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PLAN

Quantum theory is defined as a unitary irreducible representation of the algebra of observables.
Geometric quantization gives a way to realize this, elucidating the role of the geometry and

topology of the phase space.
@ C(lassical phase space dynamics
@ Pre-quantum Hilbert space, operators, polarization
@ Role of topology: H' (M, R), H*(M, R)
@ Quantizing s?
@ Configuration space for gauge fields
@ Chern-Simons theory
@ 6-vacua in gauge theories
@ WZW action and the Dirac determinant

@ Hamiltonian Analysis of Yang-Mills (2+1)
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THE SYMPLECTIC STRUCTURE

Phase space = A smooth even dimensional manifold M endowed with a symplectic structure 2
@ Qis a differential 2-form on M which is closed and nondegenerate.
@ Closed: d2=0
@ Nondegenerate: For any vector field { on M, icQ2 =0 = £ =0
Q = 1 Qudg" Adg”
@ The condition d2 = 0 becomes

Q= B(;”"dq Adgh A dg”

170 | 0Qau " 0o
3| 0g¢ og¥ ogqH
0

dg® Adgt A dg”

@ Interior contraction with £ = £#(9/0g*) is
ieQ = &1 Q. dg”

tQ=0=§=0 = &"Qu = 0= ¥ =0 ; <= Qis nondegenerate as a matrix
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THE SYMPLECTIC STRUCTURE (CONT’D.)

@ Inverse of €2 can be defined by
Qo Q¥ =67
(If Q has zero modes, one has gauge symmetries.)

@ Since d2 = 0, we can write

0 0
Q=dA Quv=—Ap — —
Iz og- ag
@ What are the qualifications to this statement?

@ If there are noncontractible 2d-surfaces X such that

/ZQ;AO

then A cannot exist globally. (Equivalent to H2(M) # 0; e.g. CS, WZW theories)
@ Even if H?(M) = 0, one can have inequivalent A’s. For example, A and A + A give
same Q if dA = 0.
> Evidently A = dA is one possibility (Canonical transformations)

> One can have A # dA with dA = 0 <= H' (M) # 0 (e.g. 6-vacua)
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CANONICAL TRANSFORMATIONS

Transformations of (phase space) coordinates which preserve €2 are canonical
transformations.

For infinitesimal transformations, g#* — g* 4 &, change in Q2 is

00

3 (@ + €A + €M) Ad(g” +€) — 3 (9)dgh Adg” | = LeQ

d(léﬂ) —+ ing = d(ng)

= 0

The solution is igQ = —df (if H}(M) = 0).
Conversely, for any function f, one can define {# = Q*V0,f. = L = 0.
This leads to

Functions on M <= Vector fields which preserve Q2

l

Generating function of canonical transformation Hamiltonian vector fields
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CANONICAL TRANSFORMATIONS (CONT’D.)

@ If £ and 7 preserve €2, so does their Lie commutator

& " =&Y 0un* —n"oLE"

@ If¢ « fand n < g, then there is a function corresponding to [&, n]; this is called the
Poisson bracket —{f, g} and is defined by

{8} = ieinQ = "€ Quu = —iedg = indf = Q" 0ufOug
@ The Poisson bracket obeys
{f,8t = —{sf}
idemy +{nAf, 83} + 4, {hf}t = 0

@ Poisson brackets are important because the change in a function on phase space due to a
canonical transformation is

OF = €10, F = {F.f}
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CANONICAL TRANSFORMATIONS (CONT’D.)

@ The change in the canonical 1-form is given by
SA=LeA=d(igA—f)=dA
@ (lassical dynamics is given by

9q” _ OH
ot~ ogr

Qu

@ This can be obtained from an action

@ Variation of the action gives

. ) dgv  OH
58 = ic Alty) — i Alt) + /dt (QW% - 87“) e

@ Given the action, the boundary term in its variation can be used to identify A and, hence,

Q.
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QUANTIZATION

Quantum Theory = Unitary Irreducible Representation of the Algebra of Observables

@ The problem of quantization is: How do we realize this explicitly?

@ Canonical transformations <= Unitary transformations
@ (Poisson bracket) classical algebra of observables <—=> Commutator algebra of
operators

@ Ensure irreducibility

@ Geometric quantization provides a way to do this
STRATEGY:

1. Define pre-quantum wave functions and pre-quantum operators

2. Impose a polarization to achieve irreducibility
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QUANTIZATION (CONT’D.)

@ Since canonical transformations are A — A + dA, we consider wave functions to have the
property
V() — e u(g), A—A+dA
@ ¥ depends on all phase space coordinates. They are analogous to fields coupled to a U(1)
gauge field A. (They are sections of a line bundle on M with curvature (2.)
@ The U’s are pre-quantum wave functions and form a (pre-quantum) Hilbert space with the
inner product
ap) = [ oty vi v
do(M) = QAQ--- AQ ~ det(Q) d¥q.
@ How does ¥ change under g — g* 4 £#? Under such a change, A — A 4 i¢ A — f, so that

5w M9, — i(icA—f)T
= O —iA) T if U = (D tif) ¥

The first term gives change of ¥ as a function, the second compensates for the change of A.
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QUANTIZATION (CONT’D.)

