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1 Introduction

Solitons are exact solutions to classical non-linear field equations. They are
localised and have a finite energy. In this sense, they behave like ordinary
particles. Solitons and multi-solitons are stable because they carry a topological
charge N , which is an integer and equals the net number of particles. Because
the topological charge is a conserved quantity, a single soliton cannot decay.
Notice, that the conservation of N is not due to a Noether theorem, but to
the topological structure of the soliton. A soliton is described by its collective
coordinates, like its centre and orientation. The space of collective coordinates
is referred to as moduli space. Quantisation of a soliton proceeds by quantising
its collective coordinates, but this is only mentioned briefly here.

To find solutions to a field theory one usually solves the Euler-Lagrange
equations, which are of second order. However, Bogomolny [5] has shown that in
certain field theories the energy of a soliton is bounded from below by a multiple
of the topological charge and that equality is reached if the field satisfies a first
order PDE. Because the Bogomolny equation does not involve time its solutions
are static. Furthermore, the solutions are stable since they minimise the energy
in a given topological sector.

If a single soliton has k collective coordinates, then N solitons have a kN -
dimensional moduli space. This kN -dimensional manifold has a metric struc-
ture, which tells something about the interactions between solitons. Sometimes
a potential is also defined on the moduli-space. In the case when there is no po-
tential, there are no forces between static solitons and interactions are governed
by the geometry of the moduli space, while the energy is simply proportional
to the number of solitons.

Multi-soliton dynamics is tricky, but interesting. Usually solitons merge
when they approach each other, and this distinguishes them from point-like
particles. If one is interested in the adiabatic dynamics of solitons, the dynamics
can be approximated by the dynamics on moduli space. As said above, the
moduli space possesses a (curved) metric which can be determined from the
kinetic energy of the field. The classical motion in the moduli space is along a
geodesic. Therefore, no law for the force between moving solitons needs to be
postulated, but the force naturally arises from the curved moduli space.

Unfortunately, there are few systems in nature which exhibit topological
solitons and experimental tests of the mathematical results are limited. There
are vortices in superconductors [11], but they either attract (Type I) or repel
(Type II) each other, and hence the static solutions of the Bogomolny equation
are unimportant, except perhaps close to the Type I/II boundary. Skyrmions
are solitons which may describe the shape of nuclei, and are covered in Sec.
4. Supersymmetric field theories also have solitons, but so far SUSY has not
been found in nature. Solitons in superstring theory [17] are known as ”branes“.
Also, Derrick’s theorem [6] prevents solitons in some simple field theories, e.g.
pure gauge theories in 3 dimensions.

Examples of solitons are:

• kinks in one dimension;

• two-dimensional vortices in gauge theories with a Higgs field [1];

• lumps in two-dimensional non-linear scalar field theories (σ-models) [28];
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• monopoles in three-dimensional gauge/Higgs theories [23, 18];

• solitons in three-dimensional σ-models (where they are known as
Skyrmions) [21, 22];

• instantons in pure gauge theories of dimension four [4].

Lumps are the subject of Sec. 2. Sec. 3 discusses monopoles, while Sec. 4 is on
Skyrmions and their relations to nuclei. The last section includes the exercises,
with the example of the kink in 5.1 and 5.2.

When discussing these solitons the focus will be on the mathematics of ra-
tional maps. They give exact or approximate descriptions of the solitons. Fur-
thermore, they show the symmetries of the solitons.

These lecture notes necessarily cover only a small amount of the subject on
topological solitons. A thorough discussion and many references can be found
in [14].

2 Lumps

We start with the S2 σ-model. It is a two-dimensional scalar field theory with
S2 as the target space:

Φ : R2,1 → S2 . (1)

Here, we use the complex coordinate z = x+ iy on R2. On S2 with polar coor-
dinates (θ, φ) we introduce a complex coordinate R by stereographic projection
R = tan θ

2eiφ with R = 0,∞ for the north- and south pole respectively (see
Fig. 1). Hence, in coordinates Φ is given by θ(x, y, t) and φ(x, y, t) or equiva-
lently by R(x, y, t). The differentials are

dR =
1
2

sec2 θ

2
eiφdθ + i tan

θ

2
eiφdφ (2)

d R̄ =
1
2

sec2 θ

2
eiφdθ − i tan

θ

2
eiφdφ (3)

⇒ dR d R̄ =
1
4

sec4 θ

2
(dθ2 + sin2 θdφ2) (4)

⇔ dθ2 + sin2 θdφ2 = 4
dR d R̄

(1 + |R|2)2
. (5)

The Lagrangian of the S2 σ-model

L =
∫ ∂R

∂t
∂R̄
∂t −

∂R
∂x

∂R̄
∂x −

∂R
∂y

∂R̄
∂y

(1 + |R|2)2
dx dy (6)

has Lorentz symmetry (with metric η = diag(1,−1,−1)) and an internal SO(3)
symmetry (rotations on the target S2). The potential energy E is the sum of
the spatial derivative terms. Using ∂z = 1

2 (∂x − i∂y) and ∂z̄ = 1
2 (∂x + i∂y) the

energy of a static field configuration in terms of R(z, z̄) reads

E = 2
∫
|∂zR|2 + |∂z̄R|2

(1 + |R|2)2
dx dy . (7)
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Figure 1: Definition of the Riemann projection.

