Wiegmann identity) }
\end{gathered}
$$

- Chiral splitting: Antiholomorphic derivative of M, holomorphic derivative of h
- Another important property $M \longrightarrow M+\delta M=(1+\theta) M, \quad \theta=\delta M M^{-1}$ infinitesimal.

$$
\begin{aligned}
\delta \mathcal{S}_{W Z W} & =-\frac{1}{\pi} \int \operatorname{Tr}\left(\partial_{\bar{z}}\left(\delta M M^{-1}\right) \partial_{z} M M^{-1}\right) \\
& =-\frac{1}{\pi} \int \operatorname{Tr}\left(\delta M M^{-1} \partial_{\bar{z}} A_{z}\right) \\
& =-\frac{1}{\pi} \int \operatorname{Tr}\left(\delta M M^{-1} D_{z} \bar{C}\right) \\
& =-\frac{1}{\pi} \int \operatorname{Tr}\left(\bar{C} \delta A_{z}\right)=\frac{1}{2 \pi} \bar{C}^{a} \delta A_{z}^{a}
\end{aligned}
$$

$A_{z}=-\partial_{z} M M^{-1}, \quad \bar{C}=-\partial_{\bar{z}} M M^{-1}$

$$
D_{z} \bar{C}=\partial_{z} \bar{C}+\left[A_{z}, \bar{C}\right]
$$

- A_{z} and \bar{C} obey the equation

$$
\partial_{\bar{z}} A_{z}-\partial_{z} \overline{\mathrm{C}}+\left[\overline{\mathrm{C}}, A_{z}\right]=0, \quad D_{z}\left[\frac{\delta \mathcal{S}_{W Z W}}{\delta A_{z}}\right]=\frac{1}{2 \pi} \partial_{\bar{z}} A_{z}
$$

This will be useful for evaluating Dirac determinants.

- If we use M^{\dagger}, we get C rather than \bar{C}.

$$
D_{z} \frac{\delta \mathcal{S}_{W Z W}}{\delta A_{\bar{z}}^{a}}=\frac{1}{2 \pi} \partial_{z} A_{\bar{z}}
$$

- Comparing with wave function for CS theory,

$$
\psi[\bar{A}]=\exp \left[k \mathcal{S}_{W Z W}\left(M^{\dagger}\right)\right]
$$

provided we can parametrize a general 2-dimensional gauge field as $A_{z}=-\partial_{z} M M^{-1}$.

THE DIRAC DETERMINANT IN TWO DIMENSIONS

Massless fermions in irreducible representation R of $U(N)$, coupled to a $U(N)$-gauge field.

- Dirac matrices: $\sigma_{i}, i=1,2, \quad \sigma_{i} \sigma_{j}+\sigma_{j} \sigma_{i}=2 \delta_{i j}$.

$$
\mathcal{L}=\bar{\psi}\left(D_{1}+i D_{2}\right) \psi+\bar{\chi}\left(D_{1}-i D_{2}\right) \chi=2 \bar{\psi} D_{z} \psi+2 \bar{\chi} D_{\bar{z}} \chi
$$

ψ, χ : chiral components of $\Psi=(\psi, \chi)$

- A parametrization for gauge potentials

$$
A_{z}=-\partial_{z} M M^{-1} \quad A_{\bar{z}}=M^{\dagger-1} \partial_{\bar{z}} M^{\dagger}
$$

M is a complex matrix. ($\operatorname{det} M=1$ if gauge group is $\operatorname{SU}(N)$.)

