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Abstract: The BRS symmetry determines physical states, Lagrange densi-

ties and candidate anomalies. It renders gauge�xing unobservable in physical

states and is required if negative norm states are to decouple in interacting

models. The relevant mathematical structures and the elementary cohomo-

logical investigations are presented.



This paper is a slightly enlarged version of the lectures given at the Saal-

burg Summer School 1995 on \Grundlagen und neue Methoden der Theo-

retischen Physik". It is meant to give a self contained introduction into a

personal view on the subject. In particular the mathematical structure is de-

rived completely with the exception of the cohomology of simple Lie algebras

and the covariant Poincar�e Lemma which are quoted from the literature.

The �rst chapter deals with the \raison d'être" of gauge symmetries:

the problem to de�ne the subspace of physical states in a Lorentz invariant

theory with higher spin. The operator Q

s

which characterizes the physical

states was found by Becchi, Rouet and Stora as a symmetry generator of

a fermionic symmetry, the BRS symmetry, in gauge theories with covariant

gauge �xing [1]. For a derivation of the BRS symmetry from the gauge

�xing in path integrals the reader should consult [2] or the literature quoted

there. The chapter is supplemented by a discussion of free vector �elds for

gauge parameter � 6= 1. This is not a completely trivial exercise [3] and not

discussed in detail even in standard references [4] on gauge systems.

The second chapter deals with the requirement that the physical subspace

remains physical if interactions are switched on. This restricts the action

to be BRS invariant. Consequently the Lagrange density has to satisfy a

cohomological equation similar to the physical states. Quantum corrections

may violate the requirement of BRS symmetry because the naive evaluation

of Feynman diagrams leads to divergent loop integrals which have to be

regularized. This regularization can lead to an anomalous symmetry breaking

which has to satisfy the celebrated Wess Zumino consistency condition [5]

which again is a cohomological equation.

In chapter 3 we study some elementary cohomological problems of a nilpo-

tent fermionic derivative d.

d! = 0 ! mod d�

We derive the Poincar�e Lemma as the Basic Lemma of all the investigations

to come. However, one has to realize that Lagrange densities are de�ned

as functions of the �elds and their derivatives and not of coordinates. We

investigate di�erential forms depending on such variables and derive the Al-

gebraic Poincar�e Lemma. The relative cohomology, which characterizes La-

grange densities and candidate anomalies, is shown to lead to the descent

equations which can again be written compactly as a cohomological prob-

lem. The chapter concludes with K�unneth's formula which allows to tackle

cohomological problems in smaller bits if the complete problem factorizes.
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Chapter 4 presents Brandt's formulation [6] of the gravitational BRS

transformations. In this formulation the cohomology factorizes and one has

to deal only with tensors and undi�erentiated ghosts. It is shown that the

ghosts which correspond to translations never occur in anomalies, i.e. coor-

dinate transformations are not anomalous.

In Chapter 5 we solve the cohomology of the BRS transformations acting

on ghosts and tensors. The tensors have to couple together with the trans-

lation ghosts to invariants and also the ghosts for spin and isospin trans-

formations have to couple to invariants. The invariant ghost polynomials

generate the Lie algebra cohomology which we quote from the mathematical

literature [7]. Moreover the tensors are restricted by the covariant Poincar�e

Lemma [10]. This lemma introduces the Chern forms which are the BRS

transformation of the Chern Simons polynomials.

Chern Simons polynomials and Chern polynomials are the building blocks

of the Chern Simons actions in odd dimensions, of topological densities and of

the chiral anomalies. They are the subject of the last chapter. We conclude

by giving some well known examples of Lagrange densities and anomaly

candidates.

The mathematical structures presented in this paper should enable the

reader also to understand and participate in the investigation of the master

equation which is a still developing �eld of research [11]. In particular the

master equation contains the BRS structures for closed algebras but applies

also to open algebras.
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Chapter 1

The Space of Physical States

BRS symmetry is indispensable in Lorentz covariant theories with �elds with

higher spin because it allows to construct an acceptable space of physical

states out of the Fock space which contains states with negative norm.

To demonstrate the problem consider the simple example of a massless

vector�eld A

m

. The action W of the vector�eld A

m

; m = 0; 1; 2; 3 is

W [A] =

Z

d

4

xL(A(x); @A(x)) (1.1)

L(A; @A) = �

1

4e

2

(@

m

A

n

� @

n

A

m

)(@

m

A

n

� @

n

A

m

)�

�

2e

2

(@

m

A

m

)

2

: (1.2)

To avoid technical complications at this stage we consider the case � = 1. The

general case is discussed at the end of this chapter. We choose to introduce

the gauge coupling e here as normalization of the gauge kinetic energies. The

equations of motion

�W

�A

n

(x)

=

1

e

2

2A

n

(x) = 0 2 = �

mn

@

m

@

n

= @

0

2

�

~

@

2

(1.3)

are solved by the free �elds

A

n

(x) = e

Z

d

3

k

(2�)

3

2k

0

(e

ikx

a

y

n

(

~

k) + e

�ikx

a

n

(

~

k))

j

k

0

=

p

~

k

2

: (1.4)

They are quantized by the requirement that the propagator

h0jTA

m

(x)A

n

(0)j0i (1.5)

3



be the Greens function of the Euler Lagrange equation

1

e

2

�

m

k

2

x

h0jTA

m

(x)A

n

(0)j0i = i�

4

(x)�

n

k

: (1.6)

The creation and annihilation operators a

y

(

~

k) and a(

~

k) are identi�ed by their

commutation relations with the momentum operators P

m

h

P

m

; a

y

n

(

~

k)

i

= k

m

a

y

n

(

~

k)

h

P

m

; a

n

(

~

k)

i

= �k

m

a

n

(

~

k) (1.7)

which follow because by de�nition P

m

generate translations

[iP

m

; A

n

(x)] = @

m

A

n

(x) : (1.8)

a

y

n

(

~

k) adds and a

n

(

~

k) subtracts energy k

0

=

q

~

k

2

� 0. Consequently the

annihilation operators annihilate the lowest energy state j0i and justify their

denomination

P

m

j0i = 0 a(

~

k)j0i = 0 :

For x

0

> 0 the propagator (1.5) contains only positive frequencies e

�ikx

a

m

(

~

k),

for x

0

< 0 only negative frequencies e

ikx

a

y

m

(

~

k). These boundary conditions

�x the solution to (1.6) to be

h0jTA

m

(x)A

n

(0)j0i = lim

�!0+

�i e

2

�

mn

Z

d

4

p

(2�)

4

e

ipx

p

2

+ i�

: (1.9)

Evaluating the p

0

integral for positive and for negative x

0

and comparing

with the explicit expression for the propagator (1.5) which results if one

inputs the free �elds (1.4) one can read o� ha

m

(

~

k)a

y

n

(

~

k

0

)i and the value of

the commutator

h

a

m

(

~

k); a

y

n

(

~

k

0

)

i

= � �

mn

(2�)

3

2k

0

�

3

(

~

k �

~

k

0

) : (1.10)

It is inevitable that the Lorentz metric �

mn

= diag(1,-1,-1,-1) appears in such

commutation relations in Lorentz covariant theories with �elds with higher

spin. The Fock space which results from such commutation relations neces-

sarily contains negative norm states because the Lorentz-metric is inde�nite

and contains both signs. Consider more speci�cally the state jf

0

i

jf

0

i =

Z

d

3

k

(2�)

3

2k

0

f(

~

k)a

y

0

(

~

k) j0i : (1.11)
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It has negative norm

hf

0

jf

0

i = ��

00

Z

d

3

k

(2�)

3

2k

0

jf(

~

k)j

2

< 0 :

In classical electrodynamics (in the vacuum) one does not have the

troublesome amplitude a

y

0

(

~

k). There the wave equation 2A

n

= 0 results

from Maxwell's equation @

m

(@

m

A

n

� @

n

A

m

) = 0 and the Lorentz condition

@

m

A

m

= 0. This gauge condition �xes the vector�eld up to the gauge trans-

formation A

m

! A

0

m

= A

m

+ @

m

C where C(x) satis�es the wave equation

2C = 0. In terms of the free �elds A

m

(x) and C(x)

C(x) = e

Z

d

3

k

(2�)

3

2k

0

�

e

ikx

c

y

(

~

k) + e

�ikx

c(

~

k)

�

j

k

0

=

p

~

k

2

(1.12)

one calculates
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�
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~
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�
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=
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k

2

and

A

0

m
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m

= @

m

C = i e

Z

d

3

k

(2�)

3

2k

0

�

e

ikx

k

m

c

y

(

~

k)� e

�ikx

k

m

c(

~

k)

�

j

k

0

=

p

~

k

2

:

(1.13)

Let us decompose the creation operator a

y

m

(

~

k) into parts in the direction

of the lightlike momentum k, in the direction

�

k (which is k with re
ected

3-momentum)

�

k

m

= (k

0

;�k

1

;�k

2

;�k

3

) (1.14)

and in two directions n

i

; i = 1; 2; which are orthogonal to k and

�

k.

1

a

y

m

(

~

k) =

X

�=k;

�

k;1;2

�

�

m

a

y

�

(

~

k) : (1.15)

Explicitly we use polarization vectors �

�

�

�

m

=

 

1

p

2

k

m

j

~

kj

;

1

p

2

�

k

m

j

~

kj

; n

1

m

; n

2

m

!

� = k;

�

k; 1; 2 (1.16)

1

Disregarding as usual the problem that there are no continuous vector�elds

n

1

(

~

k); n

2

(

~

k) which complete

~

k

j

~

kj

to an orthonormal frame for all directions

~

k.
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with scalar products

�

�

� �

�

0

=

0

B

B

B

@

0 1

1 0

�1

�1

1

C

C

C

A

: (1.17)

The �eld @

m

A

m

contains the amplitudes a

y

�

k

; a

�

k

. The Lorentz gauge con-

dition @

m

A

m

= 0 eliminates these amplitudes in classical electrodynamics.

The �eldsA

0

m

andA

m

di�er in the amplitudes a

y

k

; a

k

in the direction of the

momentum k. An appropriate choice of the remaining gauge transformation

(1.13) cancels these amplitudes.

So in classical electrodynamics a

y

m

can be restricted to 2 degrees of free-

dom, the transverse oscillations

a

y

m

(

~

k) =

X

�=1;2

�

�

m

a

y

�

(

~

k) :

The corresponding quantized modes generate a positive de�nite Fock

space. We cannot, however, just require a

y

k

= 0 and a

y

�

k

= 0 in the quan-

tized theory, this would contradict the commutation relation

h

a

k

(

~

k); a

y

�

k

(

~

k

0

)

i

= � (2�)

3

2k

0

�

3

(

~

k �

~

k

0

) ; (1.18)

which does not vanish. To get rid of the troublesome modes we require,

rather, that physical states do not contain a

y

k

and a

y

�

k

modes. A slight refor-

mulation of this condition for physical states leads to BRS symmetry.

To single out a physical subspace of Fock space F we require that there

exists a hermitean operator, the BRS operator,

Q

s

= Q

y

s

(1.19)

which de�nes a subspace N � F , the gauge invariant states, by

N = fj	i : Q

s

j	i = 0g (1.20)

This requirement is no restriction at all, each subspace can be characterized

as kernel of some hermitean operator.

Inspired by gauge transformations (1.13) we take the operator Q

s

to act

on one particle states according to

Q

s

a

y

m

(

~

k)j0i = k

m

c

y

(

~

k)j0i : (1.21)
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As a consequence the one particle states generated by a

y

�

(

~

k) � =

�

k; 1; 2 belong

to N .

Q

s

a

y

�

(

~

k)j0i = 0 � =

�

k; 1; 2 (1.22)

The states created by the creation operator a

y

k

in the direction of the mo-

mentum k are not invariant

Q

s

a

y

k

(

~

k)j0i =

p

2j

~

kjc

y

(

~

k)j0i 6= 0

and do not belong to N .

The space N is not yet acceptable because it contains non vanishing

zero-norm states

jfi =

Z

~

dkf(

~

k)a

y

�

k

(

~

k)j0i hf jfi = 0 because

h

a

�

k

(

~

k); a

y

�

k

(

~

k

0

)

i

= 0 : (1.23)

To get rid of these states the following observation is crucial:

Theorem 1.1

Scalar products of gauge invariant states j i 2 N and j�i 2 N remain

unchanged if the state j i is replaced by j i+Q

s

j�i .

Proof:

h�j (j i+Q

s

j�i) = h�j i+ h�jQ

s

j�i = h�j i (1.24)

The term h�jQ

s

j�i vanishes, because Q

s

is hermitean and Q

s

j�i = 0 .

We arrive at the BRS algebra from the seemingly innocent requirement

that j i + Q

s

j�i belongs to N whenever j i does. The requirement seems

natural because j i+Q

s

j�i and j i have the same scalar products with gauge

invariant states and therefore cannot be distinguished experimentally. It is,

nevertheless, a most restrictive condition, because it requires Q

2

s

to vanish

on each state j�i, i.e. Q

s

is nilpotent.

Q

2

s

= 0 (1.25)

We require this relation as de�ning property of the BRS operator. Then the

space N of gauge invariant states decomposes into equivalence classes

j i � j i+Q

s

j�i : (1.26)

These equivalence classes are the physical states.

H

phys

=

N

Q

s

F

= fj i : Q

s

j i = 0 ; j i mod Q

s

j�ig (1.27)

7



H

phys

inherits a scalar product from F because the scalar product in N does

not depend on the representative of the equivalence class by theorem 1.1.

The construction of H

phys

by itself does not guarantee that H

phys

has a

positive de�nite scalar product. This will hold only if F and Q

s

are suitably

chosen. One has to check this positive de�niteness in each model.

In the case at hand, the zero-norm states jfi (1.23) are equivalent to 0 in

H

phys

if there exists a massless, real �eld

�

C(x)

�

C(x) = e

Z

d

3

k

(2�)

3

2k

0

�

e

ikx

�c

y

(

~

k) + e

�ikx

�c(

~

k)

�

j

k

0

=

p

~

k

2

(1.28)

and if Q

s

transforms the one-particle states according to

Q

s

�c

y

(

~

k)j0i = i

p

2j

~

kja

y

�

k

(

~

k)j0i : (1.29)

For the six one-particle states we conclude that �c

y

(

~

k)j0i and a

y

k

(

~

k)j0i are

not invariant (not in N ), a

y

�

k

(

~

k)j0i and c

y

(

~

k)j0i are of the form Q

s

j�i and

equivalent to 0, the remaining two transverse creation operators generate

the physical one particle space with positive norm.

Notice the following pattern: states from the Fock space F are excluded

in pairs from the physical Hilbert space H

phys

, one state jni is not invariant

Q

s

jni = jti 6= 0 (1.30)

and therefore not contained in N , the other jti is trivial and equivalent to 0

in H

phys

because it is the BRS transformation of jni : jti = Q

s

jni.

The algebra Q

2

s

= 0 enforces

Q

s

jti = 0 : (1.31)

If one uses jti and jni as basis then Q

s

is represented by the matrix

Q

s

=

�

0 1

0 0

�

: (1.32)

This is one of the two possible Jordan block matrices which can represent

a nilpotent operator Q

2

s

= 0. The only eigenvalue is 0, so a Jordan block

consists of a matrix with zeros and with 1 only in the upper diagonal

Q

s ij

= �

i+1;j

:
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Because of Q

2

s

= 0 the blocks can only have the size 1 � 1 or 2 � 2. In

the �rst case the corresponding vector on which Q

s

acts is invariant and not

trivial and contributes to H

phys

. The second case is given by (1.32), the

corresponding vectors are not physical.

It is instructive to consider the scalar product of the states on which Q

s

acts. If it is positive de�nite then Q

s

has to vanish because Q

s

is hermitean

and can be diagonalized in a space with positive de�nite scalar product.

Thereby the non diagonalizable 2 � 2 block (1.32) would be excluded. It

is, however, in Fock spaces with inde�nite scalar product that we need the

BRS operator and there it can act nontrivially. In the physical Hilbert space,

which has a positive de�nite scalar product, Q

s

vanishes. Nevertheless the

existence of the BRS operator Q

s

in Fock space severely restricts the possible

actions of the models we are going to consider.