Now we consider the topological charge. For a map R(x, y) the topological
charge N is the topological degree of the map R : R2 → S2. To calculate it we
start with the (normalised) area element on S2:

1
4π

sin θdθ ∧ dφ =
i

2π
dR ∧ dR̄

(1 + |R|2)2
. (8)

The degree of R is then given by

N =
i

2π

∫ ∣∣∣∣∣ ∂R
∂x

∂R
∂y

∂R̄
∂x

∂R̄
∂y

∣∣∣∣∣ dx dy

(1 + |R|2)2
, (9)

where |· · · | denotes the Jacobian of R. In terms of ∂z and ∂z̄ Eq. (9) yields

N =
1
π

∫
|∂zR|2 − |∂z̄R|2

(1 + |R|2)2
dx dy . (10)

Provided R → const as |z| → ∞, N is an integer. A proof of this theorem can
be found in [14]. The interpretation of N is that it gives the number of times
that R winds around S2. Comparing Eq. (7) and Eq. (10) we find

E = 2πN + 4
∫

|∂z̄R|2

(1 + |R|2)2
dx dy . (11)

Thus, the energy is the sum of the topological charge and a positive correction,
i.e.

E ≥ 2πN , (12)

with equality only if
∂z̄R = 0 . (13)

This equation is called a Bogomolny equation [5]. Its importance lies in the
fact that it is a first order equation whose solutions give field configurations
with minimal energy within a topological sector (fixed N). In contrast, the
Euler-Lagrange equations are of second order. Here Eq. (13) also shows that R
is a holomorphic function of z only. Notice, that R is allowed to have a pole

3



at any point z0 because its image on the target S2 is just the south pole. The
requirement that the total energy is finite, together with the boundary condition
that R has a definite limit as |z| → ∞ forces R to be a rational map:

R(z) =
P (z)
Q(z)

, (14)

where P and Q are polynomials in z with no common factors. If P and Q have
the same degree, than R goes to a constant as |z| → ∞. The case of R being
just a polynomial of degree n is also allowed, since R(∞) = ∞ is a regular point
(south pole) and the energy density

|∂zR|2

(1 + |R|2)2
∼ |z|2n−2

|z|4n
(15)

falls off sufficiently fast.
What is the topological charge of a map given by Eq. (14)? One way to

answer this would be to evaluate the integral Eq. (10) directly. However, there
is an alternative way. Namely, the degree N of a map R is also given by the
number of distinct preimages of a generic point c counted with multiplicity, the
multiplicity being 1 if R preserves the orientation and −1 if the orientation is
reversed. Also, the Jacobian needs to be non-zero at these points, which is true
for almost all points. Again, the proof can be found in [14]. Because of Eq. (13)
R is holomorphic and therefore preserves orientation locally. Hence, N is given
by the number of preimages of a generic point c.

In the case where R(z) = P (z) we have to solve P (z) = c. This equation has
n distinct solutions, and the topological degree N equals the algebraic degree.
In the case of R(z) = P (z)/Q(z) we have to solve P (z) − cQ(z) = 0. The
number of roots is given by the greater of the two algebraic degrees of P and
Q and is also the topological degree of the map. Recall that the energy E of
a rational map is 2πN . Therefore, rational maps with degree N > 1 are called
N -lump solutions.

The simplest example is one lump. It has N = 1, E = 2π and in a certain
orientation is given by R(z) = µz with µ ∈ R. The energy density according to
Eq. (15) is

2µ2

(1 + µ2|z|2)2
. (16)

It is centred at the origin and has a width of 1/µ. Strictly speaking, the energy
density is not confined within a finite region. The general 1-lump solution is
parameterised by three complex parameters:

R(z) =
αz + β

z + γ
. (17)

Two real parameters specify the (two-dimensional) position of the lump, one real
parameter gives its width, while the remaining three give the orientation on the
target space. Using the boundary condition R(∞) = 0 requires α = 0, and the
solution is given by four real parameters (two for position, one width, and one
orientation). A rational map of degree N has 2N + 1 complex parameters, or
2N if boundary conditions are specified.
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We now consider the case where space is curved. The target space is S2 as
before. The flat spatial metric δij is replaced by gij = Ω(x, y)δij . Ω is called a
conformal factor, and must be positive. Then the field energy is

E =
∫

gij∂iR∂jR̄

(1 + |R|2)2
√

det g dx dy . (18)

Notice, that we get one factor of 1/Ω from gij which is cancelled by a factor
of Ω from

√
det g. Thus the energy is conformally invariant and Bogomolny’s

equation for lumps remains unchanged. If we choose Ω = 1/(1+x2+y2)2 we get
the spatial metric of the two-sphere. So lumps are now maps from the spatial
S2 to the target S2. To have a smooth holomorphic map (∂z̄R = 0) R(z) must
be a rational map. Again, an N lump solution is a map of algebraic degree N .
Well separated lumps with boundary condition R(∞) = 1 are given by

R(z) =
(z − α1) . . . (z − αN )
(z − β1) . . . (z − βN )

(19)

with α1
∼= β1, . . ., αN

∼= βN . The lumps are localised around the αis and their
sizes are roughly given by the distance between αi and βi.