- For $U(1)$, use elementary result $A_{i}=\partial_{i} \theta+\epsilon_{i j} \partial_{j} \phi . \quad \Longrightarrow M=\exp (\phi+i \theta)$.
- One can invert ∂_{z} via

$$
\left(\frac{1}{\partial_{z}}\right)_{x x^{\prime}}=\frac{1}{\pi\left(\bar{z}-\bar{z}^{\prime}\right)}
$$

THE DIRAC DETERMINANT IN TWO DIMENSIONS (CONT'D)

- Write $\partial_{z} M=-A_{z} M$,

$$
\begin{aligned}
M(x) & =1-\int_{x^{\prime}}\left(\frac{1}{\partial_{z}}\right)_{x x^{\prime}} A_{z}\left(x^{\prime}\right) M\left(x^{\prime}\right) \\
& =1-\int\left(\partial_{z}\right)^{-1} A_{z}+\int\left(\partial_{z}\right)^{-1} A_{z}\left(\partial_{z}\right)^{-1} A_{z}+\cdots
\end{aligned}
$$

- $A \rightarrow A^{g}=g A g^{-1}-d g g^{-1} \Longrightarrow M^{g}=g M$
- Comment: Space not simply connected $\Longrightarrow \exists$ zero modes for $\partial_{z} \quad \Longrightarrow \exists$ flat potentials a, not gauge equivalent to zero.
- Example: Torus $S^{1} \times S^{1}$. Real coordinates $\xi_{1}, \xi_{2}, 0 \leq \xi_{i} \leq 1$, with $\xi_{1}=0 \sim \xi_{1}=1$, same for ξ_{2}.

$z=\xi_{1}+\tau \xi_{2}, \quad \tau=$ modular parameter

THE DIRAC DETERMINANT IN TWO DIMENSIONS (CONT'D)

- For the torus,the generalized parametrization is

$$
A_{z}=M\left[\frac{i \pi a}{\operatorname{Im} \tau}\right] M^{-1}-\partial_{z} M M^{-1}
$$

- Ambiguity: M and $M V(\bar{z}) \Longrightarrow$ same A_{z}. (Must ensure this does not affect physical results)
- For determinant we need regularized version of $\left(D_{z}\right)^{-1}$

$$
\begin{gathered}
\left(\partial_{z}\right)_{x x^{\prime}}^{-1}=G\left(x, x^{\prime}\right)=\frac{1}{\pi\left(\bar{x}-\bar{x}^{\prime}\right)} \\
D_{z} \phi=\left(\partial_{z}-\partial_{z} M M^{-1}\right) \phi=M \partial_{z}\left(M^{-1} \phi\right) \Longrightarrow D_{z}^{-1}\left(x, x^{\prime}\right)=\frac{M(x) M^{-1}\left(x^{\prime}\right)}{\pi\left(\bar{x}-\bar{x}^{\prime}\right)}
\end{gathered}
$$

- Regularized version

$$
\begin{aligned}
D_{z}^{-1}\left(x, x^{\prime}\right)_{\text {Reg }} & \equiv \mathcal{G}\left(x, x^{\prime}\right)=\int d^{2} y \frac{M(x) M^{-1}(y)}{\pi(\bar{x}-\bar{y})} \sigma\left(x^{\prime}, y ; \epsilon\right) \\
\sigma\left(x^{\prime}, y ; \epsilon\right) & =\frac{1}{\pi \epsilon} \exp \left(-\frac{\left|x^{\prime}-y\right|^{2}}{\epsilon}\right) \Longrightarrow \delta^{(2)}\left(x-x^{\prime}\right)
\end{aligned}
$$

THE DIRAC DETERMINANT IN TWO DIMENSIONS (CONT'D)