Reconsider the doublet (1.30, 1.31): one can easily verify that by suitable

choice of jni and jti the scalar product if it is non-degenerate can be brought

to one of the two standard forms

hnjni = 0 = htjti htjni = hnjti = 1 or (�1) : (1.33)

This is an inde�nite scalar product of Lorentzian type

je

�

i =

1

p

2

(jni � jti) he

+

je

�

i = 0 he

+

je

+

i = �he

�

je

�

i = 1 or (�1) :

(1.34)

By the de�nition (1.27) pairs of states with wrong sign norm and with ac-

ceptable norm are excluded from the space H

phys

of physical states.

Let us close this chapter with a supplement which describes free vector

�elds for � 6= 1. They have to satisfy the equations of motion

1

e

2

(2A

n

+ (� � 1)@

n

@

m

A

m

) = 0 : (1.35)

It is easy to derive from this the necessary condition

22A

m

= 0 (1.36)

and its Fourier transformed version

(p

2

)

2

~

A

m

= 0 :
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From this one can conclude that

~

A vanishes outside the light cone and that

the general solution

~

A contains a � function and its derivative.

~

A

m

= a

m

(p)�(p

2

) + b

m

(p)�

0

(p

2

)

However, the derivative of the � function is ill de�ned because spherical

coordinates p

2

; v; #; ' are discontinuous at p = 0.

To solve 22� = 0 one can restrict �(t; ~x) to �(t)e

i

~

k~x

, the general solution

can then be obtained as a wavepacket which is superposed out of solutions

of this form. �(t) has to satisfy the ordinary di�erential equation

(

d

2

dt

2

+ k

2

)

2

� = 0

which has the general solution

�(t) = (a+ bt)e

ikt

+ (c+ dt)e

�ikt

:

Therefore the equations (1.36) are solved by

A

n

(x) =

Z

d

3

k

(2�)

3

2k

0

�

e

ikx

a

y

n

(

~

k) + x

0

e

ikx

b

y

n

(

~

k) +

+ e

�ikx

a

n

(

~

k) + x

0

e

�ikx

b

n

(

~

k)

�

j

k

0

=

p

~

k

2

: (1.37)

This equation makes the vague notion �

0

(p

2

) explicit. The amplitudes b

n

, b

y

n

are determined from the coupled equations (1.35).

A

n

(x) = e

Z

d

3

k

(2�)

3

2k

0

 

e

ikx

a

y

n

(

~

k)� i

�� 1

�+ 1

x

0

e

ikx

k

n

k

0

k

m

a

y

m

(

~

k) +

+ e

�ikx

a

n

(

~

k) + i

� � 1

� + 1

x

0

e

�ikx

k

n

k

0

k

m

a

m

(

~

k)

!

j

k

0

=

p

~

k

2

(1.38)

From (1.8) one can deduce that the commutation relations

[P

i

; a

y

m

(

~

k)] = k

i

a

y

m

(

~

k) [P

i

; a

m

(

~

k)] = �k

i

a

m

(

~

k) i = 1; 2; 3 (1.39)

and

[P

0

; a

y

m

(

~

k)] = k

0

a

y

m

(

~

k)�

(�� 1)

(� + 1)

k

m

k

0

k

n

a

y

n

(

~

k) (1.40)
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have to hold. If we decompose a

y

m

(

~

k) according to (1.15) then we obtain

[P

0

; a

y

t

(

~

k)] = k

0

a

y

t

(

~

k) t = 1; 2 (1.41)

for the transverse creation operators and also

[P

0

; a

y

�

k

(

~

k)] = k

0

a

y

�

k

(

~

k) (1.42)

for the creation operator in direction of

�

k. For the creation operator in the

direction of the four momentum k one gets

[P

0

; a

y

k

(

~

k)] = k

0

a

y

k

(

~

k)� 2k

0

� � 1

� + 1

a

y

�

k

(

~

k) : (1.43)

In particular, for � 6= 1, a

y

k

(

~

k) does not generate energy eigenstates and the

hermitean operator P

0

cannot be diagonalized in Fock space because the

commutation relations are given by

[P

0

; a

y

] =M a

y

with a matrixM which contains a nondiagonalizable Jordan block

M � k

0

 

1 �2

��1

�+1

0 1

!

: (1.44)

That hermitean operators are not guaranteed to be diagonalizable is of course

related to the inde�nite norm in Fock space. For operators O

phys

which

correspond to measuring devices it is su�cient that they can be diagonalized

in the physical Hilbert space. This is guaranteed if H

phys

has positive norm.

In Fock space it is su�cient that operators O

phys

commute with the BRS

operator Q

s

and that they satisfy generalized eigenvalue equations

O

phys

j 

phys

i = cj 

phys

i+Q

s

j�i c 2 RI (1.45)

from which the spectrum can be read o�.

The Hamilton operator H = P

0

which results from the Lagrange density

L = �

1

4e

2

F

mn

F

mn

�

�

2e

2

(@

m

A

m

)

2

(1.46)

H =

1

2e

2

Z

d

3

x :

�

(@

0

A

i

)

2

� (@

i

A

0

)

2

� �(@

0

A

0

)

2

+ (@

j

A

i

� @

i

A

j

)

2

+ �(@

i

A

i

)

2

�

:

(1.47)
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can be expressed in terms of the creation and annihilation operators.

H =

Z

d

3

k

(2�)

3

2k

0

k

0

 

2

X

t=1

a

y

t

a

t

�

2�

�+ 1

 

a

y

k

a

�

k

+ a

y

�

k

a

k

� 2

� � 1

� + 1

a

y

�

k

a

�

k

!!

(1.48)

H satis�es (1.40) because the creation and annihilation operators ful�l

the commutation relations

[a

m

(

~

k); a

y

n

(

~

k

0

)] = 2k

0

(2�)

3

�

3

(

~

k�

~

k

0

)

 

��

mn

+

�� 1

2�k

0

(�

m0

k

n

+ �

n0

k

m

�

k

m

k

n

k

0

)

!

(1.49)

which follow from the requirement that the propagator

hTA

m

(x)A

n

(0)i = �ie

2

lim

"!0+

Z

d

4

p

(2�)

4

e

ipx

(p

2

+ i")

2

 

p

2

�

m

n

�

�� 1

�

p

m

p

n

!

(1.50)

is the Greens function corresponding to the equation of motion (1.35). If one

decomposes the creation and annihilation operators according to (1.15) then

the transverse operators satisfy

[a

i

(

~

k); a

y

j

(

~

k

0

)] = 2k

0

(2�)

3

�

3

(

~

k �

~

k

0

)�

ij

i; j 2 f1; 2g (1.51)

They commute with the other creation annihilation operators which have the

following o� diagonal commutation relations

[a

�

k

(

~

k); a

y

k

(

~

k

0

)] = [a

k

(

~

k); a

y

�

k

(

~

k

0

)] = �

�+ 1

2�

2k

0

(2�)

3

�

3

(

~

k �

~

k

0

) : (1.52)

The other commutators vanish.

The analysis of the BRS transformations leads again to the result that

physical states are generated only by the transverse creation operators.
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Chapter 2

BRS symmetry

To choose the physical states one could have proceeded like Cinderella and

could pick acceptable states by hand or have them picked by doves. Prescrib-

ing the action of Q

s

on one particle states (1.21, 1.29) is not really di�erent

from such an arbitrary approach. From (1.21,1.29) we know nothing about

physical multiparticle states. Moreover we would like to know whether one

can switch on interactions which respect our de�nition of physical states.

Interactions should give transition amplitudes which are independent of the

choice (1.26) of the representative of physical states. The time evolution

should leave physical states physical, otherwise negative norm states could

result from physical initial states.

All these requirements can be satis�ed if the BRS operator Q

s

belongs to

a symmetry. We interpret the equation Q

2

s

= 0 as a graded commutator, an

anticommutator, of a fermionic generator of a Lie algebra

fQ

s

; Q

s

g = 0 : (2.1)

To require that Q

s

be fermionic means that the BRS operator transforms

fermionic variables into bosonic variables and vice versa. In particular we

take A

m

(x) to be a bosonic �eld. Then the �elds C(x) and

�

C(x) have to be

fermionic though they are real scalar �elds and carry no spin. They violate

the spin statistics relation which requires physical �elds with half-integer spin

to be fermionic and �elds with integer spin to be bosonic. This violation can

be tolerated because the corresponding particles do not occur in physical

states, they are ghosts. We call C(x) the ghost �eld and

�

C(x) the antighost

�eld. Because the ghost �elds C and

�

C anticommute they contribute, after

introduction of interactions, to loop corrections with the opposite sign as

13



compared to bosonic contributions. The ghosts compensate in loops for the

unphysical bosonic degrees of freedom contained in the �eld A

m

(x).

We want to realize the algebra (2.1) as local transformations on �elds.

Then we have to determine actions which are invariant under these transfor-

mations and construct the BRS operator as Noether charge corresponding to

this symmetry.

The transformations act on commuting and anticommuting classical vari-

ables, the �elds, and polynomials in these �elds, the Lagrange densities. We

write the commutation relation as

�

i

�

j

= (�1)

j�

i

j�j�

j

j

�

j

�

i

=: (�)

ij

�

j

�

i

(2.2)

Here we have introduced the grading

j�

i

j =

(

0 if �

i

is bosonic

1 if �

i

is fermionic

(2.3)

and a shorthand (�)

ij

for (�1)

j�

i

j�j�

j

j

. Because products are understood to

be associative monomials get a natural grading

j�

i

�

j

j = j�

i

j+ j�

j

j mod 2 : (2.4)

We will consider only polynomials which are sums of monomials with the

same grading, these polynomials are graded commutative

AB = (�1)

jAj�jBj

BA : (2.5)

Transformations and symmetries are operations O acting linearly, i.e. term

by term, on polynomials. We consider only operations which map polyno-

mials with a de�nite grading to polynomials with a de�nite grading. These

operations have a natural grading.

O(�

1

A+ �

2

B) = �

1

O(A) + �

2

O(B) (2.6)

jOj = jO(A)j � jAj mod 2 (2.7)

Derivative operators v of �rst order satisfy in addition a graded Leibniz rule

1

v(AB) = (vA)B + (�)

jvj�jAj

A(vB) : (2.8)

1

More precisely this Leibniz rule de�nes left derivatives. The left factor A is di�eren-

tiated without a graded sign.
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They are completely determined by their action on the elementary variables

�

i

: v(�

i

) = v

i

, i.e. v = v

i

@

i

. The partial derivatives @

i

are naturally de�ned

by

@

i

�

j

= �

j

i

: (2.9)

They have the same grading as their corresponding variables

j@

i

j = j�

i

j @

i

@

j

= (�)

ij

@

j

@

i

: (2.10)

The grading of the components v

i

results naturally jv

i

j = jvj+ j�

i

j mod 2.

An example of a fermionic derivative is given by the exterior derivative

d = dx

m

@

m

(2.11)

It transforms coordinates x

m

into di�erentials dx

m

which have opposite

statistics

jdx

m

j = jx

m

j+ 1 mod 2 (2.12)

and which commute with @

n

[@

n

; dx

m

] = 0 : (2.13)

Therefore and because of (2.10) the exterior derivative is nilpotent

d

2

= 0 : (2.14)

Lagrange densities have to be real polynomials to make the resulting S-

matrix unitary. This is why we have to discuss complex conjugation. We

de�ne conjugation such that hermitean conjugation of a time ordered oper-

ator corresponding to some polynomial gives the anti time ordered operator

corresponding to the conjugated polynomial. We therefore require

(�

1

A+ �

2

B)

�

= �

�

1

A

�

+ �

�

2

B

�

(2.15)

(AB)

�

= B

�

A

�

= (�)

jAjjBj

A

�

B

�

(2.16)

j�

�

j = j�j : (2.17)

Conjugation preserves the grading and is de�ned on polynomials whenever

it is de�ned on the elementary variables �

i

. It can be used to de�ne conju-

gation of operations O (they map polynomials to polynomials and have to

be distinguished from operators in Fock space).

O

�

(A) = (�)

jOjjAj

(O(A

�

))

�

(2.18)
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This de�nition ensures that O

�

is linear and satis�es the Leibniz rule if O is

a �rst order derivative.

The exterior derivative d is real if the conjugate di�erentials are given by

(dx

m

)

�

= (�)

jx

m

j

d((x

m

)

�

) : (2.19)

The partial derivative with respect to a real fermionic variable is purely

imaginary as is the operator �

� = x

m

@

@(dx

m

)

�

�

= �� : (2.20)

The anticommutator �

� = fd; �g = x

m

@

@x

m

+ dx

m

@

@(dx

m

)

= N

x

+N

dx

(2.21)

which counts the variables x and dx is again real because the de�nition (2.18)

implies

(O

1

O

2

)

�

= (�)

jO

1

jjO

2

j

O

�

1

O

�

2

: (2.22)

Conjugation does not change the order of two operations O

1

and O

2

.

We can now de�ne the BRS transformation s. It is a real, fermionic,

nilpotent �rst order derivative.

s = s

�

jsj = 1 s

2

= 0 (2.23)

It acts on Lagrange densities and functionals of �elds. Space-time derivatives

@

m

of �elds are limits of di�erences of �elds taken at neighbouring arguments.

It follows from the linearity of s that it has to commute with space-time

derivatives

[s; @

m

] = 0 : (2.24)

Linearity implies moreover that the BRS transformation of integrals is given

by the integral of the transformed integrand. Therefore the di�erentials dx

m

are BRS invariant

s(dx

m

) = 0 = fs; dx

m

g ([s; dx

m

] = 0 for fermionic x

m

) (2.25)

Taken together the last two equations imply that s and d (2.11) anticommute

fs; dg = 0 (2.26)
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In the simplest multiplet s transforms a real anticommuting �eld

�

C(x) =

�

C

�

(x), the antighost �eld, into

p

�1 times a real bosonic �eld B(x) = B

�

(x),

the auxiliary �eld. The denominations will be justi�ed once the Lagrange

density is given.

s

�

C(x) = iB(x) sB(x) = 0 (2.27)

The BRS transformation which corresponds to abelian gauge transformations

acts on a real bosonic vector�eld A

m

(x) and a real, fermionic ghost �eld C(x)

by

sA

m

(x) = @

m

C(x) sC(x) = 0 : (2.28)

We can attribute to the �elds

� =

�

C;B;A

m

; C (2.29)

and to s a ghost number

gh(

�

C) = �1; gh(B) = 0; gh(A

m

) = 0; gh(C) = 1 : (2.30)

gh(s) = 1 : (2.31)

We anticipate the analysis of the algebra (2.27, 2.28) and state the result

in D = 4 dimensions

2

. All invariant, local actions

W [�] =

Z

d

4

xL(�; @�; @@�; : : :) (2.32)

with ghostnumber 0 have the form

L = L

inv

(F

mn

; @

l

F

mn

; : : :) + isX(�; @�; : : :) : (2.33)

The part L

inv

is real, it depends only on the �eld strengths

F

mn

= @

m

A

n

� @

n

A

m

(2.34)

and their partial derivatives. Therefore it is invariant under classical gauge

transformations. Typically it is chosen to be

L

inv

= �

1

4e

2

F

mn

F

mn

: (2.35)

2

The result holds more generally in even dimensions. In odd dimensions Chern Simons

forms can occur in addition.
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The gauge coupling constant e is introduced as normalization of the kinetic

energy of the gauge �eld.

The function X(�; @�; : : :) is a real, fermionic polynomial with ghostnum-

ber gh(X) = �1. It has to contain a factor

�

C and is in the simplest case

given by

X =

�

e

2

�

C(�

1

2

B + @

m

A

m

) : (2.36)

� is the gauge �xing parameter. The piece isX contributes the gauge�xing

for the vector�eld and contains the action of the ghost�elds C and

�

C.

isX =

�

2e

2

(B � @

m

A

m

)

2

�

�

2e

2

(@

m

A

m

)

2

� i

�

e

2

�

C@

m

@

m

C (2.37)

This Langrange density makes B an auxiliary �eld, its equation of motion

�xes it algebraically B = @

m

A

m

. C and

�

C are free �elds (1.12, 1.28).

To justify the name gauge �xing for the gauge breaking part �

�

2e

2

(@

m

A

m

)

2

of the Lagrange density we show that a change of the fermionic function X

cannot be measured in amplitudes of physical states as long as such a change

leads only to a di�erentiable perturbation of amplitudes. This means that

gauge �xing and ghostparts of the Lagrange density are unobservable. Only

the parameters in the gauge invariant part L

inv

are measurable.