Earlier we identified R2 ∼= C with the spatial S2 of infinite radius. This
required that the field had a definite value at |z| = ∞, therefore reducing the
symmetry from SO(3) to SO(2). If we have a map from unit S2 to S2 we
maintain the full SO(3) symmetry of the theory. In this case the energy E is
given by

E =
1
2

∫
|∂zR|2(1 + |z|2)2

(1 + |R|2)2
2idzdz̄

(1 + |z|2)2
. (20)

Generically, a particular map need not be symmetric, but for example R(z) = z
has the full SO(3) symmetry and uniform energy density on the spatial S2.
Similarly, R(z) = zN (N > 1) has axial symmetry and energy density concen-
trated around the equator. There are also very interesting examples of lumps
with Platonic symmetries, which we consider now.

First, a definition: A map R(z) has a symmetry element if there exists a
pair of Möbius transformations (m,M) in SU(2) such that

R(m(z)) = MR(z) , (21)

that is, a spatial Möbius transformation m is compensated by a Möbius trans-
formation M on target space. A symmetry group is a set of pairs (m1,M1), . . . ,
(mG,MG) where (m1, . . . ,mG) form a symmetry group of rotations and where
m→M is a homomorphism, i.e. if m1m2 = m3 then M1M2 = M3. Recall the
definition of a Möbius transformation:

z 7→ αz + β

γz + δ
, (22)

where α, β, γ, δ ∈ C and αδ − βγ 6= 0.
As a first example consider the map R(z) = zN . It has an axial symmetry

about z = 0, i.e. R(eiαz) = eiNαR(z). The pairs (α,Nα) mod 2π define
the symmetry group SO(2). The general symmetry group is D∞, because, in
addition, R(1/z) = 1/R(z).
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Figure 2: Surfaces displaying the energy density for lumps with c = 4
5 ,

9
10 , 1,

10
9 ,

5
4

in Eq. (23) (taken from [14]).

Another example is the N = 4 lump solution with tetrahedral symmetry:

R(z) = c
z4 + 2

√
3iz2 + 1

z4 − 2
√

3iz2 + 1
, (23)

where c is a real parameter, if reflection symmetry is also imposed. The map
has the symmetries (see Sec. 5.3)

R(iz) =
1

R(z)
, R

(
iz + 1
−iz + 1

)
= e

2πi
3 R(z) . (24)

Its energy density is visualised in Fig. 2 for some values of c by plotting surfaces
whose height above the unit sphere is proportional to the energy density at that
point on the sphere. Notice, that the energy density Eq. (15) vanishes at the
points 0,−1, 1, i,−i, and ∞. There is a cubic symmetry when c = 1.

By Eq. (20) the general N lump solution R(z) = P (z)/Q(z) has zero energy
density wherever the Wronskian W (z) = P ′(z)Q(z)− P (z)Q′(z) vanishes. Be-
cause W (z) is a polynomial of degree 2N − 2 the energy density vanishes at
2N −2 points. These zeros reflect the symmetry of the rational map. In special
cases such as Eq. (23) the Wronskian is only a 5th degree polynomial, and we
must consider the point ∞ as another formal zero.

The Wronskians of rational maps we have found so far are in fact polyno-
mials known as Klein polynomials. They are one-dimensional representations
of the Platonic group [12]. The Platonic solids are the tetrahedron, the cube,
the octahedron, the dodecahedron, and the icosahedron. Out of these five solids
the cube is dual to the octahedron while the dodecahedron is dual to the icosa-
hedron. This means that the vertices of one are the face centres of the other.
The Klein polynomials for the cube are constructed as follows: A regular cube is
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scaled in such a way that the six face centres lie on the unit sphere. Via the Rie-
mann projection, these points correspond to six complex numbers. The Klein
polynomial for the face centres is the polynomial which has these six points as
zeros. Orientating the cube in a particular way, the Klein polynomial for the
face centres is

Of = z(1− z4) . (25)

Notice that we have orientated the cube such that one face centre corresponds
to the south pole of the Riemann sphere, and ∞ is considered as a further zero,
making Eq. (25) a sixth order polynomial. By a similar construction (with the
same orientation), the Klein polynomials for the eight vertices and twelve edge
centres are

Ov =
(
z − 1 + i√

3 + 1

)
. . . = z8 + 14z4 + 1 (26)

Oe = z12 − 33z8 − 33z4 + 1 (27)

For example, the vertex 1√
3
(1, 1, 1) corresponds to z = 1+i√

3+1
. The Klein poly-

nomials for the tetrahedron and icosahedron are

Tf = z4 − 2
√

3iz2 + 1 (28)

Tv = z4 + 2
√

3iz2 + 1 (29)
Te = z5 − z (30)
Yf = z20 − 228z15 + 494z10 + 228z5 + 1 (31)
Yv = z11 + 11z6 − z (32)
Ye = z30 + 522z25 − 10 005z20 − 10 005z10 − 522z5 + 1 (33)

Although the individual points are nontrivial complex numbers, most Klein
polynomials only have integer coefficients! Comparing Eq. (28) and Eq. (29)
with Eq. (23) we see that the rational map is just the quotient of two tetrahedral
Klein polynomials and hence possesses tetrahedral symmetry.

In this last section on lumps we consider reduced soliton dynamics. The
name refers to the idea that we make the parameters of a stationary soliton
time dependent and get a moving soliton as a result. An explicit example of
this idea can be found in Sec. 5.1.

First consider a time dependent position parameter a(t) with a kinetic La-
grangian L = 1

2Mȧ2 and constant potential. The moduli space is one dimen-
sional and has constant metric gaa = M (const): L = 1

2gaaȧȧ. Of course the
equation of motion is just ä = 0, with a straight line as a solution.