- The computation of the determinant:

$$
\begin{gathered}
S_{e f f}^{\equiv \log \operatorname{det} D_{z}=\operatorname{Tr} \log D_{z}} \\
\frac{\delta S_{\text {eff }}}{\delta A_{z}^{a}(x)}=\operatorname{Tr}\left[D_{z}^{-1}\left(x, x^{\prime}\right)\left(-i t^{a}\right)\right]_{x^{\prime} \rightarrow x}=\operatorname{Tr}\left[\mathcal{G}(x, x)\left(-i t^{a}\right)\right]_{\epsilon \rightarrow 0} \\
\mathcal{G}(x, x)=\int d^{2} y \frac{\sigma(x, y)}{\pi}\left[\frac{1}{(\bar{x}-\bar{y})}-M \partial_{z} M^{-1}(x)\left(\frac{x-y}{\bar{x}-\bar{y}}\right)-M \partial_{\bar{z}} M^{-1}+\cdots\right] \\
\delta S_{e f f}=\int d^{2} x \operatorname{Tr}\left[\mathcal{G}(x, x)\left(-i t^{a}\right)\right]_{\epsilon \rightarrow 0} \delta A_{z}^{a}(x) \\
=\frac{1}{\pi} \int d^{2} x \operatorname{Tr}\left[\partial_{\bar{z}} M M^{-1} \delta A_{z}\right]=-\frac{1}{\pi} \int d^{2} x \operatorname{Tr}\left(\bar{C} \delta A_{z}\right)
\end{gathered}
$$

$\operatorname{Tr}\left(t^{a} t^{b}\right)_{R}=A_{R} \operatorname{Tr}\left(t^{a} t^{b}\right)_{F}, \quad A_{R}=$ index of the representation R.

$$
\begin{aligned}
\delta S_{e f f} & =-\frac{A_{R}}{\pi} \int d^{2} x \operatorname{Tr}\left(\bar{C} \delta A_{z}\right)_{F} \\
= & A_{R} \delta S_{W Z W}(M) \\
\Longrightarrow \quad \operatorname{det} D_{z} & =\operatorname{det}\left(\partial_{z}\right) \exp \left[A_{R} \mathcal{S}_{W Z W}(M)\right]
\end{aligned}
$$

THE DIRAC DETERMINANT IN TWO DIMENSIONS (CONT'D)

- Our answer is not gauge-invariant; under $M \rightarrow g M \approx(1+\varphi) M$,

$$
\delta S_{W Z W}=-\frac{1}{\pi} \int d^{2} x \operatorname{Tr}\left(\partial_{\bar{z}} A_{z} \delta g g^{-1}\right)
$$

This is the two-dimensional gauge anomaly.

- The gauge-invariant expression is given by

$$
\begin{gathered}
\operatorname{det}\left(D_{z} D_{\bar{z}}\right)=\operatorname{det}\left(\partial_{z} \partial_{\bar{z}}\right) \exp \left[A_{R} \mathcal{S}_{W Z W}\left(M^{\dagger} M\right)\right] \\
\mathcal{S}_{W Z W}\left(M^{\dagger} M\right)=\mathcal{S}_{W Z W}(M)+\mathcal{S}_{W Z W}\left(M^{\dagger}\right)+\frac{1}{\pi} \underbrace{\int d^{2} x \operatorname{Tr}\left(A_{\bar{z}} A_{z}\right)}
\end{gathered}
$$

local counterterm

- Abelian version: This corresponds to 2-dim. QED (the Schwinger model) \Longrightarrow mass term for gauge field.

$$
\begin{aligned}
\operatorname{det}\left(D_{z} D_{\bar{z}}\right) & =\operatorname{det}\left(\partial_{z} \partial_{\bar{z}}\right) \exp \left[-\frac{1}{4 \pi} \int_{x, y} F_{\mu \nu}(x) G(x-y) F_{\mu \nu}(y)\right] \\
G(x-y) & =\int \frac{d^{2} p}{(2 \pi)^{2}} \frac{1}{p^{2}} \exp [i p \cdot(x-y)]
\end{aligned}
$$