Theorem 2.1

Transition amplitudes of physical states are independent of the gauge �xing

within perturbatively connected gauge sectors.

Proof: If one changes X by �X then the Lagrange density and the action

change by

�L = i s �X �W = i s

Z

d

4

x �X : (2.38)

S-matrix elements of physical states j�i and j i change to �rst order by

�h�

in

j 

out

i = h�

in

ji � i

Z

d

4

x s �Xj 

out

i (2.39)

where s �X is an operator in Fock space. The transformation s �X of the

operator �X is generated by i times the anticommutator of the fermionic

operator �X with the fermionic BRS operator Q

s

h�

in

js

Z

d

4

x �Xj 

out

i = h�

in

jfiQ

s

;

Z

d

4

x �Xgj 

out

i : (2.40)
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This expression vanishes because j�i and j i are physical (1.27) and Q

s

is

hermitean.

The proof does not exclude the possibility that there exist di�erent sec-

tors of gauge �xing which can be distinguished and cannot be joined by a

perturbatively smooth change of parameters.

Using this theorem we can concisely express the restriction which the

Lagrange density of a local, BRS invariant action in D dimensions has to

satisfy.

It is advantageous to combine L with the di�erential d

D

x and consider

the Lagrange density as a D-form !

0

D

= Ld

D

x with ghostnumber 0. The BRS

transformation of the Lagrange density !

0

D

has to give a (possibly vanishing)

total derivative d!

1

D�1

.

With this notation the condition for an invariant local action is

s !

0

D

+ d!

1

D�1

= 0 :

It is su�cient to determine this Lagrange density !

0

D

up to a piece of the

form s �

�1

D

, where �

�1

D

carries ghostnumber -1. Such a piece contributes only

to gauge�xing and to the ghostsector and cannot be observed. It is trivially

BRS invariant because s is nilpotent. A total derivative part d �

0

D�1

(with

gh(�

0

D�1

) = 0) of the Lagrange density contributes only boundary terms to

the action and is also neglected. This means that we look for the solutions

of the equation

s !

0

D

+ d!

1

D�1

= 0 !

0

D

mod (s�

�1

D

+ d�

0

D�1

) : (2.41)

This is a cohomological equation and very similar to the equation which

determines the physical states (1.27). The equivalence classes of solutions

!

0

D

of this equation span a linear space: the relative cohomology of s mod d

with ghost number indicated by the superscript and form degree denoted by

the subscript.

If we use a Lagrange density which solves this equation, then the action

is invariant under the continuous symmetry �! �+ � s � with an arbitrary

fermionic parameter �. In classical �eld theory Noether's theorem then guar-

antees that there exists a current j

m

which is conserved as a consequence of

the equations of motion. The integral Q

s

=

R

d

3

x j

0

is constant in time and

generates the nilpotent BRS transformations

sA = (�)

jAj

fA;Q

s

g

Poisson

(2.42)
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of functionals A[�; �] of the phase space variables �

i

(x) and �

i

(x) =

@L

@@

0

�

i

(x)

by the graded Poisson bracket

fA;Bg

Poisson

=

Z

d

3

x

 

(�1)

jij(jij+jAj)

�A

��

i

(x)

�B

��

i

(x)

� (�1)

jijjAj

�A

��

i

(x)

�B

��

i

(x)

!

:(2.43)

If one investigates the quantized theory then in the simplest of all conceivable

worlds the classical Poisson brackets would be replaced by (anti-) commu-

tators of quantized operators. In particular the BRS operator Q

s

would

commute with the scattering matrix S

S = \T e

i

R

d

4

xL

int

" [Q

s

; S] = 0 (2.44)

and scattering processes would map physical states unitarily to physical

states

SH

phys

= H

phys

: (2.45)

Classically an invariant action is su�cient to ensure this property. The per-

turbative evaluation of scattering amplitudes, however, has to face the prob-

lem that the S-matrix (2.44) has ill de�ned contributions from products of

L

int

(x

1

) : : :L

int

(x

n

) if arguments x

i

and x

j

coincide. Though upon integra-

tion

R

dx

1

: : : dx

n

this is a set of measure zero these products of �elds at

coinciding space time arguments are the reason for all divergencies which

emerge upon the naive application of the Feynman rules. More precisely the

S-matrix is a time ordered series in i

R

d

4

xL

int

and a set of prescriptions (in-

dicated by the quotes in (2.44)) to de�ne in each order the products of L

int

(x)

at coinciding space-time points. To analyze these divergencies it is su�cient

to consider only connected diagrams. In momentum space they decompose

into products of one particle irreducible n-point functions

~

G

1PI

(p

1

; : : : ; p

n

)

which de�ne the e�ective action.

�[�] =

1

X

n=0

1

n!

Z

d

4

x

1

: : : d

4

x

n

�(x

1

) : : : �(x

n

)G

1PI

(x

1

; : : : ; x

n

) (2.46)

=

Z

d

4

xL

0

(�; @�; : : :) +

X

n�1

�h

n

�

n

[�] (2.47)

To lowest order in �h the e�ective action � is given by the classical action

�

0

=

R

d

4

xL

0

. This is a local functional, in particular L

0

is a series in the
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�elds and a polynomial in the partial derivatives of the �elds. The Feynman

diagrams �x the expansion of the nonlocal e�ective action � =

P

�h

n

�

n

up

to local functionals which can be chosen in each loop order. We are free to

choose the Lagrange density in each loop order, i.e as a series in �h.

L = L

0

+

X

n�1

�h

n

L

n

(2.48)

Consider in each loop order the question whether the full e�ective action is

BRS invariant.

s�[�] = 0

To lowest order in �h this requires the Lagrange density L

0

to be a solution

of (2.41). Assume that one has satis�ed s�[�] = 0 up to n-loop order.

The naive calculation of n+1-loop diagrams contains divergencies which

make it necessary to introduce a regularization, e.g. the Pauli-Villars regu-

larization, and counterterms (or use a prescription such as dimensional reg-

ularization or the BPHZ prescription which is a shortcut for regularization

and counterterms). No regularization respects locality, unitarity and sym-

metries simultaneously, otherwise it would not be a regularization but an

acceptable theory. The Pauli-Villars regularization is local. It violates uni-

tarity for energies above the regulator masses and also because it violates

BRS invariance. If one cancels the divergencies of diagrams with counter-

terms and considers the limit of in�nite regulator masses then unitarity is

obtained if the BRS symmetry guarantees the decoupling of the unphysical

gauge modes. Locality was preserved for all values of the regulator masses.

What about BRS symmetry?

One cannot argue that one has switched o� the regularization and that

therefore the symmetry should be restored. There is the phenomenon of

hysteresis. For example: if you have a spherically symmetric iron ball and

switch on a symmetry breaking magnetic �eld then the magnetic properties

of the iron ball will usually not become spherically symmetric again if the

magnetic �eld is switched o�. Analogously in the calculation of �

n+1

we have

to be prepared that the regularization and the cancellation of divergencies

by counterterms does not lead to an invariant e�ective action but rather to

s� = �h

n+1

a+

X

k�n+2

�h

k

a

k

: (2.49)

If the functional a cannot be made to vanish by an appropriate choice of

L

n+1

then the BRS symmetry is broken by the anomaly a.
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Because s is nilpotent the anomaly a has to satisfy

s a = 0 : (2.50)

This is the celebrated consistency condition of Wess and Zumino [5]. The

consistency condition has acquired an outstanding importance because it al-

lows to calculate all possible anomalies a as the general solution to s a = 0

and to check in each given model whether the anomaly actually occurs. At

�rst sight one would not expect that the consistency equation has compara-

tively few solutions. The BRS transformation a = s� of arbitrary functionals

� satis�es s a = 0. The anomaly a, however, arises from the divergencies of

Feynman diagrams where all subdiagrams are �nite and compatible with

BRS invariance. These divergencies can be isolated in parts of the n-point

functions which depend polynomially on the external momenta, i.e. in local

functionals. Therefore it turns out that the anomaly is a local functional.

a =

Z

d

4

xA

1

(�(x); @�(x); : : :) (2.51)

The anomaly density A

1

is a series in the �elds � and a polynomial in the

partial derivatives of the �elds comparable to a Lagrange density but with

ghost number +1. The integrand A

1

represents an equivalence class. It is

determined only up to terms of the form sL because we are free to choose

contributions to the Lagrange density at each loop order, in particular we

try to choose L

n+1

such that sL

n+1

cancels A

1

in order to make �

n+1

BRS

invariant. Moreover A

1

is determined only up to derivative terms of the form

d�

1

.

A

1

transforms into a derivative because the anomaly a satis�es the consi-

stency condition. We combine the anomaly density A

1

with d

D

x to a volume

form !

1

D

and denote the ghost numbers as superscripts and the form de-

gree as subscript. Then the consistency condition and the description of the

equivalence class read

s!

1

D

+ d!

2

D�1

= 0 !

1

D

mod s�

0

D

+ d�

1

D�1

: (2.52)

This equation determines all possible anomalies and can be analyzed if one

is given the �eld content and the BRS transformations s. Its solutions do

not depend on particular properties of the model under consideration.

The determination of all possible anomalies is again a cohomological prob-

lem just as the determination of all BRS invariant local actions (2.41) but
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now with ghost numbers shifted by +1. We will deal with both equations

and consider the equation

s!

g

D

+ d!

g+1

D�1

= 0 !

g

D

mod s�

g�1

D

+ d�

g

D�1

(2.53)

for arbitrary ghost number g. The form degree is given by the subscript.
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Chapter 3

Cohomological Problems

In the preceding chapters we have encountered repeatedly the cohomological

problem to solve the linear equation s! = 0 ; ! mod s� ;where s is a nilpotent

operator s

2

= 0. The equivalence classes of solutions ! form a linear space,

the cohomology H(s) of s. The equivalence classes of solutions !

g

p

of the

problem s!

g

p

= �d!

g+1

p�1

!

g

p

mod d�

g

p�1

+ s�

g�1

p

, where s

2

= 0 = d

2

= fs; dg

form the relative cohomology H

g

p

(sjd) of s modulo d of ghost number g and

form degree p.

Let us start to solve such equations and consider the problem to determine

the physical multiparticle states. Multiparticle states can be written as a

polynomial P of the creation operators acting on the vacuum

P (a

y

�

; c

y

; �c

y

)j0i � = k;

�

k; 1; 2

if one neglects the technical complication that all these creation operators

depend on

~

k and have to be smeared with normalizable functions. The BRS

operator Q

s

acts on these states in the same way as the algebraic operation

s =

p

2j

~

kj(ia

y

�

k

@

@�c

y

+ c

y

@

@a

y

k

) (3.1)

acts on polynomials in commuting and anticommuting variables. For one

particle states, i.e. linear homogeneous polynomials P we had concluded

that the physical states, the cohomology of Q

s

with particle number 1, are

generated by the transverse creation operators a

y

i

, i.e. by variables which are

neither generated by s such as a

y

�

k

or c

y

nor transformed such as �c

y

and a

y

k

.

Let us systematize our notation and denote the variables which are dif-

ferentiated collectively by x

m

and their transformation by dx

m

. Then the
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operator s becomes the nilpotent operator d ((2.11) without reality prop-

erty). It maps the variables x

m

to dx

m

with opposite statistics.

d = dx

m

@

@x

m

jdx

m

j = jx

m

j+ 1 mod 2 (3.2)

We claim that on polynomials in x

m

and dx

m

the cohomology of the exterior

derivative d is described by the basic lemma.

Theorem 3.1 Basic Lemma

df(x; dx) = 0, f(x; dx) = f

0

+ dg(x; dx) : (3.3)

f

0

denotes the polynomial which is homogeneous of degree 0 in x

m

and dx

m

and is therefore independent of these variables.

Applied to the Fock space the Basic Lemma implies that physical n-

particle states are generated by polynomials f

0

of creation operators which

contain no operators a

y

�

k

; a

y

k

; c

y

; �c

y

. Physical states are generated from the

transverse creation operators a

y

i

; i = 1; 2.

To prove the lemma we introduce the operation

� = x

m

@

@(dx

m

)

: (3.4)

The anticommutator � of d and � counts the variables x

m

and dx

m

.

fd; �g = � = x

m

@

@x

m

+ dx

m

@

@(dx

m

)

= N

x

+N

dx

(3.5)

From the relation d

2

= 0 it follows that d commutes with fd; �g.

d

2

= 0 ) [d; fd; �g] = 0 (3.6)

Of course we can easily check explicitly that d does not change the number

of variables x and dx in a polynomial. We can decompose each polynomial

f into pieces f

n

of de�nite homogeneity n in the variables x and dx, i.e.

(N

x

+N

dx

)f

n

= nf

n

. Using (3.5) we can write f in the following form.

f = f

0

+

X

n�1

f

n

= f

0

+

X

n�1

(N

x

+N

dx

)

1

n

f

n

= f

0

+ d

0

@

�

X

n�1

1

n

f

n

1

A

+ �

0

@

d

X

n�1

1

n

f

n

1

A

f = f

0

+ d� + �� (3.7)
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This is the Hodge decomposition of an arbitrary polynomial in x and dx into

a zero mode f

0

, a d exact

1

part d� and a � exact part ��. If f solves df = 0

then the equations df

n

= 0 have to hold for each piece df

n

separately because

d commutes with the number operator �. But df

n

= 0 implies that the last

term in the Hodge decomposition, the �-exact term, vanishes. This proves

our lemma. Of course this is not our lemma: it is Poincar�e 's lemma for forms

in a star shaped domain if one writes

1

n

as

R

1

0

dt t

n�1

.

Theorem 3.2 Poincar�e 's lemma

df(x; dx) = 0, f(x; dx) = f(0; 0) + d �

Z

1

0

dt

t

(f(tx; tdx)� f(0; 0)) (3.8)

In this form the lemma is not restricted to polynomials but applies to all

di�erentiable di�erential forms f which are de�ned along all rays tx for 0 �

t � 1 and all x, i.e. in a star shaped domain. Note that the integral is not

singular at t = 0 .

We chose to present the Poincar�e lemma in the algebraic form { though

it applies only to polynomials and to analytical functions if one neglects the

question of convergence { because we will follow a related strategy to solve

the cohomological problems to come: given a nilpotent operator d we inspect

operators � and their anticommutators � and try to invert �. Only the zero

modes of � can contribute to the cohomology of d.

We have to generalize Poincar�e 's lemma because we consider Lagrange

densities and more generally forms ! which are series in �elds �, polynomials

in derivatives of �elds @

m

�; : : : ; @

m

1

: : : @

m

l

�, polynomials in dx

m

and series

in the coordinates x

m

.

! = !(x; dx; �; @�; @@�; : : :) (3.9)

Such forms occur as integrands of local functionals. Because they depend

polynomially on derivatives of �elds they contain only terms with a bounded

number of derivatives, though there is no bound on the number of derivatives

which is common to all forms !. We call the �elds and their derivatives

f�g = �; @�; @@�; : : : (3.10)

the jet variables. Poincar�e 's lemma does not apply to forms which depend

on the coordinates, the di�erentials and the jet variables. The exceptions are

1

A polynomial g is called d exact if it is of the form g = d� for some polynomial �. The

word exact is used as an abbreviation if the nilpotent operator d or � is evident.
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Lagrange densities which lead to nontrivial Euler-Lagrange equations. Then

the Lagrange density ! = Ld

D

x cannot be a total derivative ! 6= d� though

d! = 0 because ! is a volume form. Let us prove this result.

The exterior derivative on forms of jet variables di�erentiates the explicit

coordinates x

m

, the �elds just get an additional label upon di�erentiation

d = dx

m

@

m

@

m

x

n

= �

n

m

@

k

(@

l

: : : @

m

�) = @

k

@

l

: : : @

m

� : (3.11)

The �elds are assumed to satisfy no di�erential equation, i.e. the variables

@

k

@

l

: : : @

m

� are independent up to the fact that partial derivatives commute

@

k

: : : @

m

�= @

m

: : : @

k

� : On such variables we can de�ne the operation t

n

t

n

(x

m

) = 0 t

n

(dx

m

) = 0

t

n

(�) = 0 t

n

(@

m

1

: : : @

m

l

�) =

l

X

i=1

�

n

m

i

@

m

1

: : :

^

@

m

i

: : : @

m

l

� (3.12)

The hat^means omission of the hatted symbol. We de�ne the action of t

n

on polynomials in the jet variables by linearity and the Leibniz rule. t

n

acts

on derivatives of the �elds � like a di�erentiation with respect to @

n

, i.e.

t

n

=

@

@(@

n

)

. Obviously one gets [t

m

; t

n

] = 0 from this de�nition. Less trivial

is

[t

n

; @

m

] = �

n

m

N

f�g

(3.13)

N

f�g

counts the jet variables f�g. The equation holds for linear polynomials,

i.e. for the jet variables and coordinates and di�erentials, and extends to

arbitrary polynomials because both sides of this equation satisfy the Leibniz

rule.