The same strategy is now applied to N lumps. We take the parameterised
static solution Eq. (19) and let the parameters be functions of time:

R(z, t) =
(z − α1(t)) . . . (z − αN (t))
(z − β1(t)) . . . (z − βN (t))

. (34)

Substituting Eq. (34) into the expression for the kinetic energy
∫
|Ṙ|2/(1 +

|R|2)2dzdz̄ we obtain a Lagrangian quadratic in α̇1, β̇1, . . . , ˙̄α1,
˙̄β1, . . .. We col-

lectively call these γ̇, and the metric structure on the moduli space is glmγ̇l ˙̄γm.
The glm are not constant, and there are no γ̇2

l terms. For the kinetic energy
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to be real, g must be a hermitian matrix. Furthermore, g is Kähler, i.e. there
exists a closed form ω (dω = 0), such that

ω = iglmdγl ∧ dγ̄m , (35)

and a Kähler potential K(γ, γ̄) with

glm = ∂l∂̄mK(γ, γ̄) . (36)

Here, K is given by

K =
∫

log(|P (z)|2 + |Q(z)|2)dx dy . (37)

Generically, for a purely kinematic Lagrangian, the equations of motion say
that the motion is along a geodesic at constant speed. Note that this motion
occurs in moduli space, but from this we get the lump motion and interaction
in physical space (R2 or S2).

Regarding lumps, there are two further remarks:

1. The metric is infinite in certain directions. This means that lump motion
in these directions is not really possible. For example, a single lump
cannot expand. In the case of a N lump solution for which we can make
an expansion R = 1 + A1/z + A2/z + . . . for large z, here, A1 cannot
depend on time.

2. On R2 or S2 geodesic motion is incomplete. Lumps can collapse to zero
size within a finite time. This happens if βr → αr and the pole and the
zero cancel. In this case scattering can still happen if the lumps approach
each other fast enough, that is, before they shrink to a point. A numerical
study of this has been carried out by Ward [25].

The most interesting phenomenon is 90◦ scattering of two lumps, which is dis-
cussed in detail by Zakrzewski [29]. A very similar situation occurs in two
vortices scattering [20], but there, a vortex cannot collapse.

3 Monopoles

After the discovery by t’Hooft [23] and Polyakov [18] in 1974 that non-abelian
gauge theories can have magnetic monopole solutions free of singularities, mono-
poles have become a large subject. In this lecture we will therefore concentrate
on one aspect: monopoles and rational maps. For a recent review consult [26].

Here, we consider a Yang-Mills theory with gauge group SU(2) together
with an adjoint Higgs field Φ in 3 + 1 dimensions. The Lagrangian for the BPS
monopole reads

L = −1
8
trFµνF

µν − 1
4
trDµΦDµΦ , (38)

with the following definitions: tr denotes the trace, the field strength Fµν =
∂µAν − ∂νAµ + [Aµ, Aν ], and the covariant derivative Dµ acts on the adjoint
Higgs field Φ by DµΦ = ∂µΦ + [Aµ,Φ].
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As in the previous section, we first look for static solutions. To find these
we introduce the Yang-Mills analog to the magnetic field:

Bi = −1
2
εijkFjk . (39)

With this, the Yang-Mills energy E is given by

E = −1
4

∫
tr(BiBi) + tr(DiΦDiΦ) d3x . (40)

Completing the square in Eq. (40) we again arrive at a first order Bogomolny
equation

Bi = −DiΦ , (41)

and we impose the boundary condition that |Φ| → 1 as |x| → ∞ with |Φ|2 =
− 1

2 tr(ΦΦ). This boundary condition breaks the SU(2) gauge symmetry down
to a U(1) gauge symmetry. As a consequence, one obtains two massive gauge
bosons W± together with a massless ”photon“. Before the experimental verifi-
cation of the Glashow-Weinberg-Salam theory, the Lagrangian Eq. (38) was one
contestant for the weak interaction. However, as this theory does not possess a
massive Z0 and the two W bosons carry electric charge 2, this model was ruled
out.

The boundary condition implies for the field at spatial infinity Φ∞ that it is
a map from the boundary two-sphere into the unit vectors in the Lie algebra of
SU(2) which is also a two-sphere. The degree of the map Φ∞ is the monopole
number N , and we have the Bogomolny inequality

E ≥ 2πN . (42)

As with lumps, we have equality if the Bogomolny equation (41) is satisfied. It
turns out, that the energy of monopoles is independent of where they are, that
is, there are no static forces.

The basic BPS monopole solution with spherical symmetry can be found
with a hedgehog ansatz for Φ and Ai [19]:

Φ = h(r)
xa

r
ta (43)

Ai = −1
2
(1− k(r))εija

xj

r2
ta . (44)

As a basis of the Lie algebra we have chosen the three Pauli matrices multiplied
by i, and thus [ta, tb] = 2εabctc. Inserting this ansatz into Eq. (41) we obtain the
two coupled equations

dh

dr
=

1
2r2

(1− k2) (45)

dk

dr
= −2hk . (46)

Using H = h + 1
2r and K = k/2r these equations can be simplified and solved

(see Sec. 5.4):

h(r) = coth 2r − 1
2r

(47)

k(r) =
2r

sinh 2r
. (48)
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The energy density simplifies to 1
2∇

2(|Φ|2) if the Bogomolny equation is satis-
fied. This convenient formula is due to Ward [24] and states that the energy
density of a BPS monopole depends only on the Higgs field.