@ Define the pre-quantum operator corresponding to f as

P(f) = —i(¢ - D +if)

@ In terms of Hamiltonian vector fields, f < &, g < n, {f,g} < —[&, n]; this gives

[P(), P(3)]

[—i§-D+f,—in-D+g]

= —["Du,n"Du] —i€"[Dy,g] + in*[Dp.f]

= i'n"Qu — (£40un")Dy + (0" 0ug”)Dy — i€ 0ug + in*Opf
= i(=&"n"Qu + i, n] - D)

= i(=ilingD) +{f.8})

iP({f.8})

@ The pre-quantum operators form a representation of the Poisson bracket algebra of

functions on the phase space, with [A, B] ~ i{A, B}.
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QUANTIZATION (CONT’D.)

@ We get a representation, but this is reducible in general, since ¥ depends on all phase
space variables.

@ Illustrate by example: Point-particle in one space dimension
Q =dp Ndx, A = pdx
@ Hamiltonian vector fields and pre-quantum operators for g4 and p are

X > —— pe =

op’ Ox

.0 [0 . .0
P(x)—la—p +x, Pp) = —i (a—zp) -i-p_—za

[P(x),P(p)] = i, so that we have a representation of the Poisson bracket algebra.
@ Consider a subset of wave functions obeying
o
9
In this case, P(x) = x, P(p) = —i%, which still obey [P(x), P(p)] = i.

We have a representation on a subspace = previous representation is reducible.
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QUANTIZATION (CONT’D.)

@ Choose subsidiary conditions on ¥ which restrict its dependence to half the number of

variables (Choice of polarization).

@ Choose 1 vector fields P; = P*(8/dq"), obeying
QuPEPY =0

and impose

PiD,T =0
The vectors P; define the polarization. The restricted wave functions are the true wave
functions of the theory.

@ Inner product on the true wave functions? Generally difficult, no natural volume measure

on restricted subspace of phase space.

@ One case where this is possible: M is a Kéhler space, Q2 is the Kédhler form.
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QUANTIZATION (CONT’D.)

@ For a Kéhler space,

Q = Qudd AdT = %aaaﬁK A AP = dA
i i
Aa = —EaaK, Aﬁ = 58,;1(
Metric gz = 0.0iK

@ Since Q,, = 0, choose the (holomorphic or Bargmann) polarization condition
Db = (O5+ JonK) W =0
¥ = exp(— %K) F
F is holomorphic, with 0;F = 0.
@ The inner product is
ap) = / do(M) e~ K F1E,
@ Operator = Pre-quantum operator subject to polarization if it preserves polarization;

otherwise construct matrix element directly.
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TOPOLOGICAL FEATURES: H' (M, R)

@ Consider A and A + A which lead to same €,
dA=Q, dA+A)=0Q — dA=0

@ A = dA = remove it by canonical (unitary) transformation, ¥ = ¢/ 0.
@ We can have dA = 0 with A # dA; this means H! (M, R) # 0.
@ Wecantry ¥ = exp (i Oq A) @.

Qq Qq
c c
/ ® /
0 0
@ The path-dependence of the phase factor:

o [(A- [ A=§A= [(dA=0
o If the path C — C’ is noncontractible with no surface S whose boundary is C — C’,

then § A can be nonzero.
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TOPOLOGICAL FEATURES: H' (M, R)

@ Using ¥ = exp (i foq A) @ eliminates A but ® need not be single-valued.

@ Let A = 6o where 6 is a constant and [ a = 1 for a single traversal of the basic

noncontractible path corresponding to C — C’ (once around the red dot).
@ Then for n traversals of the path, § A = n.

@ We can eliminate A and use ®; but @ is not single-valued and changes by exp(ifn) going

around the noncontractible path n times.
@ We have an extra constant  required to define the quantum theory.
@ Examples:

@ Fractional statistics in two spatial dimensions

@ Theta vacua in quantum chromodynamics
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TOPOLOGICAL FEATURES: H*(M, R)

This occurs when we have closed 2-forms which are not exact; i.e., dQ = 0, but Q # d.A for
any globally defined .A.

Correspondingly, there are two-surfaces which are closed but are not boundaries of any
3-volumes

If Q@ = d A, with A well-defined globally, for a closed surface &,

/Q: A=0
p) o%

If 2 # d A, the integral of Q2 over a closed noncontractible 2-surface can be nonzero.

1(2):/29

1(2)—1(2’):/E_Z/Q=/Vdsz:o

The integral of Q2 over any closed two-surface is a topological invariant, invariant under

small deformations of the surface.

@ If X is contractible, deform X to zero — fz 0 =0.