To determine the cohomology of d = dx

m

@

m

we consider separately forms

! with a �xed form degree p

N

dx

= dx

m

@

@(dx

m

)

N

dx

! = p! (3.14)

which are homogeneous of degree N in f�g. We assume N > 0, the case

N = 0 is covered by Poincar�e 's lemma (theorem 3.2).

Consider the operation

b = t

m

@

@(dx

m

)

(3.15)
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and calculate its anticommutator with the exterior derivative d as an exercise

in graded commutators:

fb; dg = ft

m

@

@(dx

m

)

; dx

n

g@

n

� dx

n

[t

m

@

@(dx

m

)

; @

n

]

= t

m

�

n

m

@

n

� dx

n

�

m

n

N

@

@dx

m

= @

n

t

n

+ �

n

n

N �N N

dx

:

(3.16)

So we get

fd; bg = N(D �N

dx

) + P

1

: (3.17)

D = �

n

n

is the dimension of the manifold, the operator P

1

is given by

P

1

= @

k

t

k

: (3.18)

Consider more generally the operations P

n

P

n

= @

k

1

: : : @

k

n

t

k

1

: : : t

k

n

(3.19)

which take away n derivatives and redistribute them afterwards. For each

polynomial ! in the jet variables there exists a �n(!) such that

P

n

! = 0 8n � �n(!) (3.20)

because each monomial of ! has a bounded number of derivatives. Using the

commutation relation (3.13) one proves the recursion relation

P

1

P

k

= P

k+1

+ kNP

k

(3.21)

which can be used iteratively to express P

k

in terms of P

1

and N

P

k

=

k�1

Y

l=0

(P

1

� lN) : (3.22)

Using the argument (3.6) that a nilpotent operation commutes with all

its anticommutators we conclude from (3.17)

[d;N(D �N

dx

) + P

1

] = 0 : (3.23)
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Therefore d! = 0 implies d(P

1

!) = 0 and from (3.22) we conclude

d(P

k

!) = 0 by induction. We use the relation (3.17) to express these closed

forms P

k

! as exact forms up to terms P

k+1

!.

d(b!) = P

1

! +N(D � p)!

d(bP

k

!) = P

1

P

k

! +N(D � p)P

k

!

= P

k+1

! + kNP

k

! +N(D � p)P

k

!

d(bP

k

!) = P

k+1

! +N(D � p + k)P

k

! k = 0; 1; : : : (3.24)

If p < D then we can solve for ! in terms of exact forms d(b!) and

P

1

! which can be expressed as exact form and a term P

2

! and so on. This

recursion terminates because P

n

! = 0 8n � �n(!) (3.20). Explicitly we have

for p < D and N > 0:

d! = 0) ! = d

0

@

b

�n(!)

X

k=0

(�)

k

N

k+1

(D � p� 1)!

(D � p+ k)!

P

k

!

1

A

= d� : (3.25)

To complete the investigation of the cohomology of d we have to consider

volume forms ! = Ld

D

x. We treat separately pieces L

N

which are homoge-

neous of degree N > 0 in the jet variables f�g. These pieces can be written

as

NL

N

= �

i

@L

N

@�

i

+ @

m

�

i

@L

N

@(@

m

�

i

)

+ : : :

= �

i

^

@L

N

^

@�

i

+ @

m

X

m

N

X

m

N

= �

i

@L

N

@(@

m

�

i

)

+ : : : : (3.26)

Here we use the notation

^

@L

^

@�

i

=

@L

@�

i

� @

m

@L

@(@

m

�

i

)

+ : : : (3.27)

for the Euler derivative of the Lagrange density with respect to �

i

. The dots

denote terms which come from higher derivatives. The derivation of (3.26) is

analogous to the derivation of the Euler Lagrange equations from the action

principle. Eq.(3.26) implies that the volume form !

N

= L

N

d

D

x is an exact

term and a piece proportional to the Euler derivatives

L

N

d

D

x =

1

N

�

i

^

@L

N

^

@�

i

d

D

x+ d

 

1

N

X

m

N

@

@(dx

m

)

d

D

x

!

(3.28)
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If we combine this equation with Poincar�e 's lemma (theorem 3.2) and with

(3.25), combine terms with di�erent degrees of homogeneity N and di�erent

form degree p we obtain the Algebraic Poincar�e Lemma for forms of the

coordinates, di�erentials and jet variables

Theorem 3.3 Algebraic Poincar�e Lemma

d!(x; dx; f�g) = 0, !(x; dx; f�g) = const+ d�(x; dx; f�g) + L(x; f�g)d

D

x

(3.29)

The Lagrange form L(x; f�g)d

D

x is trivial, i.e. of the form d�, if and only if

its Euler derivatives with respect to all �elds vanish identically in the �elds.

The Algebraic Poincar�e Lemma does not hold if the base manifold is not

starshaped or if the �elds � take values in a topologically nontrivial target

space. In these cases the operations � = x

@

@(dx)

and b = t

n
@

@(dx

n

)

cannot be

de�ned because a relation like x

�

=

x + 2�, which holds for the coordinates

on a circle, would lead to the contradiction 0

�

=

2�

@

@(dx)

. Here we restrict our

investigations to topologically trivial base manifolds and topologically trivial

target spaces. It is the topology of the invariance groups and the Lagrangean

solutions in the Algebraic Poincar�e lemma which give rise to a nontrivial

cohomology of the exterior derivative d and the BRS transformation s.

The Algebraic Poincar�e lemma is modi�ed if the jet space contains in

addition variables which are space time constants. This occurs for example

if one treats rigid transformations as BRS transformations with constant

ghosts C, i.e. @

m

C = 0. If these ghosts occur as variables in forms ! then

they are not counted by the number operators N which have been used in

the proof of the Algebraic Poincar�e Lemma and can appear as variables in

const = f(C), in � and in L.

We are now prepared to investigate the relative cohomology and derive

the so called descent equations. We recall that we deal with two nilpotent

derivatives, the exterior derivative d and the BRS transformation s, which

anticommute which each other

d

2

= 0 s

2

= 0 fs; dg = 0 : (3.30)

s leaves the form degree N

dx

invariant, d raises it by 1

[N

dx

; s] = 0 [N

dx

; d] = d : (3.31)

We consider the equation

s !

D

+ d!

D�1

= 0 !

D

mod (s�

D

+ d�

D�1

) : (3.32)
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The subscript denotes the form degree. The relative cohomology (3.32) re-

lates forms of di�erent ghost number

gh(!

D

) = gh(!

D�1

)� 1 = gh(�

D

) + 1 = gh(�

D�1

) : (3.33)

Let us derive the descent equations as a necessary consequence of (3.32). We

apply s and use (3.30)

0 = s(s !

D

+ d!

D�1

) = sd!

D�1

= d(�s !

D�1

) : (3.34)

By the Algebraic Poincar�e Lemma (3.3) �s !

D�1

is of the form const +

d�(f�g)+L(f�g)d

D

x. The piece L(f�g)d

D

x has to vanish because !

D�1

has

form degree D � 1 and if D > 1 then also the piece const vanishes because

!

D�1

contains D � 1 > 0 di�erentials and is not constant. Therefore we

conclude

s !

D�1

+ d!

D�2

= 0 !

D�1

mod (s�

D�1

+ d�

D�2

) (3.35)

where we denoted � by !

D�2

to indicate its form degree. Adding to !

D�1

a

piece of the form s�

D�1

+d�

D�2

changes !

D

only within its class of equivalent

representatives. Therefore !

D�1

is naturally a representative of an equiva-

lence class. From (3.32) we have derived (3.35) which is nothing but (3.32)

with form degree lowered by 1. Iterating the arguments we lower the form

degree step by step and obtain the descent equations

s !

i

+ d!

i�1

= 0 i = D;D � 1; : : : ; 1 !

i

mod (s�

i

+ d�

i�1

) (3.36)

until the form degree drops to zero. It cannot become negative. For i = 0

one has

s !

0

= 0 !

0

mod s�

0

: (3.37)

A more careful application of the Algebraic Poincar�e Lemma would only have

allowed to conclude

s !

0

= const :

If, however, the BRS transformation is not spontaneously broken i.e. if

s�

j(�=0)

= 0 then s !

0

has to vanish. This follows most easily if one evaluates

both sides of s !

0

= const for vanishing �elds. We assume for the following

that the BRS transformations are not spontaneously broken. We will exclude

from our considerations also spontaneously broken rigid symmetries. There
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we cannot apply these arguments because then s�

j(�=0)

= C gives ghosts

which are space time constant and one can have s !

0

= const = f(C) 6= 0.

Actually the descent equations (3.36,3.37) are just another cohomological

equation for a nilpotent operator ~s and a form ~!

~s = d+ s ~s

2

= 0 (3.38)

~! =

D

X

i=0

!

i

(3.39)

~s ~! = 0 ~! mod ~s~� : (3.40)

The fact that ~s is nilpotent follows from (3.30). The descent equations (3.36,

3.37) imply ~s ~! = 0. The equivalence class of ~! is given by ~s(

P

i

�

i

). So

(3.40) is a consequence of the descent equations. On the other hand if (3.38)

holds then the equation (3.40) implies the descent equations. This follows if

one splits ~s, ~! and ~� with respect to the form degree (3.31).

Let us formulate this result as

Theorem 3.4

If ~s = s+ d is a sum of two fermionic operators where s preserves the form

degree and d raises it by one, then ~s is nilpotent if and only if s and d are

nilpotent and anticommute.

Each solution (!

0

; : : : ; !

D

), !

i

mod s �

i

+ d �

i�1

of the descent equations

(3.36, 3.37) with nilpotent, anticommuting operators s and d corresponds one

to one to an element ~! of the cohomologyH(~s) = f~! : ~s ~! = 0 ~! mod ~s~�)g.

!

i

are the parts of ~! with form degree i.

The formulation of the descent equations as a cohomological problem of

the operator ~s has several virtues. The solutions to ~s ~! = 0 can obviously

be multiplied to obtain further solutions. Phrased mathematically they form

an algebra, not just a vector space. More importantly for the BRS operator

in gravitational Yang Mills theories we will �nd that the equation ~s ~! = 0

can be cast into the form s ! = 0 by a change of variables, where s is the

original BRS operator. This equation has to be solved anyhow as part of

the descent equations. Once one has solved it one can recover the complete

solution of the descent equations, in particular one can read o� !

D

as the D

form part of ~!. These virtues justify to consider with ~! a sum of forms of

di�erent form degrees which in traditional eyes would be considered to add

peaches and apples.
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As the last subject of this chapter we study the action of a nilpotent

derivative d on a product A = A

1

�A

2

of vectorspaces (algebras) which are

separately invariant under d

dA

1

� A

1

dA

2

� A

2

: (3.41)

K�unneth's theorem states that the cohomology H(A; d) of d acting on A

is given by the product of the cohomology H(A

1

; d) of d acting on A

1

and

H(A

2

; d) of d acting on A

2

.

Theorem 3.5 K�unneth-formula

Let d = d

1

+ d

2

be a sum of nilpotent di�erential operators which leave their

vectorspaces A

1

and A

2

invariant

d

1

A

1

� A

1

d

2

A

2

� A

2

(3.42)

and which are de�ned on the product A = A

1

�A

2

by the Leibniz rule

d

1

(kl) = (d

1

k)l d

2

(kl) = (�)

jkj

k(d

2

l) 8k 2 A

1

; l 2 A

2

: (3.43)

Then the cohomology H(A; d) of d acting on A is the product of the coho-

mologies of d

1

acting on A

1

and d

2

acting on A

2

H(A

1

�A

2

; d

1

+ d

2

) = H(A

1

; d

1

)�H(A

2

; d

2

) (3.44)

To prove the theorem we consider an element f 2 H(d)

f =

X

i

k

i

l

i

(3.45)

given as a sum of products of elements k

i

2 A

1

and l

i

2 A

2

. Without loss of

generality we assume that the elements k

i

are taken from a basis of A

1

and

the elements l

i

are taken from a basis of A

2

.

X

c

i

k

i

= 0 , c

i

= 0 8 i (3.46)

X

c

i

l

i

= 0 , c

i

= 0 8 i (3.47)

Otherwise one has a relation like l

1

=

P

0

i

�

i

l

i

or k

1

=

P

0

i

�

i

k

i

, where

P

0

does

not contain i = 1, and can rewrite f with fewer terms f =

P

0

i

(k

i

+ �

i

k

1

) � l

i

or f =

P

0

i

k

i

� (l

i

+�

i

l

1

). We can even choose f 2 H(d) in such a manner that
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the elements k

i

are taken from a basis of a complement to the space d

1

A

1

. In

other words we can choose f such that no linear combination of the elements

k

i

combines to a d

1

-exact form.

X

i

c

i

k

i

= d

1

g , d

1

g = 0 = c

i

8 i (3.48)

Otherwise we have a relation like k

1

=

P

0

i

�

i

k

i

+ d

1

�, where

P

0

does not

contain i = 1, and we can rewrite f 2 H(d) up to an irrelevant piece d(� l

1

)

f =

P

0

i

k

i

� (l

i

+ �

i

l

1

) � (�)

j�j

� d

2

l

1

+ d(� l

1

) with elements k

0

i

= �; k

2

; : : : .

We can iterate this argument until no linear combination of the elements k

0

i

combines to a d

1

-exact form.

By assumption f solves df = 0 which implies

X

i

�

(d

1

k

i

)l

i

+ (�)

k

i

k

i

(d

2

l

i

)

�

= 0 : (3.49)

In this sum

P

i

(d

1

k

i

)l

i

and

P

i

(�)

k

i

k

i

(d

2

l

i

) have to vanish separately because

the elements k

i

are linearly independent from the elements d

1

k

i

2 d

1

A

1

.

P

i

(d

1

k

i

)l

i

= 0, however, implies

d

1

k

i

= 0 (3.50)

because the elements l

i

are linearly independent and

P

i

(�)

k

i

k

i

(d

2

l

i

) = 0

leads to

d

2

l

i

= 0 (3.51)

analogously. So we have shown

df = 0) f =

X

i

k

i

l

i

+ d� where d

1

k

i

= 0 = d

2

l

i

8i : (3.52)

Changing k

i

and l

i

within their equivalence class k

i

mod d

1

�

i

and l

i

mod d

2

�

i

does not change the equivalence class f mod d�:

X

i

(k

i

+ d

1

�

i

)(l

i

+ d

2

�

i

) =

X

i

k

i

l

i

+ d

X

i

�

�

i

(l

i

+ d

2

�

i

) + (�)

k

i

k

i

�

i

�

(3.53)

Therefore H(A; d) is contained in H

1

(A

1

; d

1

) � H

2

(A

2

; d

2

). The inclusion

H

1

(A

1

; d

1

)�H

2

(A

2

; d

2

) � H(A; d) is trivial. This concludes the proof of the

theorem.
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Chapter 4

BRS algebra of Gravitational

Yang Mills Theories

Gauge theories such as gravitational Yang Mills theories rely on tensor analy-

sis

1

. The set of tensors is a subalgebra of the polynomials in the jet variables.

(Tensors) � (Polynomials(�; @�; @@�; : : :)) (4.1)

The covariant operations �

M

which are used in tensor analysis

�

M

: (Tensors)! (Tensors) (4.2)

map tensors to tensors and satisfy the Leibniz rule (2.8). These covariant

operations have a basis consisting of the covariant space time derivatives

D

a

; a = 0; : : : ;D � 1 and spin and isospin transformations �

I

, which corre-

spond to a basis of the Lie algebra of the Lorentz group and of the gauge

group, and - if one considers supergravitational theories - the covariant spinor

derivatives D

�

, D

_�

.