In the asymptotic field only the projection of Bi onto Φ is not exponen-
tially decaying. The projection bi = −tr(BiΦ) is the true magnetic field, which,
however, is only valid asymptotically. b gives information about the number
of magnetic monopoles and their positions. One monopole (N = 1) has four
physical significant parameters: three for the position and one phase. Time de-
pending parameters lead to a monopole with momentum and electric charge (an
object with both electric and magnetic charge is called a dyon). N monopoles
have 4N real collective coordinates: N positions in R3 and each monopole has
its individual phase. The resultant moduli space is a 4N dimensional manifold
which is hyperkähler, in which the positions and phases are intricately linked
as the monopoles get closer together.

We now discuss the relation between rational maps and monopoles. There
are two methods which relate a monopole to a rational map. The first is due to
Donaldson [7], the second due to Jarvis [10].

To define the Donaldson map, we have to single out a direction in R3 by
choosing the (x1, x2)-plane and the x3 direction. The Hitchin operator acts on
a fundamental field v via (D3 − iΦ)v ≡ (∂3 + A3 − iΦ)v. Scattering data are
obtained by solving

(D3 − iΦ)v = 0 , (49)

along the x3 direction. Here v is just a function of x3, but the solutions of
Eq. (49) are labeled by z = x1 + ix2, which is the complex coordinate where
the line intersects the (x1, x2)-plane. In the limit x3 → −∞ we have Aµ → 0,
|iΦ| → 1 and Eq. (49) asymptotically yields (we are simplifying a bit here)(

∂3 − 1 0
0 ∂3 + 1

) (
v1
v2

)
= 0 , (50)

which has the simple solution

v = a

(
ex3

0

)
+ b

(
0

e−x3

)
. (51)

Here, we choose the solution which looks like v = (ex3 , 0)t as x3 → −∞. With
this initial condition we obtain the solution of Eq. (49) as x3 →∞:

v = ã

(
ex3

0

)
+ b̃

(
0

e−x3

)
. (52)

The coefficient R = ã/b̃ is the scattering data on the line and it depends on
whether the line is close to the monopole or not. In the case when the line is
far away from the monopole R→ 0.

Notice the analogy to one-dimensional quantum mechanical scattering. Our
asymptotic initial condition v = (ex3 , 0)t corresponds to an incoming particle,
whereas ã and b̃ play the role of the transmission and reflection coefficient.

From the scattering data R for each line labeled by z, we get a holomorphic
map R(z). The proof that it is holomorphic depends on the Bogomolny equa-
tion, which implies that Dz̄ commutes with the Hitchin operator. In fact, it is
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a rational map of degree N which equals the monopole number:

R(z) =
p1z

N−1 + p2z
N−2 + . . .+ pN

(z − q1) . . . (z − qN )
=
P (z)
Q(z)

. (53)

The numerator is a polynomial of degreeN−1 due to boundary conditions, while
the denominator has algebraic degree N . The importance of this Donaldson
map is that one can obtain the positions and phases of the monopoles from the
coefficients in Eq. (53), provided the monopoles are well separated. The complex
numbers q1, . . . qN give the coordinates of the monopoles in the (x1, x2) plane.
To find the height (x3) of a monopole projected to qr evaluate P (qr). The height
is given by 1

2 log |P (qr)| and 1
2 argP (qr) is the phase. Together this data is in

1
2 logP (qr).

As a simple example of why this is so, consider a single monopole at the
origin with phase α. The Donaldson map is then

R(z) =
exp( 1

2 iα)
z

. (54)

Translating the monopole by a distance s along the x3 direction replaces ex3 in
Eq. (52) by ex3−s. Making the redefinitions ã → ãe−s and b̃ → b̃es, we obtain
R→ Re−2s.

Another relation between rational maps and monopoles was found by Jarvis
[10]. We start by choosing a point in R3, and take it as the origin. Now consider
the radial Hitchin operator Dr − iΦ with Dr = xi

r Di. The direction of a radial
line away from the origin is labeled by a point z = tan θ/2eiφ on the Riemann
sphere. The scattering data along a fixed direction z are obtained by solving

(Dr − iΦ)v = 0 , (55)

for the fundamental field v. Along a fixed line the solution is given by

v(r) =
(
v1(r)
v2(r)

)
, (56)

and we select the solution which decays exponentially as r → ∞. The scatter-
ing data for this line is then defined by R = v1(0)

v2(0)
. By considering all lines we

again obtain a map R(z, z̄). Because of the Bogomolny equation, in this context
too Dz̄ commutes with the Hitchin operator. Hence, we obtain a holomorphic
map R(z) which is a rational map of degree N . Therefore, this Jarvis map has
monopole number N . It is a fact, that the 2N + 2 dimensional set of ratio-
nal maps is isomorphic to the space of unframed N -monopoles. This implies
the existence of a 1− 1 correspondence between rational maps and monopoles.
The advantage of the Jarvis map over the Donaldson map is that the rotational
symmetry of the corresponding monopole configuration can be read off from the
rational map. A rational map with Platonic symmetry describes a monopole
with the same symmetries. For example, there exists a unique cubically sym-
metric rational map of degree four describing the unique 4-monopole with cubic
symmetry. A further example can be seen in Fig. 3. There, the surfaces of con-
stant energy density of a 3-monopole with triangular symmetry are shown. Note
that there is no up/down symmetry, because we did not consider the symmetry
under parity.
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Figure 3: Energy density isosurfaces for a family of N = 3 monopoles with
cyclic C3 symmetry (taken from [14]).