@ Otherwise, I(X) can be nonzero.
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TOPOLOGICAL FEATURES: H*(M, R)

@ Example of 3 as a two-sphere:
@ Cover the surface with two patches, a northern hemisphere and a southern
hemisphere, with Q@ = d Ay and 2 = d.Ag on corresponding patches

@ On the overlap region, the equator E,

An Ag + dA

exp(iA) Us
AA = ]{dA /AN As_/AN+/AS_/Q+/Q /Q

@ A is not single-valued on the equator; but ¥ must be. Thus exp(iAA) =1, or

/ Q = 27mn, (Dirac; Generalized Bohr—Sommerfeld condition)
s

@ Examples of this are:
@ Charged particle in a magnetic monopole background

@ Chern-Simons and WZW theories

V.P. NAIR Geometric Quantization & Hamiltonians September 6-9, 2009



SUMMARIZING QUANTIZATION

We will consider quantization with the holomorphic polarization.

@ A phase space which is also Kahler; the symplectic two-form must be a multiple of the
Kéhler form.

@ The polarization condition is chosen as Dz ¥ = 0.

@ The inner product of the prequantum Hilbert space = Square integrability on the phase
space = Inner product on the true Hilbert space in the holomorphic polarization.

@ £(q) which preserves the polarization = Prequantum operator P(f) restricted to the true
(polarized) wave functions.

@ For observables which do not preserve the polarization, one has to construct infinitesimal
unitary transformations whose classical limits are the required canonical transformations.

@ If the phase space M has noncontractible two-surfaces, then the integral of 2 over any of
these surfaces must be quantized in units of 2.

@ If H(M, R) is not zero, then there are inequivalent .A’s for the same 2 and we need extra

angular parameters to specify the quantum theory completely.
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QUANTIZING THE TWO-SPHERE

@ Take the phase space as the two-sphere S?> ~ CP! ~ SU(2)/U(1).

@ This is a Kdhler manifold; basic parameters are:

Coordinates z=x+1y, Z=x—1iy
Kéhler two-form w=1idzANdz/(1+ 2z)?
Metric ds? = dz dz/(1 + zz)?

Riemannian curvature Ry, = 4 dx Ady/(1 + z2)?
Euler number x = [(Riz/2m) =2
@ 52 has nontrivial H?(S%,R) given by w.

@ The symplectic two-form is taken as

dz N dz

Q=nw=in —"°_
nw l”(1+zi)2

where 7 is an integer, in agreement with Dirac-Bohr-Sommerfeld condition.
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QUANTIZING THE TWO-SPHERE (CONT’D.)

@ The symplectic potential is
] dz —zd
A - Infzdz-zdz
2 | (1+4z22)

nlog(1l + zz)

] —Lokdaz— Loxdz
2 2

@ Choose the polarization condition as

(3z—iAz)‘I’=[t9i+

@ This has the solution
W = exp (—g log(1+ 22)) f(2)

with the inner product

dz N\ dz
12) =i(n+1 —— A"
ap) =it ) [ e A
@ Normalizable states correspond to linear combinations of f(z) = 1, z, 2%, --- ,2";

dimension of Hilbert space = n + 1. (Inner product normalized so that Tr(1) = n + 1.)
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QUANTIZING THE TWO-SPHERE (CONT’D.)

@ There are three independent vector fields on S? which preserve the metric and w

(Hamiltonian vector fields).

Vector field Function on phase space
§+:i<%+zz%) =
S R

@ Check one case:
e, = (0 +20,) | in T E

(1+22)2
_ dz 22dz
- [‘ A+=zr  a +zz)2}

“|wrsl

V.P. NAIR Geometric Quantization & Hamiltonians September 6-9, 2009



QUANTIZING THE TWO-SPHERE (CONT’D.)

@ The pre-quantum operators are

-~ 24 EZ-FZE E
PU+) = (Z 0 — 1+zi) i€3 Dz
n z S
P(]—) = (_Bz - El—i—zi) — & D
n 1 .z
P(s) = (Zaz— 5714_22) —i§3Ds

@ On the polarized wave functions, D; ¥ = 0, giving the quantum operators acting on f(z),

f+ = 2282 —nz
j* = -0
Js = z0:-3%n

@ These obey SU(2) algebra.

@ The full Hilbert space corresponds to one UIR of SU(2) with j = n/2.
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QUANTIZING THE TWO-SPHERE (CONT’D.)

@ The form of the action is

dgt N 7z — 7%
S = At Ay— = i= [ dt
/ Anar ’2/ 1+2

= i / dt Te(os g9

g € SU(2); explicitly
1 1 z| [é9 0
142z

g:

|
i
_
=
o

L

)

@ More generally, one can take, for g € G,
S= iz Wy /dt Tr( £ g7 18, A(g) = iZwaTr(t“g_ldg)
a a

Weights of a UIR Diagonal Generators

Q on G/H, H = maximal subgroup of G commuting with %~ wqst.

@ Hilbert space will give one UIR of G, highest weights given by w,
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CONFIGURATION SPACE FOR GAUGE FIELDS

Analyze topology and geometry of the space of gauge fields in a Hamiltonian description

@ Choose Ag = 0 gauge; we are then left with the spatial components A;(x) which are

Lie-algebra-valued vector fields on space.