(�

M

) = (D

a

; �

I

; D

�

;D

_�

) (4.3)

The space of covariant operations is closed with respect to graded commu-

tation

[�

M

;�

N

] := �

M

�

N

� (�)

MN

�

N

�

M

= F

K

MN

�

K

: (4.4)

The structure functions F

MN

K

are also tensors. Some of these structure

functions have purely numerical values as for example the structure constants

1

This chapter is nothing but a slightly simpli�ed version of [6].
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of the spin and isospin Lie algebra

[�

I

; �

J

] = f

IJ

K

�

K

(4.5)

or the matrix elements of representations of the Lorentz algebra

[�

[a;b]

;D

c

] = �(G

[a;b]

)

d

c

D

d

= �

ca

D

b

� �

cb

D

a

(4.6)

or constant torsion in superspace. Other components of the tensors F

MN

K

are given by the Riemann curvature, the Yang Mills �eld strength and in

supergravity the Rarita Schwinger �eld strength and auxiliary �elds of the

supergravitational multiplet. We use the word �eld strength also to denote

collectively the Riemann curvature and the Yang Mills �eld strength.

The commutator algebra (4.4) implies a generalized Jacobi identity

X

cyclic(MNP )

sign(MNP )[�

M

; [�

N

;�

P

]] = 0 (4.7)

which is the �rst Bianchi identity for the structure functions F

MN

K

X

cyclic(MNP )

sign(MNP )(�

M

F

NP

K

�F

MN

L

F

LP

K

) = 0 : (4.8)

It involves the sum over the cyclic permutations of M; N; P . If the

algebra contains fermionic covariant derivatives then there are additional

signs sign(MNP ) for each odd permutation of indices of fermionic covariant

derivatives.

The covariant operations are not de�ned on arbitrary polynomials of the

jet variables. In particular one cannot realize the commutator algebra (4.4)

on connections, on ghosts or on auxiliary �elds.

To keep the discussion simple we will not consider fermionic covariant

derivatives in the following. Then the commutator algebra (4.4) has more

speci�cally the structure

[D

a

;D

b

] = �T

ab

c

D

c

� F

ab

I

�

I

torsion and �eld strength (4.9)

[�

I

;D

a

] = �G

b

I a

D

b

representation matrices (4.10)

[�

I

; �

J

] = f

IJ

K

�

K

structure constants : (4.11)

We will simplify this algebra even more and choose the spin connection by

the requirement that the torsion vanishes.
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The �eld content � of gravitational Yang Mills theories consists of ghosts

C

N

, antighosts

�

C

N

, auxiliary �elds B

N

, gauge potentials (connections)

A

N

m

m = 0; : : : ;D�1 and elementary tensor �elds T . The gauge potentials,

ghosts and auxiliary �elds are real and correspond to a basis of the covariant

operations �

M

, i.e. there are connections, ghosts and auxiliary �elds for

translations ( covariant space time derivatives ), for Lorentz transformations

and for isospin transformations. Matter �elds are tensors and denoted by T .

� = fC

N

;

�

C

N

; B

N

; A

N

m

; Tg (4.12)

We de�ne the BRS transformation on the antighosts and the auxiliary �elds

by

s

�

C

N

= iB

N

sB

N

= 0 : (4.13)

The BRS transformation of tensors is given by a sum of covariant operations

with ghosts as coe�cients [6]

sT = C

N

�

N

T : (4.14)

Moreover we consider the exterior derivative d = dx

m

@

m

. We require that

the action of partial derivatives @

m

on tensors can be expressed as a linear

combination of covariant operations. The expansion coe�cients introduced

in this way turn out to be the connections or gauge �elds.

dT = dx

m

@

m

T = dx

m

A

N

m

�

N

T = A

N

�

N

T : (4.15)

If we use the connection one forms

A

N

= dx

m

A

N

m

(4.16)

introduced in the last equation then s and d act on tensors in a strikingly sim-

ilar way: sT contains ghosts C

N

where dT contains (composite) connection

one forms A

N

.

Let us check that (4.15) is nothing but the usual de�nition of covariant

derivatives. We spell out the sum over covariant operations and denote the

connection A

a

m

by e

a

m

, the vielbein.

@

m

= A

N

m

�

M

= e

a

m

D

a

+A

I

m

�

I

(4.17)

If the vielbein has an inverse E

a

m

, which we take for granted like the rest of

the world,

e

a

m

E

n

a

= �

n

m

(4.18)
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then we can solve for the covariant space time derivative and obtain the usual

expression

D

a

= E

m

a

(@

m

�A

I

m

�

I

) : (4.19)

We require that s and d anticommute and be nilpotent (3.30). This �xes

the BRS transformation of the ghosts and the connection and identi�es the

curvature and �eld strength. In particular s

2

= 0 implies

0 = s

2

T = s(C

N

�

N

T ) = (sC

N

)�

N

T � C

N

s(�

N

T ) : (4.20)

�

N

T is a tensor so

C

N

s(�

N

T ) = C

N

C

M

�

M

�

N

T =

1

2

C

N

C

M

[�

M

;�

N

]T : (4.21)

The commutator is given by the algebra (4.4) and we conclude

0 = (sC

N

�

1

2

C

K

C

L

F

LK

N

)�

N

T 8T : (4.22)

This means that the operation (sC

N

�

1

2

C

K

C

L

F

LK

N

)�

N

vanishes. The co-

variant operations �

N

are understood to be linearly independent. Therefore

sC

N

is �xed.

sC

N

=

1

2

C

K

C

L

F

LK

N

(4.23)

The BRS transformation of the ghosts is given by a polynomial which is

quadratic in the ghosts with expansion coe�cients given by the structure

functions F

LK

N

. s transforms the algebra of polynomials generated by ghosts

(not derivatives of ghosts) and tensors into itself (4.14, 4.23).

The requirement that s and d anticommute �xes the transformation of

the connection.

0 = fs; dgT = s(A

N

�

N

T ) + d(C

N

�

N

T )

= (sA

N

)�

N

T �A

N

C

M

�

M

�

N

T + (dC

N

)�

N

T � C

N

A

M

�

M

�

N

T

= (sA

N

+ dC

N

�A

K

C

L

F

LK

N

)�

N

T 8T

So we conclude

sA

N

= �dC

N

+A

K

C

L

F

LK

N

(4.24)

for the connection one form A

N

. For the gauge �eld A

N

m

we obtain

2

sA

N

m

= @

m

C

N

�A

K

m

C

L

F

LK

N

(4.25)

2

Anticommuting dx

m

through s changes the signs.
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The BRS transformation of the connection contains the characteristic inho-

mogeneous piece @

m

C

N

.

d

2

= 0 identi�es the �eld strength as curl of the connection.

0 = d

2

T = dx

m

dx

n

@

m

@

n

T = dx

m

dx

n

@

m

(A

n

N

�

N

T )

= dx

m

dx

n

h

(@

m

A

n

N

)�

N

T + A

n

N

@

m

(�

N

T )

i

= dx

m

dx

n

h

(@

m

A

n

N

)�

N

T + A

n

N

A

m

M

�

M

�

N

T

i

Therefore

0 = @

m

A

n

K

� @

n

A

m

K

+A

m

M

A

n

N

F

MN

K

(4.26)

We split the summation over M N , employ the de�nition of the vielbein

0 = @

m

A

n

K

� @

n

A

m

K

+ e

m

a

e

n

b

F

ab

K

+ e

m

a

A

n

I

F

aI

K

+ A

m

I

e

n

a

F

Ia

K

+A

m

I

A

n

J

F

IJ

K

and solve for F

ab

K

; K 2 (a; [a; b]; i).

F

ab

K

= �E

a

m

E

b

n

�

@

m

A

n

K

� @

n

A

m

K

+ e

m

c

A

n

I

F

cI

K

+A

m

I

e

n

c

F

Ic

K

+A

m

I

A

n

J

F

IJ

K

�

(4.27)

The structure functions

F

ab

K

= �F

ab

K

(4.28)

are the torsion

3

T

ab

c

, if K = c corresponds to space-time translations, the

Riemann curvature R

ab

cd

, if K = [cd] corresponds to Lorentz transforma-

tions, and the Yang Mills �eld strength F

ab

i

, if K = i ranges over isospin

indices. The formula applies, however, also to supergravity, which has a

more complicated algebra (4.4). It allows in a surprisingly simple way to

identify the Rarita Schwinger �eld strength 	

ab

�

when K = � corresponds

to supersymmetry transformations.

The formulas

sT = C

N

�

N

T dT = A

N

�

N

T (4.29)

for the nilpotent, anticommuting operations s and d not only encrypt the

basic geometric structures. They allow also to prove easily that the coho-

mologies of s and s + d acting on tensors and ghosts (not on connections,

3

We require T

ab

c

= 0 which amounts to a choice of the spin connection.
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derivatives of ghosts, auxiliary �elds and antighosts ) di�er only by a change

of variables. Let us inspect (s+ d)T .

~sT = (s+ d)T = (C

N

+A

N

)�

N

T =

~

C

N

�

N

T (4.30)

where

~

C

N

= C

N

+A

N

= C

N

+ dx

m

A

m

N

(4.31)

The ~s-transformation of tensors is obtained from the s-transformation by

replacing the ghosts C by

~

C.

The ~s-transformation of

~

C follows from ~s

2

= 0 and the transformation of

tensors (4.30) by the same arguments which determined sC from s

2

= 0 and

from (4:14) and led to (4.23). So we obtain

~s

~

C

N

=

1

2

~

C

K

~

C

L

F

LK

N

: (4.32)

This is just the tilded version of (4.23). De�ne the map � to substitute ghosts

C by

~

C in arbitrary polynomials P of ghosts and tensors.

P (

~

C;T ) = � � P (C;T ) � = exp(A

@

@C

) (4.33)

Taken together (4.30, 4.32) and (4.14, 4.23) imply

~s � � = � � s (4.34)

From this equation one easily concludes the following theorem.

Theorem 4.1

Let s be the BRS operation in gravitational theories. A form !(C;T ) solves

s !(C;T ) = 0 if and only if !(

~

C;T ) solves ~s !(

~

C;T ) = 0.

If we combine this result with theorem (3.4) then the solutions to the descent

equations can be found from the cohomology of s if we can restrict the jet

variables to ghosts and tensors.

Actually we can make this restriction if the base manifold and the target

space of the �elds have trivial topology. This follows because the algebra of jet

variables is a product of algebras on which ~s acts separately. Using K�unneth's

formula (theorem 3.5) we can then determine nontrivial Lagrange densities

and anomaly candidates as solutions of ~s!(

~

C;T ) = 0 and by determination

of the cohomology of d in the base manifold and of ~s in the target manifold.

To establish this result we prove the following theorem:
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Theorem 4.2

The algebra A of series in x

m

and the �elds � (4.12) and of polynomials in

dx

m

and the partial derivatives of the �elds is a product algebra

A = A

~

C;T

�

Y

l

A

u

l

;~su

l

(4.35)

where the variables u

l

are given by the following set

(u

l

) =

�

x

m

; e

m

a

; A

m

I

; @

(m

k

: : : @

m

1

A

m

0

)

N

;

�

C

N

; @

m

k

: : : @

m

1

�

C

N

�

(4.36)

for k = 1; 2; : : : . ~s acts on each factor A

i

separately ~sA

i

� A

i

.

In (4.35) the braces around indices denote symmetrization. The subscript

of the algebras denote the generating elements e.g. A

e

m

a

;~se

m

a

is the alge-

bra of series in the vielbein e

m

a

and in ~se

m

a

. ~s leaves A

u

l

;~su

l

invariant by

construction because of ~s

2

= 0.

To prove the theorem we inspect the variables u

l

and ~su

l

to lowest order

in the di�erentials and �elds.

4

In lowest order the variables ~su

l

are given by

(~s u

l

) �

�

dx

m

; @

m

C

a

; @

m

C

I

; @

m

k

: : : @

m

0

C

N

; iB

N

; i@

m

k

: : : @

m

1

B

N

�

(4.37)

We recall that to lowest order the covariant derivatives of the �eld strengths

are given by

(T ) �

�

E

a

k

m

k

: : : E

a

0

m

0

@

m

k

: : : @

[m

1

A

m

0

]

N

; k = 1; 2; : : :

�

: (4.38)

The brackets denote antisymmetrization of the enclosed indices. In linearized

order we �nd all jet variables as linear combinations of the variables

~

C;T; u

l

and ~su

l

: the symmetrized derivatives of the connections belong to (u

l

), the

antisymmetrized derivatives of the connections belong to the �eld strengths

listed as T . The derivatives of the vielbein are slightly tricky. The sym-

metrized derivatives are contained in @

(m

k

: : : @

m

1

A

m

0

)

N

for N = a. The

antisymmetrized derivatives are in one to one correspondence to the spin

connection !

k [a;b]

(A

k

I

for I = [ab]). We choose the spin connection !

ma

b

and a symmetric a�ne connection �

mn

l

= �

nm

l

not to be elementary vari-

ables and determine them from the equations D

a

e

n

b

= 0 and T

ab

c

= 0. This

4

We do not count powers of the vielbein e

m

a

or its inverse. Derivatives of the vielbein,

however, are counted.
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choice does not restrict the validity of our investigation because a di�erent

choice amounts only to the introduction of additional tensor �elds.

@

m

e

n

c

� @

n

e

m

c

= !

ma

c

e

n

a

� !

na

c

e

m

a

(4.39)

!

k [a;b]

=

1

2

�

E

a

m

�

bc

(@

k

e

m

c

� @

k

e

m

c

)� E

b

m

�

ac

(@

k

e

m

c

� @

k

e

m

c

)�

�E

a

m

E

b

n

(@

m

e

n

c

� @

n

e

m

c

)e

k

d

�

cd

�

(4.40)

We conclude that the transformation of the jet variables to the variables

�

~

C;T; u

l

; ~su

l

�

has the structure

�

0i

=M

i

j

�

j

+O

i

(�

2

) (4.41)

where M is an invertible matrix.

�

i

=M

�1

i

j

(�

0j

�O

j

(�

2

)) (4.42)

Consider an element of the algebra A generated by the jet variables. We

show that it can be written as an element of A

~

C;T

�

Q

l

A

u

l

;~su

l

. This holds

trivially for the variables x

m

and dx

m

which coincide with x

m

and ~sx

m

. For

the remaining variables we neglect in a �rst step all di�erentials in (4.42).

Concentrate on the terms with the highest derivatives in the expression for

each �

i

. The terms O(�

2

) contain only lower derivatives. Therefore, us-

ing (4.42), we can recursively substitute in a polynomial in � the highest

derivative terms by �

0i

variables. This changes the expression for the lower

derivative terms. Then substitute the second highest derivative terms. They

can be expressed in terms of �

0i

with changed terms with third highest deriva-

tives and so on. Therefore each polynomial in � can be written in terms of

�

0i

. In a second step we take into account the di�erentials which come into

play because we use the variables ~su

l

and therefore O

i

(�

2

) contains also the

variables dx

m

combined also with higher derivatives than �

i

. Given an arbi-

trary di�erential form ! we apply our substitution procedure �rst to the zero

form. It can be expressed as zero form in the variables �

0i

but the 1-form

part has changed. The substitution procedure applied to this 1-form part

expresses it in terms of �

0i

and changes the 2-form and so on. We iterate

the substitution until we reach D + 1-forms which vanish. Then we have

expressed the elements of the algebra A of the jet variables in terms of the

product algebra A

~

C;T

�

Q

l

A

u

l

;~su

l

. This completes the proof of the theorem.2

42



By K�unneth's theorem (theorem 3.5) the cohomology of ~s acting on the

algebra A of the jet variables is given by the product of the cohomologies of

~s acting on the ghost tensor algebra A

~

C;T

and on the algebras A

u

l

;~su

l

H(A; ~s) = H(A

~

C;T

; ~s)�

Y

l

H(A

u

l

;~su

l

; ~s) : (4.43)

By the Basic Lemma (theorem 3.3) the cohomology of d acting on an

algebra A

x;dx

of di�erential forms f(x; dx) which depend on generating and

independent variables x and dx is given by numbers f

0

. Exchanging the

names d by ~s and x; dx by u

l

; ~su

l

one can copy the Basic Lemma and conclude

that the cohomology H(A

u

l

;~su

l

; ~s) is given by numbers. One can apply this

argument if the variables u

l

and ~su

l

are independent and not subject to

constraints.