4 Skyrmions

The Skyrme model [21, 22] is a soliton model of nucleons (protons and neu-
trons). The question is, whether it gives a satisfactory description of nuclei
(bound states of several protons and neutrons). The Skyrme Lagrangian has
only three parameters, a length scale, energy scale, and a dimensionless pion
mass parameter. Recent progress has been achieved through a better treat-
ment of the three parameters of the model, especially the pion mass [15]. Much
mathematical insight of Skyrmion solutions have come from the mathematics of
gauge theories. Notice, that the Skyrme model does not directly refer to quarks
and gluons, but is regarded as a low energy limit of QCD with many quark
colours [27]. For a deeper coverage of the topic consult the literature [2].

The ingredients of the Skyrme model are three nearly massless pion fields
with an internal SO(3) isospin symmetry. A spontaneous broken SO(4) sym-
metry gives rise to this SO(3) and the pion fields are the Goldstone fields which
parametrise a 3-sphere. Lorentz invariance in 3+1 dimensions also holds, but
in this lecture we will be interested mainly in static solutions. We will also
ignore the electromagnetic and weak interaction, which is justified for nuclei
smaller than 40Ca. There exists a topological charge B, the baryon number,
that ensures that protons, neutrons, and nuclei do not disperse away.

In the Skyrme model there are the three pion fields π1(x), π2(x), and π3(x).
Together with a field σ(x) they are subject to the constraint σ2+π2

1+π2
2+π2

3 = 1,
which describes a 3-sphere. One defines the Skyrme field U(x) as

U(x) =
(

σ(x) + iπ3(x) iπ1(x) + π2(x)
iπ1(x)− π2(x) σ(x)− iπ3(x)

)
. (57)
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Due to the constraint above U(x) ∈ SU(2). It is also useful to define the current
Rµ = (∂µU)U−1 ∈ su(2). The Lagrangian of the Skyrme model in units of the
Skyrme energy and length reads

L =
∫
d3x

(
−1

2
tr(RµR

µ) +
1
16

tr([Rµ, Rν ][Rµ, Rν ]) +m2 tr(U − 1)
)
. (58)

The boundary condition of this non-linear σ-model is U → 1 as |x| → ∞. The
second term in Eq. (58) is called the Skyrme term. Also, the first two terms
possess a chiral symmetry, while the third term breaks this symmetry and m
equals the pion mass.

From Eq. (58) we obtain the expression for the energy E of a time-indepen-
dent Skyrme field:

E =
∫
d3x

(
−1

2
tr(RiRi)−

1
16

tr([Ri, Rj ][Ri, Rj ])−m2 tr(U − 1)
)
. (59)

This is invariant under translations and rotations of U(x) as well as isospin
rotations U → AUA† (A ∈ SU(2)). As in the previous sections the conserved
topological charge B is given by the degree of the map U : R3 → S3, and it can
be calculated via

B =
−1

24π2

∫
R3
εijktr(RiRjRk)d3x , (60)

where the boundary condition U → 1 as |x| → ∞ is important. By completing
the square it is easy to see that

E ≥ 12π2|B| . (61)

Although we have again a Bogomolny equation (in the massless pion limit),
there are no solutions which would satisfy the equality. The reason is, that
equality in (61) is only possible if U : R3 → S3 were an isometry. But since
R3 is flat and S3 is curved an isometry between the two spaces cannot exist.
Only numerical solutions are possible and they are obtained by numerically
minimising the energy Eq. (59). Fig. 4 shows the surfaces of constant baryon
density for Skyrmions with 1 ≤ B ≤ 8. Notice the symmetries of the Skyrmions.
A priori, it is not clear that the numerically found Skyrmions have Platonic
symmetries. However, a rational map ansatz for Skyrmions exists which yields
these symmetries. This only gives approximate solutions, but the Skyrmions
thus obtained have the same symmetries and very similar shapes and energies
compared to the true (numerical) solutions.

The rational map ansatz for Skyrmions was introduced in [9]. The first prob-
lem to overcome is that Skyrmions are maps from R3 → S3, whereas rational
maps are functions from S2 → S2. The idea is to identify the domain S2 of the
rational map with spheres in R3 of radius r and the target S2 with spheres of
constant latitude on S3. For R3 we use polar coordinates, with r denoting the
distance from the origin, and z = tan θ

2 exp(iφ) gives the polar coordinates on a
two-sphere, see Fig. 5. We now make the ansatz

U(r, z) =

 cos f(r) + i sin f(r)
(

1−|R|2
1+|R|2

)
i sin f(r)

(
2R̄

1+|R|2

)
−i sin f(r)

(
2R

1+|R|2

)
cos f(r)− i sin f(r)

(
1−|R|2
1+|R|2

)
,


(62)
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Figure 4: Baryon density isosurfaces of Skyrmions for 1 ≤ B ≤ 8. The Baryon
number and symmetry of each solution is shown (taken from [14]).
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Figure 5: The mapping R3 → S3: each two-sphere in R3 at radius r is mapped
to a two-sphere on S3 with constant latitude.
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B R(z) I Symmetry
1 z 1 O(3)
2 z2 5.81 O(2)× Z
3