@ A gauge transformation acts on A; as A; — A‘Ig =g lAg+97'8g g€G.

@ Define
A = {Setofall gauge potentials A;}
= {Setof all Lie — algebra — valued vector fields on space R?}
G = {Setofallg(¥):R? — G, such that g(X) — constant € G as |¥| — oo}
G. = {Setofallg(¥):R? — G, such that g(¥) — 1as |X| — oo}

@ Evidently G/G. = G. This acts as a Noether symmetry classifying charged states in the

theory.

@ G. is the true gauge symmetry, with A; and A$ physically equivalent for g(x) € Gu.
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CONFIGURATION SPACE FOR GAUGE FIELDS (CONT’D.)

@ The physical configuration space is C = A/Gx
@ Consider 2 + 1 dimensions

Z All compact G # SO(4)
ZXZ G =S0(4)

(C) = M1 (G«) = 13(G) =

@ How does this arise?
@ An element of G, is g(X) with ¢ — 1 at spatial infinity = IIj(G«) = II(G) = 0.
@ For connectivity, examine closed paths starting and ending at g(X) = 1. Such a path
is given by g(¥, A); 0 < A < 1 parametrizes path, with g(¥,0) = g(¥,1) = 1.
@ g(% \): R® — Gwith g — 1 at the ‘boundary’. This is equivalent to a map from S3
to G, classified by II3(G).

@ There are noncontractible two-surfaces in C and hence in the phase space.

Gauge theories in 2 + 1 dimensions have H?(M, R) # 0; they can

show Dirac quantization conditions (depending on choice of 2)
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CONFIGURATION SPACE FOR GAUGE FIELDS (CONT’D.)

@ Consider 3 + 1 dimensions

Z All compact simple G # SO(4)
ZX1L G =50(4)

11(C) = Mp(Gx) = I13(G) =

@ How does this arise? Similar reasoning as for 2 + 1 dimensions
@ There are noncontractible paths in C and hence in phase space.

@ The phase space is multiply connected with connectivity given by Z (or Z x Z for SO(4)).

Gauge theories in 3-+1 dimensions have ! (M, R) # 0; the quan-
tum theory will require additional vacuum angles (f-vacua) to

characterize it.
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THE CHERN-SIMONS THEORY IN 2+1 DIMENSIONS

@ The action is given by

S = —L Tr[A/\dA+EA/\A/\A:|
A7 St ) 3
k 3 va 2
= - d°x e* Tr AHBVAQ + *A,u,AuAa
4m Jexing 3

¥ is usually taken as a Riemann surface.
@ Choose Ap = 0 as a gauge condition; then
ik ik
S=-= / dtdps Tr(Az00A:) = A = — — [ Tr(Az0A:) + SplA]
™ b

™

@ The symplectic two-form is
ik ik a5 aa
Q=—— [ dus Tr(6A26A;) = — [ dus 6AZ5AL
T Jx 2m =

@ The space of 2-d gauge potentials is Kdhler with the Kéhler potential

k
K= — [ ALA?
27 Jx
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THE CHERN-SIMONS THEORY IN 2+1 DIMENSIONS (CONT’D.)

@ (Time-independent) gauge transformations act on the potentials as
A8 = gAgT! — dggT'~ A —Do infinitesimally

@ The infinitesimal transformations are generated by the vector field

5 5
- D-6)" D:6)" —
[, (@075 + 007 2)
Acting on 2 we get
‘ § 5\ ik
i = —/((DZG) s T O 0)”—5Ag)J g/zduz SAZ0A

zk

[(D)"6A: — (DO)?5AL] = % / 0°(DSA, — DSA:)"

/eﬂngz =6 U 9ﬂfpﬂ ]

@ The generator of gauge transformations is

ik
G = 71:22

This has to vanish on wave functions, G*¥ = 0.
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THE CHERN-SIMONS THEORY IN 2+1 DIMENSIONS (CONT’D.)

@ The prequantum wave functions have the inner product
(1) = [ e, A2 Wi 42, A Wals, A4

@ The symplectic potential is

ik ik
A= — 2 ) Tr(Az0A; — AbAz) = y E(Ag&AZ — AJSAL)
@ The covariant derivatives with A as the potential are
o k = é k
V= —+4+—A2 V=—-—A
SAL + 4" SAL  AxF

@ The Bargmann polarization condition is V ¥ = 0, with the solution
k apa a — lK a
U = exp|— I AZAT ) Y[AZ] = e 27 YlA7]

9)’s are antiholomorphic, depend only on Az’s.
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THE CHERN-SIMONS THEORY IN 2+1 DIMENSIONS (CONT’D.)

@ The inner product is now
(12) = [idasanz) e D i g,

On the (anti)holomorphic wave functionals 1)’s

2 6
ALY = T 5 V1A
and the condition of G*¥ = 0 becomes
é k
(Dz 5a1 - gazAg) Y[AL] =0.