Whether the variables u

l

; ~su

l

are subject to constraints is a matter of

choice of the theory which one considers. This choice in
uences the coho-

mology. For example, one could require that two coordinates x

1

and x

2

satify

(x

1

)

2

+ (x

2

)

2

= 1 because one wants to consider a theory on a circle. Then

the di�erential d(arctan

y

x

) = d' is closed (dd' = 0) but not exact, because

the angle ' is not a function on the circle, d' is just a misleading notation

for a one form which is not d of a function '. In this example the periodic

boundary condition ' � ' + 2� gives rise to a nontrivial cohomology of d

acting on ' and d'. Nontrivial cohomologies also arise if the �elds take

values in nontrivial spaces. For example if in nonlinear sigma models one

requires scalar �elds �

i

to take values on a sphere

P

n+1

i=1

�

i

2

= 1 then the

volume form d

n

� is nontrivial. More complicated is the case where scalar

�elds are restricted to take values in a general coset G=H. Also the relation

dete

m

a

6= 0 (4.44)

restricts the vielbeine to take values in the group GL(D) of invertible real

D �D matrices. This group has a nontrivial cohomology.

For several reasons we choose to neglect the cohomologies coming from a

nontrivial topology of the base manifold with coordinates x

m

or the target

space with coordinates � or e

m

a

.

We have to determine the cohomology of ~s on the ghost tensor variables

anyhow and start with this problem. To obtain the complete answer we can

determine the cohomology of the base space and the target space in a second

step which we postpone.
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One can also legitimately argue that perturbation theory replaces �elds

by deviations from a ground state and thereby replaces the target space by

its tangent space with a trivial cohomology.

Canonical quantization does not respect inequalites like x 6= 0. If there

exists a conjugate variable p with [x; p] = �i and if the unitary operators

U(y) = e

iyp

exist for all real numbers y then the spectrum of x extends over

the real line including x = 0. So how does one control the more complicated

inequality dete

m

a

6= 0 after quantization?

Whether one accepts these arguments is a matter of choice until the phys-

ical di�erences of di�erent choices are calculated and tested in nature. We

choose to investigate topologically trivial base manifolds and target spaces.

We combine eq. (4.43) with theorem (3.4 ) and theorem (4.1) and conclude

Theorem 4.3

If the target space and the base manifold have trivial topology then the non-

trivial solutions of the descent equations in gravitational theories are in one

to one correspondence to the nontrivial solutions !(C;T ) of the equation

s ! = 0. The relative cohomology (3.32) is given by the D-form parts of the

forms !(C +A;T ) mod ~s�.

! depends only on the ghosts, not on their derivatives. Therefore the

ghost number of ! is bounded by the number of translation ghosts and the

number of ghosts for spin and for isospin transformations D +

D(D�1)

2

+

dim(G). If we take the D-form part of !(C + A;T ) then D di�erentials

dx

m

rather than ghosts have to be picked. Therefore the ghost number

of nontrivial solutions of the relative cohomology is bounded by

D(D�1)

2

+

dim(G). This argument, however, does not apply if there are commuting

ghosts for supersymmetry transformations.

From this theorem one can conclude that in an appropriate basis of vari-

ables anomaly candidates can be chosen such that they contain no ghosts

C

m

= C

a

E

a

m

(4.45)

of coordinate transformations or in other words that coordinate transforma-

tions are not anomalous. This result holds if one uses the variables

^

C

I

= C

I

� C

a

E

a

m

A

m

I

^

C

m

= C

a

E

a

m

(4.46)

as ghost �elds. This choice is not very suitable if one wants to split the

algebra of ~s and therefore we have preferred not to work with

^

C

I

. But this
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choice arises naturally if one enlarges the BRS transformation of Yang Mills

theories to allow also general coordinate transformations. In our formulation

the BRS transformation is given by

sT = C

N

�

N

T = C

a

E

a

m

(@

m

�A

m

I

�

I

)T + C

I

�

I

T: (4.47)

In the basis of

^

C

m

,

^

C

I

this is a shift termC

m

@

m

T and the BRS transformation

of a Yang Mills theory

sT =

^

C

m

@

m

T +

^

C

I

�

I

T : (4.48)

The variables

^

C

m

,

^

C

I

change very simply under the substitution of C by

C +A.

^

C

m

(C +A) =

^

C

m

+ dx

m

^

C

I

(C +A) =

^

C

I

(4.49)

If one expresses a form !(C+A;T ) by ghost variables

^

C

m

,

^

C

I

then ! depends

on dx

m

only via the combination

^

C

m

+ dx

m

. The D form part !

D

originates

from a coe�cient function multiplying

(

^

C

1

+ dx

1

)(

^

C

2

+ dx

2

) : : : (

^

C

D

+ dx

D

) = (dx

1

dx

2

: : : dx

D

+ : : :) : (4.50)

This coe�cient function cannot contain a translation ghost C

m

=

^

C

m

be-

cause

^

C

m

enters only in the combination

^

C

m

+ dx

m

and D + 1 factors of

^

C

m

+ dx

m

vanish.
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Chapter 5

BRS cohomology on ghosts and

tensors

In the last chapter the problem to determine Lagrange densities and anomaly

candidates has been reduced to the calculation of the cohomology of s acting

on tensors and ghosts. Let us recall this transformation s explicitly

1

sT = (C

a

D

a

+ C

I

�

I

)T (5.1)

sC

a

= C

I

C

b

G

Ib

a

(5.2)

sC

I

= �

1

2

C

K

C

L

f

KL

I

+

1

2

C

a

C

b

F

ab

I

: (5.3)

The BRS transformation

s = s

0

+ s

1

+ s

2

(5.4)

consists of a nilpotent part s

0

s

0

T = C

I

�

I

T (5.5)

s

0

C

a

= C

I

G

Ib

a

C

b

(5.6)

s

0

C

I

= �

1

2

C

K

C

L

f

KL

I

; (5.7)

which does not increase the number of translation ghosts C

a

, and of parts s

1

s

1

T = C

a

D

a

T s

1

C

a

= 0 s

1

C

I

= 0 (5.8)

1

We use a spin connection which makes T

ab

c

vanish.
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and s

2

s

2

T = 0 s

2

C

a

= 0 s

2

C

I

=

1

2

C

a

C

b

F

ab

I

; (5.9)

which increase the number of translation ghosts by 1 and 2. The fact that

s

2

0

vanishes follows easily if one splits

s

2

= s

2

0

+ fs

0

; s

1

g+ (fs

0

; s

2

g+ s

2

1

) + fs

1

; s

2

g+ s

2

2

= 0 (5.10)

into pieces which raise the number of translation ghosts by 0,1,2,3,4. These

di�erent pieces vanish separately.

s

0

acts on tensors and ghosts exactly like the BRS transformation in Yang

Mills theories { if one interprets the s

0

transformation of the translation

ghosts C

a

as the BRS transformation of an additional tensor.

Let us split each solution !(C;T ) of s! = 0 into pieces !

n

which are

homogeneous of degree n in translation ghosts

! = !

n

+

X

n>n

!

n

+ s� : (5.11)

We call the pieces !

n

ghosts forms of degree n. Let us concentrate on the

ghost form !

n

with the lowest degree in C

a

. It belongs to the s

0

cohomology,

i.e. it satis�es

s

0

!

n

= 0 !

n

mod s

0

�

n

: (5.12)

The equation s

0

!

n

= 0 is the piece with degree n in the equation s! = 0.

A piece s

0

�

n

can be neglected because it is of the form s�

n

up to pieces

with higher degree in C

a

which can be absorbed in a rede�ned sum

P

n>n

!

n

.

Therefore to each element ! of the s cohomology there corresponds an ele-

ment !

n

of the s

0

cohomology. We choose � such that n becomes maximal.

Then this correspondence is unique.

To determine ! we hunt down !

n

and determine the s

0

cohomology. We

proceed as in the derivation of the Basic Lemma and investigate the anticom-

mutator of s

0

with other femionic operations. Here we employ the partial

derivatives with respect to the isospin ghosts C

I

. These anticommutators

coincide with the generators �

I

of isospin transformations

�

I

= fs

0

;

@

@C

I

g (5.13)

which on the ghosts are represented by G

I

and the adjoint representation

�

I

C

a

= G

Ib

a

C

b

�

I

C

J

= f

KI

J

C

K

: (5.14)
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Eq. (5.13) is easily veri�ed on the elementary variables C

a

; C

I

and T . It

extends to arbitrary polynomials because both sides of the equation are linear

operators with the same product rule.

The isospin transformations commute with s

0

because each anticommu-

tator fs

0

; �g of a nilpotent s

0

commutes with s

0

no matter what � is (3.6).

[�

I

; s

0

] = 0 (5.15)

The representation of the isospin transformations on the algebra of ghosts and

tensors is completely reducible because the isospin transformations belong

to a semisimple group or to abelian transformations which decompose the

algebra into polynomials of de�nite charge and de�nite dimension. Therefore

the following theorem applies.

Theorem 5.1

If the representation of �

I

is completely reducible then each solution of

s

0

! = 0 is �

I

invariant up to an irrelevant piece.

s

0

! = 0) ! = !

inv

+ s

0

� �

I

!

inv

= 0 : (5.16)

The theorem is proven by the following arguments. The space

Z = f! : s

0

! = 0g (5.17)

is mapped by isospin transformations to itself (s

0

(�

I

!) = �

I

s

0

! = 0), i.e.

�

I

Z � Z . Z contains the subspace of elements which can be written as

isospin transformations applied to some other elements �

I

2 Z

Z

�

= f! 2 Z : ! = �

I

(�

I

) s

0

�

I

= 0g : (5.18)

Z

�

is mapped by isospin transformations to itself. A second invariant sub-

space is given by Z

inv

, the subspace of �

I

invariant elements

Z

inv

= f! 2 Z : �

I

! = 0 g : (5.19)

If the representation of �

I

is completely reducible then the space Z is spanned

by Z

inv

�Z

�

�Z

comp

with a complement Z

comp

which is also mapped to itself.

This complement, however, contains only ! = 0 because if there were a

nonvanishing element ! 2 Z

comp

it would not be invariant because it is not

from Z

inv

. ! would be mapped to �

I

! 2 Z

�

and Z

comp

would not be an

invariant subspace.

Z = Z

inv

� Z

�

(5.20)
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Each ! which satis�es s

0

! = 0 can therefore be decomposed as

! = !

inv

+ �

I

�

I

s

0

�

I

= 0 : (5.21)

We replace �

I

by fs

0

;

@

@C

I

g (5.13), use s

0

�

I

= 0 and verify the theorem.

! = !

inv

+ s

0

� � =

@

@C

I

�

I

(5.22)

The theorem restricts nontrivial solutions to s

0

! = 0 to spin and isospin

invariant combinations.

We can exploit this theorem a second time and conclude that the trans-

lation ghosts C

a

and the tensors T occur only in invariant combinations and

that the ghosts C

I

of spin and isospin transformations couple separately to

invariants. This follows from the peculiar form of s

0

which is given by C

I

�

I

if it acts on translation ghosts and tensors and by

1

2

C

I

�

I

if it acts on the

ghosts C

I

of spin and isospin transformations.

s

0

= C

I

�

I

� s

c

(5.23)

s

c

transforms only spin and isospin ghosts

s

c

T = 0 s

c

C

a

= 0 s

c

C

I

= �

1

2

C

K

C

L

f

KL

I

: (5.24)

The equations s

0

!

inv

= 0 and �

I

!

inv

= 0 imply

s

c

!

inv

= 0 : (5.25)

The anticommutator

�

C

I = fs

c

;

@

@C

I

g (5.26)

generates the adjoint transformations of the spin and isospin ghosts.

�

C

IC

J

= f

KI

J

C

K

�

C

IT = 0 �

C

IC

a

= 0 (5.27)

It can be used to express s

c

in the forms

s

c

=

1

2

C

I

�

C

I =

1

2

�

C

IC

I

(5.28)

which are both valid because f

IJ

I

= 0 in Lie algebras which consist of simple

and abelian factors.
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By theorem (5.1) one can conclude from s

c

!

inv

= 0 that !

inv

consists of

a part !

invjinv

which is invariant under �

C

I and a piece (s

c

�)

inv

which is also

s

0

exact because (s

c

�)

inv

is �

I

invariant. Therefore ! is of the form

! = f(�

�

(C

I

); I

�

(C

a

; T )) + s

0

�:

where �

�

(C

I

) and I

�

(C

a

; T ) are invariant functions. A contribution s

c

� to

�

�

changes f only by an irrelevant piece because s

c

� I(C

a

; T ) = s

0

(� I). We

can therefore state:

Theorem 5.2

An element ! of the algebra of ghosts and tensors satis�es s

0

! = 0 if and

only if it is of the form

! = f(�

�

(C

I

); I

�

(C

a

; T )) + s

0

� (5.29)

where I

�

(C

a

; T ) are invariant functions and where the invariant functions

�

�

(C

I

) � = 1; : : : ; r generate the Lie algebra cohomology

s

c

�(C

I

) = 0, �(C

I

) = �(�

1

(C); : : : ; �

r

(C)) + s

c

�(C

I

) : (5.30)

! is trivial if and only if f vanishes.

The solutions of s

c

�(C) = 0 are given by the �

C

I invariant polynomials

�(C

I

). Obviously these invariant polynomials satisfy s

c

� = 0 and they are

nontrivial because all trivial solutions s

c

� are contained in Z

�

as s

c

=

1

2

�

C

IC

I

(5.28) shows. Similarly the equation s

0

= �

I

C

I

�

1

2

�

C

IC

I

shows that f is

nontrivial because it is invariant under �

I

and �

C

I and cannot be expressed

as a sum of terms of the form �

I

�

I

or �

C

I
�

I

.

The space of invariant polynomials can be determined separately for each

factor of the Lie algebra. The general solution for the product algebra can

then be obtained with K�unneth's formula (theorem 3.5).

The following results for simple Lie algebras can be found in the math-

ematical literature [7] or in translations into a language which a (german)

physicist is used to [8]. For a simple Lie algebra G the dimension of the space

of invariant polynomials �(C) is 2

r

where r is the rank of G. These invariant

polynomials are generated by r primitive polynomials �

�

(C); � = 1; : : : ; r

which cannot be written as a sum of products of other invariant polynomi-

als. They have odd ghost number gh(�

�

(C)) = 2m(�)� 1 and therefore are
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fermionic. They can be obtained from traces of suitable matrices M

i

which

represent the Lie algebra and are given with a suitable normalization by

�

�

(C) =

(�)

m�1

m!(m� 1)!

(2m� 1)!

tr(C

i

M

i

)

2m�1

m = m(�) � = 1; : : : ; r :

(5.31)

The numberm(�) is the degree of homogeneity of the corresponding Casimir

invariant I

�

(X)

I

�

(X) = tr(X

i

M

i

)

m(�)

: (5.32)

These Casimir invariants generate all invariant functions of a set of com-

muting variables X

i

which transform as an irreducible multiplet under the

adjoint representation.

The degrees m(�) for the classical simple Lie algebras are given by

SU(n+ 1) A

n

m(�) = �+ 1 � = 1; : : : ; n

SO(2n + 1) B

n

m(�) = 2� � = 1; : : : ; n

SP (2n) C

n

m(�) = 2� � = 1; : : : ; n

SO(2n) D

n

m(�) = 2� � = 1; : : : ; n� 1 m(n) = n

(5.33)

With the exception of the last primitive element of SO(2n) the matrices

M

i

are the de�ning representation of the classical Lie algebras. The last

primitive element �

n

and the last Casimir invariant I

n

of SO(2n) are con-

structed from the spin representation �

i

. Up to normalization they are given

by

�

n

� "

a

1

b

1

:::a

n

b

n

(C

2

)

a

1

b

1

: : : (C

2

)

a

n�1

b

n�1

C

a

n

b

n

I

n

� "

a

1

b

1

:::a

n

b

n

X

a

1

b

1

: : :X

a

n

b

n

:

If n is even then the primitive element �

n

of SO(2n) is degenerate in ghost

number with �

n

2

.

The primitive elements for the exceptional simple Lie algebras G

2

; F

4

;

E

6

; E

7

; E

8

can also be found in the literature [9]. Their explicit form is not

important for our purpose. In each case the Casimir invariant with lowest

degree m is quadratic (m = 2).