√
3iz2−1

z(z2−
√

3)
13.58 Td

4 z4+2
√

3iz2+1
z4−2

√
3iz2+1

20.65 Oh

5 z(z4+bz2+a)
az4−bz2+1 ,

a = 3.07
b = 3.94 35.75 D2d

6 z4+a
z2(az4+1) , a = 0.16 . . . 0.19 50.76 D4d

7 z5−a
z2(az5+1) , a = 1

7 60.87 Yh

8 z6−a
z2(az6+1) , a = 0.14 85.65 D6d

Table 1: Energy minimising rational maps: B baryon number, R(z) rational
map, I angular part of energy, and the corresponding Platonic symmetry.

where f(r) is a radial profile function with f(0) = π, f(∞) = 0, and R(z) = P (z)
Q(z)

is again a rational map of degree B. With this ansatz the energy of a static
Skyrmion, given by Eq. (59), simplifies to

E = 4π
∫ ∞

0

r2
(
f ′2 + 2B sin2 f(f ′2 + 1) + I sin4 f

r2
+ 2m2(cos f − 1)

)
dr ,

(63)
where I is the purely angular integral

I =
1
4π

∫ (
1 + |z|2

1 + |R|2
∣∣dR
dz

∣∣)4 2idzdz̄
(1 + |z|2)2

. (64)

To minimise the energy E one first minimises I and then minimises Eq. (63).
Table 1 lists Skyrmions which were found by this rational map ansatz. They
were found by assuming the symmetries, and then minimising I with respect
to one or two parameters. In [3] a systematic search for maps that minimise I
has been performed, and results up to B = 20 were obtained.

The rational map ansatz works well for B up to 7 if the pion mass is taken
to be non-zero, and up to 20 or 30 if the pion is taken to be massless. For
m ' 1, more stable solutions are made from B = 4 cubic Skyrmions joined
together. Here, a 2-layer version of the Rational Map Ansatz can be a useful
approximation, capturing Skyrmion symmetries and shapes.

The quantisation proceeds by quantising the collective motion, i.e. transla-
tions, rotations, and isorotations. With some difficulty some vibrational modes
can also be included. One can choose the momentum to be zero, so that the
wavefunction is a function of 3 + 3 Euler angles in space and isospace and the
Hamiltonian is that of ”coupled rigid bodies”. For Skyrmions with symmetry
the inertia tensor simplifies and the energy is schematically given as

E ∼Mclassical +
J(J + 1)

2I
, (65)

where I is the moment of inertia and J is the quantised spin.
Another aspect of the quantisation was noticed by Finkelstein and Rubin-

stein [8]. They found that the wavefunction of the Skyrmion is single-valued
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only on the double cover of the space of collective coordinates. If a symmetry
rotation is a non-contractible loop in configuration space then the wavefunction
acquires a factor of −1. For B odd the 2π rotations in space and isospace are
non-contractible, and therefore a Skyrmion with an odd B is a fermion. On the
other hand, if B is even then rotations by 2π are contractible loops, and thus
Skyrmions with even B are bosons. This is also important if one wants to build
nuclei out of Skyrmions. The B = 1 Skyrmion is a fermion, as it should be if it is
to describe a nucleon (proton or neutron). Further symmetries of the Skyrmion
lead to further constraints. For example, the ground state of the toroidal B = 2
Skyrmion has spin 1 and isospin zero, as expected for the deuteron.

As another more detailed example, consider the quantum states for B = 6.
The corresponding rational map is

R(z) =
z4 + a

z2(az4 + 1)
(66)

with a = 0.16 . . . 0.19. The value a = 0.16 minimises I, but a = 0.19 gives a
quadrupole moment in agreement with experiment [15]. It has the symmetries

R(iz) = −R(z) (67)

R

(
1
z

)
=

1
R(z)

, (68)

generating the D4 symmetry group. Comparing Eq. (67) with Eq. (21), we see
that a spatial rotation by π/2 around the 3-axis corresponds to a rotation by
π around the 3-axis in isospace. Similarly, Eq. (68) relates a rotation by π
around the 1-axis in space to a rotation by π around the 1-axis in isospace. The
Finkelstein-Rubinstein constraints on a state |ψ〉 then read

ei π
2 J3eiπI3 |ψ〉 = |ψ〉 (69)

eiπJ1eiπI3 |ψ〉 = −|ψ〉 . (70)

Here, the Ji and Ii are the generators of rotation in space and isospace respec-
tively. The sign in Eqs. (69) and (70) is due to a formula by Krusch [13]:

sign = (−1)
B
2π (Bθrot−θisorot) , (71)

depending only on the angles of rotations θrot and θisorot and not on the rotation
axis (e.g. θrot = π

2 , θisorot = π, and B = 6 in Eq. (69)). The allowed states
with isospin zero are those with J3 = 0 mod 4 and J odd: |1, 0〉J ⊗ |0, 0〉I ,
|3, 0〉J ⊗ |0, 0〉I , |5, 0〉J ⊗ |0, 0〉I . States with isospin 1 have J = 0 or J = 2:
|0, 0〉J ⊗ |1, 0〉I , |2, 0〉J ⊗ |1, 0〉I . Apart from the spin 5 state, which has rather
high energy, all these states match low-lying states of the nuclei 6He 6Li and
6Be with baryon number 6 [16].