@ Construct a noncontracible two-surface in the configuration space. Start with the loop of

gauge transformations
C=g(x,N), 0< <1, g(x,0) =g(x,1) =1
A, N\ 0) = (gAg = dgg ™o + (1—0)A

where0 < o < 1.
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THE CHERN-SIMONS THEORY IN 2+1 DIMENSIONS (CONT’D.)

@ For simplicity, take the starting point as A = 0 to get
Alx, N\ o) = —dgg o

SA(x, N 0) = gd(g™"6g) g o + dggldo

@ The integral of 2 over this surface is

[

L3 /Tr(éA A SA)
4

= %Z/Tr[d(g_lﬁg)g_ldg] /crdcr
T

= —2rkQR
Bl = 5 [ Trldgg™)?

Qlg] = Winding number of themap g: $> - G € Z

Dirac condition = k mustbe an integer.
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0-VACUA IN 3+1 DIMENSIONS

@ Start with the Yang-Mills action and choose Ay = 0,
s:%/%w@ﬁwzé/ﬁx%ﬂ%ﬂ+~n
Ef
@ The symplectic potential is A = [ d°x E? §A? and
Q:/ﬁx&%&::—Z/fﬂﬂMﬁ&)
The condition of gauge invariance (under ¢ ~ 1 + ¢) is the Gauss law given by
c@mu:/d%¢qagym=o

@ Anelement of G is a map g(x) : R® — G with the condition ¢ — 1 at spatial infinity. These

are equivalent to maps S®> — G and are characterized by the winding number Q[g].

+oo

Q=—cc

This leads to IT; (C) = Z.
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0-VACUA IN 3+1 DIMENSIONS (CONT’D.)

@ Construct a one-form on C which is closed but not exact.

1

1 3 ik
K[A] = —R/Tr(F/\(SA) - @/d x ek L, A1

@ Closure: K[A] = §(Scs/27), so using 32 = 0, 6K = 0
@ But K is not exact, even though K = §(Scs/27), because Scs is not gauge-invariant.
It is not a function on C.
@ K[A] is the generating element of H!(C, R).
@ An example of the noncontractible loop:
Ai(x,7) = (gAig™ = BiggHT + Aix)(1— 1), 0<7<1

This is an open path in 4; the end-points are gauge transforms of each other, so it is closed
in C. If the path is contractible, it is deformable to

Ai(x7 7—) = A(x)g(x,r)’ g(x7 0) =1, g(xa 1) = g(x)

g(x, 7) makes g(x) homotopic to g = 1. This is not possible if Q[g] # 0.
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0-VACUA IN 3+1 DIMENSIONS (CONT’D.)

@ Integrate K along such a curve,

?f K[A]

1
— (Scs [A3] — Scs [A])
iy
1
= 8 — / Tr(F A F) (Instanton number)
= 52 /d4x Tr(F v Fop)et? P
@ Since 6K = 0, we get the same 2 for A and A + 6K.

A= /d3x E'6A7 + 0 K[A]

We need an additional parameter 6 to characterize the quantum theory.
(] f Kis an integer, so we can take 0 < 0 < 27.

@ This is equivalent to using

S=8m + 0 {—%/Tr(l—"/\l—")]
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THE WESS-ZUMINO-WITTEN THEORY

@ This is defined by an action functional in 2 Euclidean (or 1 + 1) dimensions,

Swzw L / d?x,/g g% Tr(8.M 8,M~1) + T[M]
871' M2

M| ! Px v Te(M~18,M M~18,M M~ 18, M)

127 Jap
_ é /M3 Te(M~'dM)?
M(x) € GL(N, C) (or suitable subgroups)
@ I'[M] = Wess-Zumino term, defined by integration over M3 with M3 = M?.
@ Many M?’s with the same boundary M? possible = Different ways to extend M(x) to M3.
@ If M and M’ are two different extensions of the same field, then M’ = MN, with N = 1 on
M2,

T[MN] = I'[M] + I'[N] — ﬁ /MZ d?x e (M~19,M 8,NN~1)
D Y ———

=0

N = 10on OM?® = N is (equivalent to) amap N : S® — G, classified by II3(G) (or Q[N]).
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THE WESS-ZUMINO-WITTEN THEORY (CONT’D)

@ Independence of the extension follows from:
1. T[N] = 0for N ~ 1 ( to linear order in DNN~1).
By successive transformations, I'[M] is independent of the extension to M3 for all N

connected to identity.

2. If N is homotopically nontrivial, I'[N] = 27i Q[N]
(exp(—k I'[M]) is independent of the extension, if k € Z. So & = k Swzw can be used
as the action for a theory, the WZW theory with level number k.)

@ In complex coordinates

1
Stz = 5- /Mz Tr(@.MO:M ") + T[M]

1
SwzwM ] = SwzwM] + Swzwlh] — — / , Tr(M oM o hh1)
M
(Polyakov-Wiegmann identity)

@ Chiral splitting: Antiholomorphic derivative of M, holomorphic derivative of i
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THE WESS-ZUMINO-WITTEN THEORY (CONT’D)

@ Another important property M — M + 6M = (1 + 0)M, 6 = 6M M~! infinitesimal.