For a one dimensional abelian Lie algebra the ghost C is invariant under

the adjoint transformation. It generates the invariant polynomials �(C) =

a + bC which span a 2

r

dimensional space where r = 1 is the rank of the

abelian Lie algebra. The generator � of this algebra of invariant polynomials

has odd ghost number gh(C) = 2m � 1 with m = 1.

�(C) = C (5.34)
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The Casimir invariant I of the one dimensional, trivial adjoint representation

acting on a bosonic variable X is homogeneous of degree m = 1 in X and is

simply given by X itself.

I(X) = X : (5.35)

If the Lie algebra is a product of simple and abelian factors then the list

of primitive elements �

�

and the list of the Casimir invariants I

�

are the

union of the respective lists of the factors of the Lie algebra.

Polynomials of r anticommuting variables �

�

span a 2

r

dimensional space,

which theoretical physicists would call a superspace. The statement that the

primitive elements �

�

(C) span the space of �

I

invariant polynomials in the

anticommuting ghosts

�

I

�(C) = 0) �(C) = �(�

1

(C); : : : ; �

r

(C)) (5.36)

asserts that the Lie algebra cohomology is given by

s

c

�(C) = 0, �(C) = �(�

1

(C); : : : ; �

r

(C)) + s

c

� : (5.37)

Because the space of these invariant functions is 2

r

dimensional there are no

algebraic relations among the functions �

�

(C) apart from the anticommuta-

tion relations which result from their odd ghost number.

�(C) = �(�

1

(C); : : : ; �

r

(C)) = 0 , �(�

1

; : : : ; �

r

) = 0 (5.38)

The Casimir invariants I

�

(X) generate the space of �

I

invariant polyno-

mials in commuting variables X which transform under the adjoint represen-

tation

�

I

P (X) = 0) P (X) = f(I

1

(X); : : : ; I

r

(X)) : (5.39)

If there are no algebraic relations among the variables X apart from their

commutation relations then there is no algebraic relation among the Casimir

invariants I

�

(X) up to the fact that the I

�

commute [7].

P (X) = f(I

1

(X); : : : ; I

r

(X)) = 0 , f(I

1

; : : : ; I

r

) = 0 (5.40)

Theorem (5.2) describes all solutions !

n

of the equation s

0

!

n

= 0. This

equation is the part of s! = 0 with lowest degree in the translation ghosts.

In degree n+ 1 the equation s! = 0 imposes the restriction

s

1

!

n

+ s

0

!

n+1

= 0 : (5.41)
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We choose !

n

= f(�

�

(C); I

�

(C

a

; T )). Then s

1

!

n

is �

I

invariant and not of

the form s

0

� because s

1

(5.8)

s

1

T = C

a

D

a

T s

1

C

a

= 0 s

1

C

I

= 0 (5.42)

maps invariant functions I

�

of tensors and translation ghosts to invariant

functions. Therefore s

1

!

n

has to vanish because it is not of the form s

0

�.

We can require more restrictively that !

n

is an element of the s

1

coho-

mology after we consider the following argument. A contribution to !

n

of

the form s

1

�(�

�

; I

�

) can be written as s� � s

2

� because s

0

� vanishes (� is �

I

invariant). s� changes ! = !

n

+ : : : only by an irrelevant piece. s

2

� can be

absorbed in the parts : : : with higher ghost degree. Therefore we can neglect

contributions s

1

�(�

�

; I

�

) to !

n

.

s

1

!

n

= 0 !

n

mod s

1

�

inv

(5.43)

The operation s

1

acting on invariant functions is nilpotent because

(5.5,5.9,5.10)

s

2

1

+ fs

0

; s

2

g = 0 = s

2

1

+ F

I

^

�

I

(5.44)

where F

I

is the ghost two form

F

I

=

1

2

C

a

C

b

F

ab

I

(5.45)

and

^

�

I

generates the adjoint transformation of translation ghosts and tensors

^

�

I

T = �

I

T

^

�

I

C

a

= �

I

C

a

^

�

I

C

J

= 0 : (5.46)

s

1

acting on invariant functions is the exterior derivative d = dx

m

@

m

in disguise. It does not di�erentiate the translation ghosts, the relation

s

1

(C

a

) = 0 corresponds to the relation d(dx

m

) = 0. An invariant ghost

form of degree l = n is given by

!(C;T ) =

1

l!

C

a

1

: : : C

a

l

!

a

1

:::a

l

(T ) (5.47)

where the components !

a

1

:::a

l

belong to an isospin invariant Lorentz tensor

which transforms as indicated by the index picture. s

1

acts on ! (5.8) by

s

1

! =

1

(l + 1)!

C

a

1

: : :C

a

l+1

X

cyclic(1;2;:::;l+1)

sign(cyclic)D

a

1

!

a

2

:::a

l+1

: (5.48)
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If we convert the index picture from Lorentz indices to space time indices

by help of the vielbein e

m

a

and its inverse E

a

m

and de�ne the space time

covariant derivative D

m

and the ghosts C

m

by

D

a

0

!

a

1

:::a

l

= E

a

0

m

0

E

a

1

m

1

: : : E

a

l

m

l

D

m

0

!

m

1

:::m

l

C

m

= C

a

E

a

m

(5.49)

then s

1

acts on forms !

!(C;T ) =

1

l!

C

m

1

: : :C

m

l

!

m

1

:::m

l

(T ) (5.50)

in the same way as the exterior covariant derivative D = dx

m

D

m

. Only the

name of the di�erential dx

m

is changed to C

m

.

s

1

! =

1

(l + 1)!

C

m

1

: : : C

m

l+1

X

cyclic(1;2;:::;l+1)

sign(cyclic)D

m

1

!

m

2

:::m

l+1

: (5.51)

s

1

simpli�es on �

I

invariant forms even more because one can neglect the

isospin transformations in the covariant derivatives D

a

= e

a

m

(@

m

�A

m

I

�

I

).

The spin connection !

ma

b

in the covariant derivative is exchanged for the

symmetric Christo�el symbol

�

mn

k

=

1

2

g

kl

(@

m

g

nl

+ @

n

g

ml

� @

l

g

mn

) �

mn

k

= �

nm

k

g

mn

= e

m

a

e

n

b

�

ab

(5.52)

if the Lorentz vector indices a; b; : : : are traded for tangent space indices

m;n; : : :. The contributions of these Christo�el symbols vanish if s

1

is applied

to an invariant form because all tangent space indices are contracted with

anticommuting ghosts C

m

, e.g.

s

1

C

n

!

n

= s

1

C

b

!

b

= �C

b

C

a

D

a

!

b

= C

m

C

n

D

m

!

n

= C

m

C

n

(@

m

!

n

� �

mn

l

!

l

) = C

m

C

n

@

m

!

n

Therefore s

1

acts on invariant ghost forms in the same way as the exterior

derivative d = dx

m

@

m

acts on di�erential forms.

The cohomology of d acting on the jet variables is given by the Algebraic

Poincar�e Lemma (theorem (3.3)). This lemma, however, does not apply

here because among the tensors there are the �eld strengths on which the

derivatives do not act freely, i.e. with no constraint apart from the fact that

they commute, but subject to the Bianchi identities

X

cyclic

D

a

F

bc

= 0 : (5.53)
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These constraints on the action of the derivatives change the cohomology of

d. It is given by the Covariant Poincar�e Lemma [10].

Theorem 5.3 Linearized Covariant Poincar�e Lemma

Consider functions L and di�erential forms ! and � which depend on coordi-

nates, linearized �eld strengths F

mn

i

= @

m

A

n

i

� @

n

A

m

i

and their derivatives,

which are restricted by

P

cyclic

@

k

F

mn

i

= 0, and on other �elds  and their

derivatives. If ! satis�es d! = 0 then it can be written as a sum of a

volume form Ld

D

x and a polynomial P (F ) in the �eld strength two forms

F

i

=

1

2

dx

m

dx

n

F

mn

i

and an exact form d�.

d !

�

x

m

; dx

m

; F

mn

; @

(k

F

m)n

; : : : ;  ; @

k

 ; : : : ; @

(k

: : : @

l)

 

�

= 0,

! = L(x

m

; F

mn

; @

(k

F

mn)

; : : : ;  ; @

k

 ; : : :)d

D

x+ P (F ) + d� (5.54)

The Lagrange density Ld

D

x cannot be written as P (F ) + d� if its Euler

derivatives (3.27) with respect to  and A

n

i

do not vanish

^

@L

^

@ 

6= 0 or @

m

^

@L

^

@F

mn

i

6= 0 : (5.55)

A nonvanishing polynomial P (F ) cannot be written as d of a form � which

depends on �eld strengths and �elds  and their derivatives because � would

have to contain at least one connection A

m

i

without derivative.

The theorem can be extended to cover Lorentz and isospin invariant La-

grange densities depending on the (nonlinear) �eld strengths, other tensors

and their covariant derivatives.

Theorem 5.4 Covariant Poincar�e Lemma

Consider �

I

invariant functions L and di�erential forms ! and � which

depend on �eld strengths F

mn

I

and their covariant derivatives, which are

restricted by

P

cyclic

D

k

F

mn

I

= 0, and on other �elds  and their covariant

derivatives. If ! satis�es d! = 0 then it can be written as a sum of a volume

form Ld

D

x and an invariant polynomial P (F ) in the �eld strength two forms

F

I

=

1

2

dx

m

dx

n

F

mn

I

and an exact form d�.

d !

�

dx

m

; F

mn

;D

(k

F

m)n

; : : : ;  ;D

k

 ; : : : ;D

(k

: : :D

l)

 

�

= 0,

! = L(F

mn

;D

(k

F

m)n

; : : : ;  ; : : :)d

D

x+ P (F ) + d� (5.56)
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The Lagrange density Ld

D

x cannot be written as P (F ) + d� if its Euler

derivatives with respect to  and A

n

I

do not vanish

^

@L

^

@ 

6= 0 or D

m

^

@L

^

@F

mn

I

6= 0 : (5.57)

We call the invariant polynomials P (F

I

) Chern forms. They are polyno-

mials in commuting variables, the �eld strength two forms F

I

which trans-

form as an adjoint representation of the Lie algebra. These invariant polyno-

mials are generated by the elementary Casimir invariants I

�

(F

I

). The Chern

forms enlarge the cohomology of the exterior derivative if it acts on tensors

rather than on jet variables. They comprise all topological densities which

one can construct from connections for the following reason. If a functional

is to contain only topological information its value must not change under

continuous deformation of the �elds. Therefore it has to be gauge invariant

and invariant under general coordinate transformations. If it is a local func-

tional it is the integral over a density which satis�es the descent equation

and which can be obtained from a solution to s! = 0. If this density belongs

to a functional which contains only topological information then the value

of this functional must not change even under arbitrary di�erentiable vari-

ations of the �elds, i.e. its Euler derivatives with respect to the �elds must

vanish. Therefore the integrand must be a total derivative in the space of

jet variables. But it must not be a total derivative in the space of tensor

variables because then it would be constant and contain no information at

all. Therefore, by theorem (5.4), all topological densities which one can con-

struct from connections are given by Chern polynomials in the �eld strength

two form.

Theorem (5.4) describes also the cohomology of s

1

acting on invariant

ghost forms because s

1

acts on invariant ghost forms (5.50) exactly like the

exterior derivative d acts on di�erential forms. We have to allow, however,

for the additional variables �

�

(C) in !

n

. They generate a second, trivial

algebra A

2

and can be taken into account by K�unneth's theorem (theorem

(3.5)). If we neglect the trivial part s

1

�

inv

then the solution to (5.44) is given

by

!

n

= L(�

�

(C); T )C

1

C

2

: : :C

D

+ P (�

�

(C); I

�

(F )) (5.58)

The �

I

invariant Lagrange ghost density satis�es already the complete equa-

tion s!(C;T ) = 0 because it is a D ghost form. The solution to ~s~! = 0

is given by ~! = !(C + A;T ) and the Lagrange density and the anomaly
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candidates are given by the part of ~! with d

D

x. The coordinate di�erentials

come from C

a

+ dx

m

e

m

a 2

. If one picks the D form part then one gets

dx

m

1

: : : dx

m

D

e

m

1

1

: : : e

m

D

D

= det(e

m

a

)d

D

x det(e

m

a

) =:

p

g (5.59)

Therefore the solutions to the descent equations of Lagrange type are given

by

!

D

= L(�

�

(C); T )

p

gd

D

x : (5.60)

They are constructed in the well known manner from tensors T , including

�eld strengths and covariant derivatives of tensors, which are combined to a

Lorentz invariant and isospin invariant Lagrange function. This composite

scalar �eld is multiplied by the density

p

g. Integrands of local gauge in-

variant actions are obtained from this formula by restricting !

D

to vanishing

ghost number. Then the variables �

�

(C) do not occur. We indicate the ghost

number by a superscript and have

!

0

D

= L(T )

p

gd

D

x : (5.61)

Integrands of anomaly candidates are obtained by choosing D forms with

ghost number 1. Only abelian factors of the Lie algebra allow for such

anomaly candidates because the primitive invariants �

�

for nonabelian factors

have at least ghost number 3.

!

1

D

=

X

i

C

i

L

i

(T )

p

gd

D

x : (5.62)

The sum ranges over all abelian factors of the gauge group. Anomalies of this

form actually occur as trace anomalies or � functions if the isospin algebra

contains dilatations.

This completes the discussion of Lagrange densities and anomaly candi-

dates coming from the �rst term in (5.58).

2

We can use the ghosts variables C or

^

C (4.46). The expessions remain unchanged

because they are multiplied by D translation ghosts.
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Chapter 6

Chiral anomalies

It remains to investigate solutions which correspond to

!

n

= P (�

�

(C); I

�

(F )) : (6.1)

Ghosts C

I

for spin and isospin transformations and ghost forms F

I

generate

a subalgebra which is invariant under s and takes a particularly simple form

if expressed in terms of matrices C = C

I

M

I

and F = F

I

M

I

which represent

the Lie algebra. For nearly all algebraic operations it is irrelevant that F is

a composite �eld. The transformation of C (5.3) can be read as de�nition of

F = sC + C

2

and s

2

= 0 determines the transformation of F which is given

by the adjoint transformation. One calculates

sF = sC C � C sC = (F � C

2

)C � C(F �C

2

)

sC = �C

2

+ F sF = FC � CF : (6.2)

If one changes the notation and replaces s by d = dx

m

@

m

and C by A =

dx

m

A

m

I

M

I

then the same equations are the de�nition of the �eld strengths

in Yang Mills theories and their Bianchi identities. The equations are valid

whether the anticommuting variables C and the nilpotent operation s are

composite or not.

1

The Chern polynomials I

�

satisfy sI

�

= 0 because they are invariant

under adjoint transformations. All I

�

are trivial i.e. of the form sq

�

. To

show this explicitly we de�ne a one parameter deformation F (t) of F

F (t) = tF + (t

2

� t)C

2

= t sC + t

2

C

2

F (0) = 0 F (1) = F (6.3)

1

This does not mean that there are no di�erences at all. For example the product of

D + 1 matrix elements of the one form matrix A vanish.
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which allows to switch on F .

All invariants I

�

can be written as tr(F

m(�)

) with suitable representations

M

I

. We rewrite tr(F

m

) in an arti�cially more complicated form

tr(F

m

) =

Z

1

o

dt

d

dt

tr(F (t)

m

) = m

Z

1

0

dt tr

�

(sC + 2tC

2

)F (t)

m�1

�

:

The integrand coincides with

s tr (CF (t)

m�1

) = tr ((sC)F (t)

m�1

� tC[F (t)

m�1

; C])

= tr(sCF (t)

m�1

+ 2tC

2

F (t)

m�1

) :

The Chern form I

�

is the s transformation of the Chern Simons form q

�

,

these forms generate a subalgebra.

sq

�

= I

�

sI

�

= 0 (6.4)

q

�

= m

Z

1

0

dt tr

�

C

�

tF + (t

2

� t)C

2

�

m�1

�

m = m(�) (6.5)

Using the binomial formula and

Z

1

0

dt t

k

(1 � t)

l

=

k! l!

(k + l+ 1)!

the t-integral can be evaluated. It gives the combinatorial coe�cients of the

Chern Simons form.

q

�

(C;F ) =

m�1

X

l=0

(�)

l

m!(m� 1)!