- In a Hamiltonian approach, we deal with the Hamiltonian operator and wave functions.
- In field theory, these have to be regularized and renormalized.
- The wave functional is defined on a time-slice; needs counterterms defined at fixed time, in addition to the familiar counterterms from the Hamiltonian/action.
- For the usual φ^{4}-theory, upon integrating modes, of $\mu_{1}<k \leq \mu$,

$$
\begin{aligned}
\Psi(\varphi) & =U \int[d \chi] \Psi_{0}(\chi)^{*} \Psi(\varphi, \chi) \\
U & \simeq 1-i \frac{3 \lambda^{(0)}}{16 \pi^{2}} \log \left(\mu^{2} / \mu_{1}^{2}\right) \int d^{3} x(\varphi \pi+\pi \varphi)+\ldots
\end{aligned}
$$

- In the Hamiltonian, T and V cannot be independently regularized.
- Their regularizations are correlated by Lorentz symmetry.
- One has to check the Dirac-Schwinger condition

$$
\left[T^{00}(x), T^{00}(y)\right]=i\left(T^{0 i}(x)+T^{0 i}(y)\right) \partial_{x}^{i} \delta(x-y)
$$

This can be a delicate task.

An example which illustrates many features of what we discussed is the YM theory in $2+1$ dimensions.

Why is this theory interesting?

- Interesting in its own right
- $\mathrm{YM}(1+1)$ is exactly solvable, but has no propagating degrees of freedom
- $\mathrm{YM}(3+1)$ is highly nontrivial and difficult
- $\mathrm{YM}(2+1)$ has propagating degrees of freedom, it is nontrivial. Can be amenable to a Hamiltonian analysis.
- It has a dimensional coupling constant and is super-renormalizable. This helps to simplify it.
- A real physical context for $\mathrm{YM}(2+1)$
- Mass gap of $\mathrm{YM}(2+1) \approx$ Magnetic screening mass of $\mathrm{YM}(3+1)$ at high temperatures
- We will use a Hamiltonian approach because some exact calculations are possible

Collaborators: Dimitra Karabali, Chanju Kim, Abhishek Agarwal, AleXander Yelnikov

- We choose $A_{0}=0$ and use complex coordinates $z=x_{1}-i x_{2}$ with

$$
\frac{1}{2}\left(A_{1}+i A_{2}\right)=-\partial M M^{-1}, \quad \frac{1}{2}\left(A_{1}-i A_{2}\right)=M^{\dagger-1} \bar{\partial} M^{\dagger}
$$

$M \in S L(N, \mathbb{C})$, for gauge group $S U(N)$. (More generally, $G \Rightarrow G^{\mathbb{C}}$.)

- Since $M \rightarrow g M$ under a gauge transformation, $g \in \operatorname{SU}(N), H=M^{\dagger} M \in \operatorname{SL}(N, \mathbb{C}) / \operatorname{SU}(N)$ is gauge-invariant.
- We first calculate the volume of the gauge-invariant subspace:

$$
\begin{aligned}
\delta A & =-\partial\left(\delta M M^{-1}\right)+\left[\partial M M^{-1}, \delta M M^{-1}\right] \\
& =-D\left(\delta M M^{-1}\right) \\
\delta \bar{A} & =\bar{D}\left(M^{\dagger-1} \delta M^{\dagger}\right) \\
d s_{\tilde{\mathcal{A}}}^{2} & =\int d^{2} x \operatorname{Tr}(\delta A \delta \bar{A}) \\
& =\int \operatorname{Tr}\left[\left(M^{\dagger-1} \delta M^{\dagger}\right)(-\bar{D} D)\left(\delta M M^{-1}\right)\right] \\
d s_{S L(N, \mathbb{C})}^{2} & =\int \operatorname{Tr}\left(M^{\dagger-1} \delta M^{\dagger} \delta M M^{-1}\right)
\end{aligned}
$$

Hamiltonian Analysis of $\mathrm{YM}(2+1)\left(\mathrm{CONT}^{\prime} \mathrm{D}.\right)$

- From the structure of the metric

$$
d \mu_{\tilde{\mathcal{A}}}=\operatorname{det}(-\bar{D} D) d \mu_{S L(N, \mathbb{C})}\left(M, M^{\dagger}\right)
$$