SSww = —+ / Tr (0:(6MM ) oMM )

1 / Te(SMM~10:4,)
™

_1 / Te(6MM~'D.C)
i

1 _ 1 -

—— /Tr(C 0A;) = —C5AL
T 2

A, = -9, MM~1, C=—-MM?!

D.C = 8. + [A=, ]

@ A,and C obey the equation

= —3A
A, ZAz

_ 5 1
A, —8,C + [C,A;] =0, DZ[ SWZW} 5

This will be useful for evaluating Dirac determinants.
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THE WESS-ZUMINO-WITTEN THEORY (CONT’D)

@ If we use M, we get C rather than C.

0Swzw 1
D = —0Az
sAr T op T

@ Comparing with wave function for CS theory,
WIA] = exp [k Swzw (M)]

provided we can parametrize a general 2-dimensional gauge field as A, = —9:-M M =1
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THE DIRAC DETERMINANT IN TWO DIMENSIONS

Massless fermions in irreducible representation R of U(N), coupled to a U(N)-gauge field.

@ Dirac matrices: 0, i = 1,2, 0j0j + 0jo; = 2 §j;.
L = (D1 +iD2)y + X(D1 — iD2)x = 2Dzt + 2xDzx

), x: chiral components of ¥ = (1, x)

@ A parametrization for gauge potentials
Ar=—-0MM™! Az =M oMt

M is a complex matrix. (det M = 1 if gauge group is SU(N).)
@ For U(1), use elementary result A; = 00 + ¢;;0jp. =M =exp(¢ +i0).

@ One can invert 9, via
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THE DIRAC DETERMINANT IN TWO DIMENSIONS (CONT’D)

@ Write O:M = —A;M,
M) =1 / (l) A(IM()
x/ az xx!
“1- [@)7 At [@)7 a0y A
Q@ A— A8 =gA¢ 1 —dgg™! = M8 =gM
@ Comment: Space not simply connected => 3 zero modes for 9, = 3 flat potentials 4,
not gauge equivalent to zero.

@ Example: Torus S! x S'. Real coordinates &1, &,0 < & <1, with& =0 ~ & = 1,same

for &.

z=2¢& +7&, 7 =modular parameter
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THE DIRAC DETERMINANT IN TWO DIMENSIONS (CONT’D)

@ For the torus,the generalized parametrization is

iTa

Im T

A, =M [ } M1—oMM™!

@ Ambiguity: M and MV (Z) = same A.. (Must ensure this does not affect physical results)

@ For determinant we need regularized version of (D;)~!

1

w(x —Xx')

(0:) 0 = Glx,2) =

xx! T

De = (0 — MM )6 = MAL(M19) = D> (x,) = MM ()

w(x —X')
@ Regularized version
M~1(y)
D_l,’ — ’/:/dz (x) Y o
. (%, x )REg G(x,x") Y 7r(J_C—]7 o(x y €)
! _ 42
o(x',y;e) = iexp (—u) — §D(x -«
e €
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THE DIRAC DETERMINANT IN TWO DIMENSIONS (CONT’D)

@ The computation of the determinant:

Seff =logdetD; = TrlogD;

L:?fi) =T [P ) (i) = TG0 (i) g
0Ser = / AT [G (x, x) (—it")] o 6AL(x)
- % / T [:MM 04z = - % / dx Te(C 6A2)

Tr(#)r = AR Tr(#°t")p, Agr = index of the representation R.

35,5

_Ar /dzx Tr(C §A;)F
w

AR dSwzw (M)

= detD, = det(0.) exp[Ar Swzw(M)]
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THE DIRAC DETERMINANT IN TWO DIMENSIONS (CONT’D)

@ Our answer is not gauge-invariant; under M — g M = (14 ¢)M,
_ 1 2 -1
(SSWZW = d°x Tr(BzAZ Jgg )
K
This is the two-dimensional gauge anomaly.
@ The gauge-invariant expression is given by

det(D;Dz) = det(0.0:) exp [AR SWZW(MTM)]

1
Swzw(MTM) = Swzw (M) + Swzw(MT) + ;/dzx Tr(AzAz)
S —

local counterterm

@ Abelian version: This corresponds to 2-dim. QED (the Schwinger model) = mass term

for gauge field.
det(D:Dz) = det(8:0:) exp |:—1/ Fuy(x)G(x—y)Fw,(y)]
A Jry
dp 1 .
G-y = [ 5o el ()
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HAMILTONIAN IN FIELD THEORY

In a Hamiltonian approach, we deal with the Hamiltonian operator and wave functions.
In field theory, these have to be regularized and renormalized.

The wave functional is defined on a time-slice; needs counterterms defined at fixed time,
in addition to the familiar counterterms from the Hamiltonian/action.

@ For the usual ¢*-theory, upon integrating modes, of yi1 < k <y,

W) = U [ %00 (e
(0)
u ~ 1- i?;;rz log(,u.z/u%)/apx (o +7mp) + ...