(m+ l)!(m� l� 1)!

tr

sym

�

C(C

2

)

l

(F )

m�l�1

�

(6.6)

It involves the traces of completely symmetrized products of the l factors C

2

,

the m� l� 1 factors F and the factor C. The part with l = m� 1 has form

degree 0 and ghost number 2m� 1 and agrees with �

�

q

�

(C; 0) =

(�)

m�1

m!(m� 1)!

(2m� 1)!

trC

2m�1

= �

�

(C) : (6.7)

Each polynomial !

n

= P (�

�

(C); I

�

(F )) de�nes naturally a form

!(C;F ) = P (q

�

(C;F ); I

�

(F )) (6.8)

59



which coincides with !

n

in lowest form degree.

!(q

�

(C;F ); I

�

(F )) = !

n

(�

�

(C); I

�

(F )) + : : : (6.9)

On such forms s acts simply as the operation s = I

�

@

@q

�

.

s! = I

�

@

@q

�

P (q

�

; I

�

)

jq

�

(C;F );I

�

(F )

(6.10)

The basic lemma (3.3) implies that among the polynomials P (q; I) the only

nontrivial solutions of sP = 0 are independent of q and I. (Introduce the

operation r = q

�

@

@I

�

and observe that the anticommutator fs; rg gives the

counting operator N of the variables q and I.)

s!(q; I) = 0, !(q; I) = !

0

+ s�(q; I) (6.11)

Though correct this result is misleading because we are not looking for solu-

tions of s!(q; I) = 0 but have to solve s!(q(C;F ); I(F )) = 0. This equation

has more solutions than (6.11) because F is a two form and D + 1 forms

vanish.

Let us investigate the question whether a di�erential form

!(q(C;F ); I(F )) or s!(q(C;F ); I(F )) vanishes. To answer this ques-

tion one can neglect the two forms F contained in q(C;F ) because in lowest

form degree q

�

coincides with �

�

(C) (6.7) and the variables �

�

satisfy no

algebraic identities apart from the the fact that they anticommute. We

count the lowest form degree with the counting operator

N

form

=

X

�

2m(�)I

�

@

@I

�

(6.12)

and decompose the polynomials !(q; I) into parts !

f

with de�nite lowest

form degree.

!(q; I) =

X

f

!

f

(q; I) N

form

!

f

= f!

f

(6.13)

Obviously f is even and !

f

(q(C;F ); I(F )) vanishes if f > D .

Y

(I

�

i

(F ))

�

i

= 0 if

X

2�

i

m(�

i

) > D (6.14)

Because s =

P

�

I

�

@

@q

�

replaces Chern Simons forms q

�

, which have van-

ishing lowest form degree, by I

�

with form degree given by 2m(�), the form
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s!

f

consists of pieces with lowest form degree given by f + 2m(1); f +

2m(2); : : : ; f + 2m(rank), i.e. the increase of lowest form degree depends

on the degree m(�) of the variables q

�

; I

�

. The action of s becomes more

transparent if we group these variables according to their degree m(�) and

split !

f

into pieces !

f;m

which depend only on variables with m(�) � m.

Let us introduce the notation x

m

for the variables q

�

and I

�

with a �xed

m(�) = m.

fx

m

g = fq

�

; I

�

: m(�) = mg (6.15)

For some values of m the set fx

m

g may be empty. We denote the highest

degree by �m.

The part of a polynomial P (x

1

; x

2

; : : : ; x

�m

) which depends on x

1

is given

by

P

1

= P (x

1

; x

2

; : : : ; x

�m

)� P (0; x

2

; : : : ; x

�m

);

the rest is independent of x

1

can be decomposed into a part which depends

on x

2

and a rest which is independent of x

1

and x

2

P

2

= P (0; x

2

; x

3

; : : : ; x

�m

)� P (0; 0; x

3

; : : : ; x

�m

)

and so on.

P

m

= P (0; : : : ; 0; x

m

; x

m+1

; : : : ; x

�m

)� P (0; : : : ; 0; 0; x

m+1

; : : : ; x

�m

) (6.16)

P

�m+1

= P (0; : : : ; 0) (6.17)

P =

X

m

P

m

(6.18)

We call this decomposition of polynomials a level decomposition. The space

P

m

of polynomials at levelm consists of all polynomials P (x

m

; x

m+1

; : : : ; x

�m

)

modulo polynomials Q(x

m+1

; : : : ; x

�m

). s does not mix levels (6.10) and raises

the form degree of polynomials at level m by at least 2m. We consider each

P

m

separately.

For m � �m we decompose the space P

m

of polynomials P

m

�a la Hodge

(3.7) with the operators

2

s

m

=

X

m(�)=m

I

�

@

@q

�

r

m

=

X

m(�)=m

q

�

@

@I

�

(6.19)

into S

m

= s

m

P

m

and R

m

= r

m

P

m

P

m

= S

m

�R

m

(6.20)

2

Hopefully the s

m

are not confused with s

0

; s

1

; s

2

de�ned in (5.5�5.9).
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and write P

m

= S

m

+R

m

as an s

m

exact piece S

m

and an r

m

exact piece R

m

P

m

= S

m

+R

m

S

m

= s

m

� R

m

= r

m

� (6.21)

Without loss of generality we can take � from R

m

and � from S

m

.

The piece S

m

can be rewritten as a trivial contribution to ! and a part

which lies in R

m

because � 2 R

m

s

m

� = s��

X

m

0

�m+1

s

m

0

� = s�+ �

0

�

0

2 R

m

(6.22)

Eq. (6.22) holds because

s =

X

m

s

m

(6.23)

and s

m

0

� = 0 for m

0

< m and s

m

0

� 2 R

m

for m

0

> m. Therefore we can

restrict P

m

to the r

m

exact part.

P

m

= r

m

� � 2 S

m

(6.24)

Such a polynomial P

m

(q; I), however, cannot be made to satisfy sP

m

= 0 as

a polynomial in q

�

; I

�

sP

m

= s

m

r

m

� +

X

m

0

�m+1

s

m

0

r

m

� = N

m

� +

X

m

0

�m+1

s

m

0

r

m

� : (6.25)

The pieces s

m

r

m

� and the sum have to vanish separately because the sum

lies in R

m

. Moreover because s

m

� = 0 we can replace s

m

r

m

by the anticom-

mutator fs

m

; r

m

g which counts the variables at level m

N

m

= fs

m

; r

m

g =

X

m(�)=m

I

�

@

@I

�

+ q

�

@

@q

�

(6.26)

and maps S

m

invertibly to itself. Therefore sP

m

= 0 has only the trivial

solution P

m

= 0.

As pointed out, however, it is the form !(C;F ) = P

m

(q

�

(C;F ); I

�

(F ))

which has to satisfy s! = 0, and not the polynomial P

m

(q

�

; I

�

). If the

polynomial s!(q; I) does not vanish then the form s! vanishes if and only if

its lowest form degree is larger than D. We obtain therefore the solutions !

if we take � 2 S

m

and restrict it in addition to be composed of monomials

with su�ciently many factors I

�

such that the form degree D

0

of � lies above

D and the form degree of ! = r

m

� starts below D + 1. This restriction can
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easily be formulated if we split S

m

into spaces S

m;D

0

with de�nite and even

degrees D

0

with the number operator N

form

(6.12).

S

m

=

X

D

0

S

m;D

0

P 2 S

m;D

0

, P 2 S

m

^N

form

P = D

0

P (6.27)

Because each term in S

m

contains at least one factor I

�

with m(�) = m the

degrees D

0

are not smaller than 2m. � has to be taken from S

m;D

0

where D

0

is restricted by

D

0

� 2m � D < D

0

(6.28)

to obtain a nonvanishing solution

! = (r

m

�)

jq

�

(C;F );I

�

(F )

� 2 S

m;D

0

(6.29)

which satis�es s! = 0 because the number of translation ghosts in s! is at

least D

0

and larger than D.

If we want to obtain a solution ! with a de�nite ghost number then we

have to split the spaces S

m;D

0

with the ghost counting operator N

C

N

C

=

X

�

 

2m(�)I

�

@

@I

�

+ (2m(�)� 1)q

�

@

@q

�

!

(6.30)

N

C

counts the total ghost number of translation ghosts, Lorentz ghosts and

isospin ghosts and splits S

m;D

0

into eigenspaces S

m;D

0

;G

with total ghost num-

ber G

S

m;D

0

=

X

G

S

m;D

0

;G

P 2 S

m;D

0

;G

, P 2 S

m;D

0

^N

C

P = GP (6.31)

The total ghost number of ! = r

m

� is G if � 2 S

m;D

0

;G+1

because r

m

lowers

the total ghost number by 1.

We obtain the long sought solutions !

g

D

of the relative cohomology (2.53)

which for g = 0 gives Lagrange densities of invariant actions (2.41) and for

g = 1 gives anomaly candidates (2.52) if we substitute in ! the ghosts C

by ghosts plus connection one forms C + A and if we pick the part with D

di�erentials. Therefore the total ghost number G of � has to be chosen to

be G = g + D + 1 to obtain a solution ! which contributes to !

g

D

. If the

ghost variables

^

C (4.46) are used to express ! then !

g

D

is simply obtained if

63



all translation ghosts C

m

are replaced by dx

m

and the part with the volume

element d

D

x is taken.

!(C;F ) = (r

m

�)

jq

�

(C;F );I

�

(F )

� 2 S

m;D

0

;g+D+1

(6.32)

!(C;F ) = f(

^

C

m

;

^

C

i

; F

i

) (6.33)

!

g

D

= f(dx

m

;

^

C

i

;

1

2

dx

m

dx

n

F

mn

i

)

jD form part

(6.34)

These formulas end our general discussion of the BRS cohomology of gravita-

tional Yang Mills theories. The general solution of the consistency equations

can is a linear combination of the Lagrangean solutions and the chiral solu-

tions.

Let us conclude by spelling out the general formula for g = 0 and g = 1.

If g = 0 then � can contain no factors q

�

because the complete ghost number

G � D

0

is not smaller than the ghost number D

0

of translation ghosts. D

0

has to be larger than D (6.28) and not larger than G = g +D + 1 = D + 1

which leavesD

0

= D+1 as only possibility. D

0

is even (6.12), therefore chiral

contributions to Lagrange densities occur only in odd dimensions.

If, for example D = 3, then � is an invariant 4 form.

For m = 1 such a form is given by � = F

i

F

j

a

ij

with a

ij

= a

ji

2 RI if the

isospin group contains abelian factors with the corresponding abelian �eld

strength F

i

and i and j enumerate the abelian factors. � lies in S

1

because

� = s(q

i

F

j

a

ij

). The form ! = r

1

� = 2q

i

F

j

a

ij

yields the gauge invariant

abelian Chern Simons action in 3 dimensions which is remarkable because it

cannot be constructed from tensor variables alone and because it does not

contain the metric.

To construct !

0

3

one has to express q(C) = C by C =

^

C + C

m

A

m

. Then

one has to replace all translation ghosts by di�erentials dx

m

and to pick the

volume form. One obtains

!

0

3

abelian

= dx

m

A

mi

dx

k

dx

l

F

kl j

a

ij

= "

klm

A

mi

F

kl j

a

ij

d

3

x : (6.35)

For m = 2 the form � = trF

2

of each nonabelian factor contributes to

the nonabelian Chern Simons form. One has I

1

= trF

2

= sq

1

, so � 2 S

2

as

required. ! is directly given by the Chern Simons form q

1

(6.6)

! = tr(CF �

1

3

C

3

) (6.36)
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The corresponding Lagrange density is

!

0

3

nonabelian

= tr(AF �

1

3

A

3

) =

1

2

X

I

(A

m

I

F

kl

I

�

1

3

A

m

I

A

k

J

A

l

K

f

JK

I

)"

mkl

d

3

x

(6.37)

Chiral anomalies are obtained if one looks for solutions !

1

D

with ghost

number g = 1. This �xes G = D + 2 and because G is not less than D

0

> D

we have to consider the cases D

0

= D + 1 and D

0

= D + 2.

The �rst case can occur in odd dimensions only, because D

0

is even, and

only if the level m, the lowest degree occuring in �, is 1 because the missing

total ghost number D + 2 � D

0

, which is not carried by I

�

(F ), has to be

contributed by one Chern Simons polynomial q

�

with 2m(�) � 1 = 1, i.e.

with m(�) = 1. Moreover � 2 S

1

and therefore has the form

� =

X

ij abelian

a

ij

(I

�

)q

i

I

j

a

ij

= �a

ji

(6.38)

where the sum runs over the abelian factors and the form degrees contained

in the antisymmetric a

ij

and in the abelian I

j

= F

j

have to add up to D+1.

In particular this anomaly can occur only if the gauge group contains at least

two abelian factors because a

ij

is antisymmetric. In D = 3 dimensions a

ij

is

linear in abelian �eld strengths and one has

� =

X

ijk abelian

a

ijk

q

i

I

j

I

k

a

ijk

= a

ikj

X

cyclic

a

ijk

= 0 (6.39)

This leads to

! = r

1

� =

X

ijk abelian

b

ijk

q

i

q

j

I

k

=

X

ijk abelian

b

ijk

C

i

C

j

F

k

b

ijk

= �a

ijk

+ a

jik

(6.40)

and the candidate anomaly is

!

1

3

= 2

X

ijk abelian

b

ijk

^

C

i

A

j

F

k

=

X

ijk abelian

b

ijk

^

C

i

A

mj

F

rs k

"

mrs

d

3

x : (6.41)

If one considers g = 1 and D = 4 then D

0

= 6 because it is bounded by

G = D + 1 + g = D + 2, larger than D and even. This leaves D

0

= G as

only possibility, so the total ghost number is carried by the translation ghosts

contained in � = �(I

�

) which is a cubic polynomial in the �eld strength two

forms F . Abelian two forms can occur in the combination

� =

X

ijk abelian

d

ijk

F

i

F

j

F

k

(6.42)
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with completely symmetric coe�cients d

ijk

. One checks that these polyno-

mials lie in S

1

. They lead to the abelian anomaly

!

1

4

abelian

=

3

4

X

ijk: abelian

d

ijk

^

C

i

F

mn j

F

rs k

"

mnrs

d

4

x = 3

X

ijk: abelian

d

ijk

^

C

i

d(A

j

dA

k

)

(6.43)

Abelian two forms F

i

can also occur in � multiplied with tr(F

k

)

2

where

i enumerates abelian factors and k nonabelian ones. The mixed anomaly

which corresponds to

� =

X

ik

c

ik

F

i

tr

k

(F

2

) (6.44)

is very similar in form to the abelian anomaly

!

1

4

mixed

= �

1

4

X

ik

c

ik

^

C

i

(

X

I

F

mn

I

F

rs

I

)

k

"

mnrs

d

4

x : (6.45)

The sum, however extends now over abelian factors enumerated by i and

nonabelian factors enumerated by k. Moreover we assumed that the basis,

enumerated by I, of the simple Lie algebras is chosen such that trM

I

M

J

=

��

IJ

holds for all k. Phrased in terms of dA the mixed anomaly di�ers

from the abelian one because the nonabelian �eld strength contains also A

2

terms

3

.

!

1

4

mixed

=

X

ik

c

ik

^

C

i

tr

k

d

�

AdA+

2

3

A

3

�

(6.46)

The last possibility to construct a polynomial � with form degree D

0

= 6

is given by the Chern form tr(F )

3

itself. Such a Chern polynomial with

m = 3 exists for classical algebras only for the algebras SU(n) for n � 3

(5.33)

4

. In particular the Lorentz symmetry in D = 4 dimensions is not

anomalous. The form ! which corresponds to the Chern form is the Chern

Simons form

!(C;F ) = tr

�

CF

2

�

1

2

C

3

F +

1

10

C

5

�

: (6.47)

The nonabelian anomaly follows after the substitution C ! C + A and

after taking the volume form

!

1

4

nonabelian

= tr(

^

CF

2

�

1

2

(

^

CA

2

F +A

^

CAF +A

2

^

CF ) +

1

2

^

CA

4

)

= tr

�

^

Cd

�

AdA+

1

2

A

3

��

: (6.48)

3

The trace over an even power of one form matrices A vanishes.

4

The Lie algebra SO(6) is isomorphic to SU (4).
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