- One can do a polar decomposition $M=U \rho, U$ unitary and ρ hermitian.

$$
\begin{aligned}
d \mu_{S L(N, C)} & =\underbrace{\left(d M M^{-1}\right) \wedge \cdots \wedge\left(d M M^{-1}\right)}_{\left(N^{2}-1\right) \text { times }} \wedge \underbrace{\left(M^{\dagger-1} d M^{\dagger}\right) \wedge \cdots \wedge\left(M^{\dagger-1} d M^{\dagger}\right)}_{\left(N^{2}-1\right) \text { times }} \\
& =d \mu(H) d \mu(U) \\
& \text { Volume of } \operatorname{SL}(N, \mathbb{C}) / \operatorname{SU}(N) \quad \longrightarrow \text { Volume of } \operatorname{SU}(N)
\end{aligned}
$$

- Thus the volume the gauge-invariant configuration space is

$$
\begin{aligned}
d \mu(\mathcal{C}) & =d \mu(H) \operatorname{det}(-\bar{D} D)=d \mu(H) \exp \left[2 c_{A} S_{W Z W}(H)\right] \\
d \mu(H) & =[d \varphi] \operatorname{det} R \\
H=e^{t^{a} \varphi^{a}}, \quad H^{-1} \delta H & =\delta \varphi^{a} R_{a b}(\varphi) t^{b} .
\end{aligned}
$$

- Wave functions are gauge-invariant (Gauss law), depend on $H=M^{\dagger} M$ with the inner product

$$
\langle 1 \mid 2\rangle=\int d \mu(H) \exp \left[2 c_{A} S_{W Z W}(H)\right] \Psi_{1}^{*} \Psi_{2}
$$

- This leads to an intuitive argument for a nonzero mass gap:
- The Hamiltonian has the form

$$
\mathcal{H}=\int \frac{1}{2}\left[e^{2} E^{2}+B^{2} / e^{2}\right]
$$

$[E, B] \sim p($ in momentum space $) \Longrightarrow \Delta E \Delta B \sim p$, or $\Delta E \sim p / \Delta B$

$$
\mathcal{E}=\langle\mathcal{H}\rangle \approx \frac{1}{2}\left[e^{2} \frac{p^{2}}{(\Delta B)^{2}}+\frac{(\Delta B)^{2}}{e^{2}}\right]
$$

Minimize with respect to $\Delta B \Longrightarrow(\Delta B)^{2} \sim p \Longrightarrow \mathcal{E} \sim p$. This is the photon.

- For us

$$
\langle\mathcal{H}\rangle=\int d \mu(H) \exp \left[2 c_{A} S_{W Z W}(H)\right] \int \frac{1}{2}\left[e^{2} E^{2}+B^{2} / e^{2}\right]
$$

- Expanding the WZW action

$$
\langle\mathcal{H}\rangle \approx \int d \mu(H) \exp \left[-\frac{c_{A}}{2 \pi} \int B \frac{1}{p^{2}} B+\ldots\right] \int \frac{1}{2}\left[e^{2} E^{2}+\frac{B^{2}}{e^{2}}\right]
$$

Gaussian $\Longrightarrow(\Delta B)^{2} \sim \pi p^{2} / c_{A} \Longrightarrow$ mass gap $\sim e^{2} c_{A} / 2 \pi$.

- More detailed analysis confirms $m=e^{2} c_{A} / 2 \pi$.
- The Wilson loop operator is given by

$$
W(C)=\operatorname{Tr} \mathcal{P} e^{-\oint A}=\operatorname{Tr} \mathcal{P} \exp \left(\frac{e}{2} \oint J\right)
$$

All gauge-invariant quantities can be made from the current $J=(2 / e) \partial H H^{-1}$.

- The Hamiltonian and the wave functions can be expressed as functions of the current $J=(2 / e) \partial H H^{-1}$.