In the Hamiltonian, T and V cannot be independently regularized.
@ Their regularizations are correlated by Lorentz symmetry.

@ One has to check the Dirac-Schwinger condition
[T%(x), T®(y)] = (T (x) + T (1)) 36 (x — y)

This can be a delicate task.
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YANG-MILLS THEORY IN 2 + 1 DIMENSIONS

An example which illustrates many features of what we discussed is the YM theory in 2 + 1
dimensions.
Why is this theory interesting?

@ Interesting in its own right

@ YM(1+1) is exactly solvable, but has no propagating degrees of freedom

YM(3+1) is highly nontrivial and difficult

YM(2+1) has propagating degrees of freedom, it is nontrivial. Can be amenable to a

Hamiltonian analysis.

It has a dimensional coupling constant and is super-renormalizable. This helps to
simplify it.
@ A real physical context for YM(2+1)

@ Mass gap of YM(2+1) ~ Magnetic screening mass of YM(3+1) at high temperatures

o We will use a Hamiltonian approach because some exact calculations are possible

Collaborators: DIMITRA KARABALI, CHANJU KIM, ABHISHEK AGARWAL, ALEXANDER YELNIKOV
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HAMILTONIAN ANALYSIS OF YM(2+1)

@ We choose Ay = 0 and use complex coordinates z = x; — ix, with
1A +iA) = —OMM™', (A —iAy) = MT1oMT

M € SL(N, C), for gauge group SU(N). (More generally, G = G®.)
@ Since M — ¢ M under a gauge transformation, ¢ € SU(N), H = MM € SL(N, C)/SU(N)
is gauge-invariant.

@ We first calculate the volume of the gauge-invariant subspace:
6A = —3(SMM ™) + [DMM ™!, MM ™)
= —D(sMM™1)
6A = D(Mt—1smT)
dsii = /dzx Tr(5A 5A)
- / Te [(MT =M1 (—DD) (MM )]

s .oy = [ Te(MTtoMT sMM ™)
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HAMILTONIAN ANALYSIS OF YM(2+1) (CONT’D.)

@ From the structure of the metric
dp g = det(—DD) dug v, c) (M, M")
@ One can do a polar decomposition M = U p, U unitary and p hermitian.

dusrney = @MMTY) A A@MMTY) A MITHAMT) A A (MM

(N2 — 1) times (N? — 1) times
= dp(H) du(U)

Volume of SL(N, C)/SU(N) Volume of SU(N)

@ Thus the volume the gauge-invariant configuration space is

dp(C) dp(H) det(—DD) = du(H)exp[2 ca Swzw (H)]

du(H)

[dp] detR

a

H=2¢"?", H716H = 60"Ry ()t
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HAMILTONIAN ANALYSIS OF YM(2+1) (CONT’D.)

@ Wave functions are gauge-invariant (Gauss law), depend on H = MM with the inner
product
(1) = / dyu(H) exp[2 ca Swzw (H)] ¥} W
@ This leads to an intuitive argument for a nonzero mass gap:

@ The Hamiltonian has the form
M= / 1 [PE2 + B/e?)

[E, B] ~ p (in momentum space) => AE AB ~ p, or AE ~ p/AB

—ap L[ P (BB
e 00~ [P+ ]

Minimize with respect to AB = (AB)? ~ p => & ~ p. This is the photon.

@ Forus

(H) = /d,u(H) exp [2 caSwzw (H)] /% [2E% + B2 /¢
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HAMILTONIAN ANALYSIS OF YM(2+1) (CONT’D.)

@ Expanding the WZW action
c Co1 2
(H) = /d,u(H) exp {7§ / BP—ZB + } / : [eZEZ + f—z]
Gaussian = (AB)? ~ mp?/cy == mass gap ~ e>c/27.
@ More detailed analysis confirms m = e’c4 /2.

@ The Wilson loop operator is given by
W(C) = TrPe $4 = Tr P exp (gy{])

All gauge-invariant quantities can be made from the current ] = (2/e)0H H~!.

@ The Hamiltonian and the wave functions can be expressed as functions of the current

J=(2/e)oHH™ L.
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THE HAMILTONIAN OPERATOR

@ The Hamiltonian is given by
& 1
- Eu Ell . Bll Ba
H 2 / + 2¢2 /
—_——— —_———
= T + 14
@ The potential energy is easy to simplify,

V= 212 B'B" = /x : 9% (x) 9] (x) :

@ The kinetic term is simplified via the chain rule

e
T = E/xaA(x)aA o Y
_ e [ 3w (@) / 521 u) 5T
- SA(x) SA(x) 5] 6A A(x) 8J(u)
————

Q w

520 o
= [ a0 g Ib(v)+/ ) 51t
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THE HAMILTONIAN OPERATOR (cont'd.)