To make detailed contact with experimental data, the three free parameters
of the Skyrme model need to be calibrated. Traditionally this is done by using
the masses of the pion, nucleon, and ∆-resonance. This led to nuclei which were
too small and too tightly bound. A new calibration [15] uses the mass of the
pion, and the 6Li ground state energy and charge radius. This leads to new
Skyrmion structure for B ≥ 8. Nuclei with baryon number a multiple of four
look like clusters of B = 4 cubes (α-particles).
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As a conclusion, it is surprising that a pion field theory has solitons that can
model nucleons and nuclei. It seems to give a sensible account of short-range
nuclear structure. In particular, nucleons merge when they are close together.
The recent recalibration gives better energy spectra and nuclear radii [16]. How-
ever, more work is needed on larger nuclei (e.g. B = 10), on Coulomb energies,
on Skyrmion scattering and cross-sections, and on Skyrmion vibrations.

5 Exercises

5.1 Kinks

The Lagrangian of a φ4 scalar field theory in 1 + 1 dimensions with symmetry
breaking is

L =
∫ ∞

−∞

1
2
∂µφ∂

µφ− λ(m2 − φ2)2 dx .

Show that the energy of a time-independent field configuration φ(x) is

E =
∫ ∞

−∞

1
2
(φ′)2 + λ(m2 − φ2)2 dx ,

where φ′ = dφ
dx . Show that the only field configurations of zero energy are the

two vacua φ = ±m.
Reexpress the energy as

E =
∫ ∞

−∞

1
2

(
φ′ −

√
2λ(m2 − φ2)

)2

+ further terms dx ,

and show that the further terms can be integrated to give just boundary contri-
butions at ±∞. Assume that the field configuration φ(x) interpolates between
the two vacua, so that φ approaches −m as x → −∞ and m as x → ∞. For
such configurations, show that the energy is at least 4

3m
3
√

2λ. Show that the
minimal energy is attained provided φ satisfies the (Bogomolny) equation

φ′ −
√

2λ(m2 − φ2) = 0 ,

and show that this has the general solution with the right boundary conditions

φ(x) = m tanh
(√

2λm(x− a)
)
.

Sketch this solution, and give the interpretation of a. This solution is called
the φ4 kink, and is interpreted as a particle in this theory, with mass equal to
the energy already calculated. It only exists in the sector which interpolates
between the two different vacua, and there is an antikink in the sector where
the signs of φ at ±∞ are flipped. Sketch the antikink, and find the equation it
satisfies.

The Lorentz boosted kink satisfies the full field equation of the theory. An
approximation to this solution, valid for non-relativistic speeds v is

φ(x, t) = m tanh
(√

2λm(x− vt)
)
.

Use the expression for the kinetic energy of a generic field configuration to
calculate the kinetic energy for this moving kink.

Hint: recall, and check, that 1− tanh2 x = sech2x and (tanhx)′ = sech2x.
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5.2 Unstable Kink

The Lagrangian density for a complex scalar field φ in 1 + 1 dimensions is

L =
1
2

∣∣∣∣∂φ∂t
∣∣∣∣2 − 1

2

∣∣∣∣∂φ∂x
∣∣∣∣2 − 1

2
λ2(a2 − |φ|2)2 .

By treating the real and imaginary parts of φ independently, or better, by
treating φ and φ∗ as independent, verify that the field equation is

∂2φ

∂t2
− ∂2φ

∂x2
− 2λ2(a2 − |φ|2)φ = 0

and that it has the real kink φ0(x) = a tanhλax as a solution. Now consider a
small pure imaginary perturbation φ(x, t) = φ0(x) + iη(x, t), with η real. Find
the linear equation for η. By considering η of the form sech(αx)eωt, show that
the kink is unstable.

Is there a topological argument which suggests that the kink is either stable
or unstable? (Consider the vacua of this theory.)

5.3 Rational Map Symmetry

Using z = tan( θ
2 )eiϕ, locate the points z = 0, 1, i,−1,−i,∞ on the sphere, and

show they can be identified with the face centres of a cube. Show that the
transformation z → iz permutes these points and corresponds to a 90◦ rotation
mapping the cube to itself. Similarly show that the transformation z → iz+1

−iz+1
permutes these points and corresponds to a 120◦ rotation mapping the cube to
itself.

Consider the map

R(z) =
z4 + 2

√
3iz2 + 1

z4 − 2
√

3iz2 + 1
.

Calculate its Wronskian, and deduce that this gives evidence for cubic symmetry.
Show that the map has the symmetries

R(iz) =
1

R(z)
,

R

(
iz + 1
−iz + 1

)
=

iR(z) + 1
−iR(z) + 1

.

Does this prove that the map is cubically symmetric? Why is the Wronskian
argument insufficient?

5.4 BPS Monopole

Given the static, spherically symmetric ansatz

Φa = h(r)
xa

r

Aa
i = −εaij xj

r2
(1− k(r))
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calculate DiΦ and Fij , and show that the Bogomolny equation Fij = εijkDkΦ
reduces to

dh

dr
=

1
r2

(1− k2) ,
dk

dr
= −kh .

Use the change of variables H = h+ 1
r , K = k

r to find the monopole solution
of these equations. Show that the fields have no singularity at the origin.
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