THE HAMILTONIAN OPERATOR

- The Hamiltonian is given by

$$
\begin{aligned}
\mathcal{H} & =\underbrace{\frac{e^{2}}{2} \int E^{a} E^{a}}_{T}+\underbrace{\frac{1}{2 e^{2}} \int B^{a} B^{a}}_{V} \\
& \equiv \quad V
\end{aligned}
$$

- The potential energy is easy to simplify,

$$
V=\frac{1}{2 e^{2}} \int B^{a} B^{a}=\frac{1}{2} \int_{x}: \bar{\partial} J^{a}(x) \bar{\partial} J^{a}(x):
$$

- The kinetic term is simplified via the chain rule

$$
\begin{aligned}
T \Psi & =-\frac{e^{2}}{2} \int_{x} \frac{\delta^{2}}{\delta A(x) \delta \bar{A}(x)} \Psi \\
& =-\frac{e^{2}}{2}[\int \underbrace{\frac{\delta J(u)}{\delta A(x)} \frac{\delta J(v)}{\delta \bar{A}(x)}}_{\Omega} \frac{\delta^{2} \Psi}{\delta J(u) \delta J(v)}+\int \underbrace{\frac{\delta^{2} J(u)}{\delta A(x) \delta \bar{A}(x)}}_{\omega} \frac{\delta \Psi}{\delta J(u)}] \\
& =\int \Omega_{a b}(u, v) \frac{\delta^{2} \Psi}{\delta J^{a}(u) \delta J^{b}(v)}+\int \omega^{a}(u) \frac{\delta \Psi}{\delta J^{a}(u)}
\end{aligned}
$$

The Hamiltonian Operator (cont'd.)

- $\omega^{a}(u)$ needs regularization

$$
\begin{aligned}
\omega^{a} & =-\frac{e^{2}}{2} \int_{x} \frac{\delta^{2} J^{a}(u)}{\delta A^{b}(x) \delta \bar{A}^{b}(x)}=\left(e^{2} c_{A} / 2 \pi\right) M_{a m}^{\dagger}(x) \operatorname{Tr}\left[t^{m} \bar{D}_{r e g}^{-1}(y, x)\right]_{y \rightarrow x} \\
& =m J^{a}
\end{aligned}
$$

- The kinetic energy is thus given by

$$
\begin{aligned}
T & =m\left[\int J^{a} \frac{\delta}{\delta J^{a}}+\int \Omega_{a b}(u, v) \frac{\delta^{2}}{\delta J^{a}(u) \delta J^{b}(v)}\right] \\
\Omega_{a b}(u, v) & =\frac{c_{A}}{\pi^{2}} \frac{\delta_{a b}}{(u-v)^{2}}-i \frac{f_{a b c} c^{c}(v)}{u-v}+\mathcal{O}(\epsilon)
\end{aligned}
$$

- The Hamiltonian is $\mathcal{H}=\mathcal{H}_{0}+\mathcal{H}_{1}$ with

$$
\begin{aligned}
\mathcal{H}_{0}= & m \int_{z} J_{a}(\vec{z}) \frac{\delta}{\delta J_{a}(\vec{z})}+\frac{2}{\pi} \int_{z, w} \frac{1}{(z-w)^{2}} \frac{\delta}{\delta J_{a}(\vec{w})} \frac{\delta}{\delta J_{a}(\vec{z})} \\
& +\frac{1}{2} \int_{x}: \bar{\partial} J^{a}(x) \bar{\partial} J^{a}(x): \\
\mathcal{H}_{1}= & i e f_{a b c} \int_{z, w} \frac{J^{c}(\vec{w})}{\pi(z-w)} \frac{\delta}{\delta J_{a}(\vec{w})} \frac{\delta}{\delta J_{b}(\vec{z})}
\end{aligned}
$$

An Aside on Regularization

All calculations are done with proper regularization.