@ w"(u) needs regularization

52 a _
=—_= / 5Ab(x])6Ab = (ech/Zﬂ') M, (x) Tr [t”‘Dr_egl (v, x)]yﬁx

=m]J*

@ The kinetic energy is thus given by

e [rg | Q“b(u’v)6]“(11()5211’(1))}

CA S . fane]“ (0)
= —i
w2 (u —v)? u—v

@ The Hamiltonian is H = Hy + H; with

Qup(u,0) = + O(¢)

) 2 1 ) )
Ho=m [ 1) @) n /w (=~ 0)2 5a(@) 51 (3)
+3 / O () B (x) -
- F@ s
P =iefu / (2 —w) 5a(@) 3J5(2)
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AN ASIDE ON REGULARIZATION

All calculations are done with proper regularization.

@ Start with a regularization of the §-function

o2
6@ (u,w) = o(il, @, €) = — exp (f ju = wl )
TE €
@ This is equivalent to
1
G(%, =
@9 = oy

— GG = [ GG ol IHEPDH 1.)

@ This simplifies as
Goneot) = —— [oma — = (e )H (1.9)]
ma(X,Y) = 7T(x—y) ma ) Y;Y)lma

One can check all results using regularized expressions, with a single regulator from

beginning to end.
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HAMILTONIAN ANALYSIS OF YM(2+1) (cont'd.)

@ One can solve the Schrodinger equation to get the vacuum wave function as

Wy = exp [%F(H)],

F(H) = — / 9

V)

+2 e / FOR 7.2 L@ 1) Jo@) + OF*)

@ This has the correct expected limits

~ 'L Ko

Yorep | | P e
1 [, k

zexp[—m/B} %<<1

O(J?,J*) terms are small at k >> ¢? and at k < ¢?

@ The high k limit agrees with perturbation theory
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HAMILTONIAN ANALYSIS OF YM(2+1) (cont'd.)

@ For quantities involving low momentum modes

(©)

. ) 1 B
/\IIO Yy O = intexp {— @F;-’]-F“”] o
= (O)uym
% = me? = e*cy /27,

@ Since YM,,; confines

(Wr(C)) = exp [—or Ac]

Ac = area of the closed curve C.

@ This gave values of string tension

CACR
\/ER = 62 PR
47

in agreement with lattice values to within 1 — 3%.
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STRING TENSION

Group Representations
k=1 k=2 k=3 k=2 k=3 k=3
Fund. antisym antisym sym sym mixed
su() 0.345
0.335
su@) 0.564
0.553
su@) 0.772 0.891 1196
0.759 0.883 1.110
Su(s) 0.977
0.966
Su(s) 1.180 1.493 1.583 1.784 2.318 1.985
1.167 1.484 1.569 1.727 2.251 1.921
SU(N) 0.1995 N
N=e | o1g76N

Comparison of /o /e? with lattice estimates (lower entry, in red) from LUCINI &TEPER, BRINGOLTZ

& TEPER. k is the rank of the representation.
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THE WAVE FUNCTION: A DIFFERENT ARGUMENT

@ Absorb exp(2caSwzw) from the inner product into the wave function by

U = ¢—¢aSwzw(H) & The Hamiltonian acting on @ is

H — e—caSwzw (H) gy p—caSwzw (H)

@ Consider H = ¢"?" ~ 14 #9¢" 4 - - -, a small ¢ limit appropriate for a (resummed)

perturbation theory. The new Hamiltonian is

_1 62 2 2

where ¢,(K) = 1/cakk/(2mm) @q(K).

@ The vacuum wave function is

D) =~ exp [—%/cﬁ”\/ m? — V2 ¢”}
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THE WAVE FUNCTION: A DIFFERENT ARGUMENT (cont'd.)

@ Transforming back to ¥,

rcexp |- A [ (Bo ! 5957) + - -
‘Ilo~exp[ ﬂm/(aa@)[m+ mz_vz](a&p)Jr

@ The full wave function must be a functional of J. The only form consistent with the above is

o' (y) +--
Xy

Ty = ex 2m* / 9] (x) !

0= - - -

P e2ch m+/m?2— V2
since | = (ca/7)0p + O(¢?).

@ This indicates the robustness of the Gaussian term in ¥, since this argument only
presumes

1. Existence of a regulator, so that the transformation ¥ <=- & can be carried out

2. The two-dimensional anomaly calculation
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STATUS REPORT

@ Some things which can be calculated /understood

A clear gauge-invariant Hamiltonian formulation

Computation of the vacuum wave function

String tensions: lowest order,with a systematic expansion for higher order
corrections (of the order a few percent)

Possibility of screening of Wg(C) via string-breaking in some representations
Results on magnetic screening mass, glueballs

Extension to Yang-Mills-Chern-Simons Theory, Formulation on R x S?

@ But there are also unclear issues, more questions

Improving higher order corrections to string tension, better handle on glueballs
Calculations on the torus to understand the theory at finite temperature
Connecting the formulation on R x S? to the duality-matrix model approach
Fermions, supersymmetric cases

Geometrical properties of the configuration space A/G.

V.P. NAIR Geometric Quantization & Hamiltonians September 6-9, 2009