- Start with a regularization of the δ-function

$$
\delta^{(2)}(u, w) \Longrightarrow \sigma(\vec{u}, \vec{w}, \epsilon)=\frac{1}{\pi \epsilon} \exp \left(-\frac{|u-w|^{2}}{\epsilon}\right)
$$

- This is equivalent to

$$
\begin{aligned}
\bar{G}(\vec{x}, \vec{y}) & =\frac{1}{\pi(x-y)} \\
\Longrightarrow \overline{\mathcal{G}}(\vec{x}, \vec{y}) & =\int_{u} \bar{G}(\vec{x}, \vec{u}) \sigma(\vec{u}, \vec{y} ; \epsilon) H(u, \bar{y}) H^{-1}(y, \bar{y})
\end{aligned}
$$

- This simplifies as

$$
\overline{\mathcal{G}}_{m a}(x, y)=\frac{1}{\pi(x-y)}\left[\delta_{m a}-e^{-\frac{(x-y)^{2}}{\epsilon}}\left[H(x, \bar{y}) H^{-1}(y, \bar{y})\right]_{m a}\right]
$$

One can check all results using regularized expressions, with a single regulator from beginning to end.

- One can solve the Schrödinger equation to get the vacuum wave function as

$$
\begin{aligned}
& \Psi_{0}=\exp \left[\frac{1}{2} F(H)\right] \\
& \begin{aligned}
F(H)=-\int & \bar{\partial} J_{a}\left[\frac{1}{\left(m+\sqrt{m^{2}-\nabla^{2}}\right)}\right] \bar{\partial} J_{a} \\
& +2 f_{a b c} \int f^{(3)}(\vec{x}, \vec{y}, \vec{z}) J_{a}(\vec{x}) J_{b}(\vec{y}) J_{c}(\vec{z})+\mathcal{O}\left(J^{4}\right)
\end{aligned}
\end{aligned}
$$

- This has the correct expected limits

$$
\begin{aligned}
\Psi_{0} & \approx \exp \left[-\frac{1}{2 e^{2}} \int B \frac{1}{\sqrt{-\nabla^{2}}} B\right] & & \frac{k}{m} \gg 1 \\
& \approx \exp \left[-\frac{1}{4 e^{2} m} \int B^{2}\right] & & \frac{k}{m} \ll 1
\end{aligned}
$$

$\mathcal{O}\left(J^{3}, J^{4}\right)$ terms are small at $k \gg e^{2}$ and at $k \ll e^{2}$

- The high k limit agrees with perturbation theory

Hamiltonian Analysis of $\mathrm{YM}(2+1)$ (cont'd.)

- For quantities involving low momentum modes

$$
\begin{aligned}
\langle\mathcal{O}\rangle & =\int \Psi_{0}^{*} \Psi_{0} \mathcal{O}=\text { int } \exp \left[-\frac{1}{4 g^{2}} F_{i j}^{a} F^{a i j}\right] \mathcal{O} \\
& =\langle\mathcal{O}\rangle_{2 d Y M}
\end{aligned}
$$

$$
g^{2}=m e^{2}=e^{4} c_{A} / 2 \pi
$$

- Since $Y M_{2 d}$ confines

$$
\left\langle W_{R}(C)\right\rangle=\exp \left[-\sigma_{R} \mathcal{A}_{C}\right]
$$

$\mathcal{A}_{C}=$ area of the closed curve C.

- This gave values of string tension

$$
\sqrt{\sigma} e_{R}=e^{2} \sqrt{\frac{c_{A} c_{R}}{4 \pi}}
$$

in agreement with lattice values to within $1-3 \%$.

Group	Representations					
	$\mathrm{k}=1$ Fund.	$\mathrm{k}=2$ antisym	$\mathrm{k}=3$ antisym	$\mathrm{k}=2$ sym	$\mathrm{k}=3$ sym	$\mathrm{k}=3$ mixed
SU(2)	0.345					
SU(3)	0.535			1.196		
SU(4)	0.553			1.110		
SU(5)	0.772	0.891				
SU(6)	1.180	1.493	1.583	1.784	2.318	1.985
	1.167	1.484	1.569	1.727	2.251	1.921
$S U(N)$	0.1995 N					
$N \rightarrow \infty$	0.1976 N					

Comparison of $\sqrt{\sigma} / e^{2}$ with lattice estimates (lower entry, in red) from Lucini \&TEPER, BRINGOLTZ \& Teper. k is the rank of the representation.

- Absorb $\exp \left(2 c_{A} S_{W Z W}\right)$ from the inner product into the wave function by $\Psi=e^{-c_{A} S_{W Z W}(H)} \Phi$. The Hamiltonian acting on Φ is

$$
\mathcal{H} \rightarrow e^{-c_{A} S_{W Z W}(H)} \mathcal{H} e^{-c_{A} S_{W Z W}(H)}
$$

- Consider $H=e^{t^{a} \varphi^{a}} \approx 1+t^{a} \varphi^{a}+\cdots$, a small φ limit appropriate for a (resummed) perturbation theory. The new Hamiltonian is

$$
\mathcal{H}=\frac{1}{2} \int\left[-\frac{\delta^{2}}{\delta \phi^{2}}+\phi\left(-\nabla^{2}+m^{2}\right) \phi+\cdots\right]
$$

where $\phi_{a}(\vec{k})=\sqrt{c_{A} k \bar{k} /(2 \pi m)} \varphi_{a}(\vec{k})$.

- The vacuum wave function is

$$
\Phi_{0} \approx \exp \left[-\frac{1}{2} \int \phi^{a} \sqrt{m^{2}-\nabla^{2}} \phi^{a}\right]
$$

The Wave Function: A Different Argument (cont'd.)

- Transforming back to Ψ,

$$
\Psi_{0} \approx \exp \left[-\frac{c_{A}}{\pi m} \int\left(\bar{\partial} \partial \varphi^{a}\right)\left[\frac{1}{m+\sqrt{m^{2}-\nabla^{2}}}\right]\left(\bar{\partial} \partial \varphi^{a}\right)+\cdots\right]
$$

- The full wave function must be a functional of J. The only form consistent with the above is

$$
\Psi_{0}=\exp \left[-\frac{2 \pi^{2}}{e^{2} c_{A}^{2}} \int \bar{\partial} f^{a}(x)\left[\frac{1}{m+\sqrt{m^{2}-\nabla^{2}}}\right]_{x, y} \quad \bar{\partial} f^{a}(y)+\cdots\right]
$$

since $J \approx\left(c_{A} / \pi\right) \partial \varphi+\mathcal{O}\left(\varphi^{2}\right)$.

- This indicates the robustness of the Gaussian term in Ψ_{0}, since this argument only presumes

1. Existence of a regulator, so that the transformation $\Psi \Longleftrightarrow \Phi$ can be carried out
2. The two-dimensional anomaly calculation

- Some things which can be calculated/understood
- A clear gauge-invariant Hamiltonian formulation
- Computation of the vacuum wave function
- String tensions: lowest order,with a systematic expansion for higher order corrections (of the order a few percent)
- Possibility of screening of $W_{R}(C)$ via string-breaking in some representations
- Results on magnetic screening mass, glueballs
- Extension to Yang-Mills-Chern-Simons Theory, Formulation on $\mathbb{R} \times S^{2}$
- But there are also unclear issues, more questions
- Improving higher order corrections to string tension, better handle on glueballs
- Calculations on the torus to understand the theory at finite temperature
- Connecting the formulation on $\mathbb{R} \times S^{2}$ to the duality-matrix model approach
- Fermions, supersymmetric cases
- Geometrical properties of the configuration space $\tilde{\mathcal{A}} / \mathcal{G}_{*}$

