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Abstrat. The aim of these notes is to provide an elementary introdution to some

of the basi elements of exat S-matrix theory. This is a large subjet, and only the

beginnings will be overed here. A partiular omission is any serious disussion of the

Yang-Baxter equation; instead, the fous will be on questions of analyti struture,

and the bootstrap equations. Even then, what I have to say will only be a sketh of the

simpler aspets. The hope is to give a hint of the many urious features of sattering

theories in 1+1 dimensions.

DTP-98/69; hep-th/9810026

1 Introdution { what's so speial about 1+1?

To get things started, I want to desribe a partiularly simple alulation that

an be done in probably the simplest nontrivial quantum �eld theory imaginable,

namely ��

4

theory in a universe with only one spatial dimension.

The Lagrangian to onsider is

L =

1

2

(��)

2

�

1

2

m

2

�

2

�

�

4!

�

4

;

resulting in the Feynman rules

=

i

p

2

�m

2

+ i�

�

�

�

�r

= �i�

The task is to alulate the onneted 2 ! 4 prodution amplitude, at tree

level. Atually, to keep trak of the diagrams it is a little easier to look at the

3! 3 proess, leaving impliit the understanding that one of the out momenta

will be rossed to in at the end. I'll label the three in partiles as a, b, , and

the three out partiles as d, e, f , and opt to ross  from in to out later. It also

helps to adopt light-one oordinates from the outset, using

(p; �p) = (p

0

+p

1

; p

0

�p

1

)

http://de.arxiv.org/abs/hep-th/9810026v1
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and then solving the mass-shell ondition p�p = m

2

by writing the in and out

momenta as

p

a

= (ma;ma

�1

) ; p

b

= (mb;mb

�1

)

and so on, with a; b; : : : real numbers, positive for partiles travelling forwards in

time. In terms of these variables, the rossing from 3! 3 to 2! 4 amounts to

a ontinuation from  to �. For the 3! 3 amplitude there are just two lasses

of diagram:

r

r

r

r

a b  a b 

d e f d e f

(A) (B)

�

�

�

�

�

�

�

�

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

�

�

�S

S

S

S

S

S�

�

�

The internal momentum in (A) is p = m(a+b�d; a

�1

+b

�1

�d

�1

), and so its

propagator ontributes

i

p

2

�m

2

=

i

m

2

1

(a+b�d)(a

�1

+b

�1

�d

�1

)� 1

=

i

m

2

�abd

(a+b)(a�d)(b�d)

to the total sattering amplitude. Given the agreement above that one of the out

momenta is atually in-going, this propagator is never on-shell, and so forgetting

about the i� does not ause any error. The same remark applies to diagram (B),

for whih

i

p

2

�m

2

=

i

m

2

1

(a+b+)(a

�1

+b

�1

+

�1

)� 1

=

i

m

2

ab

(a+b)(a+)(b+)

:

Adding these together, with a brief pause to hek that the diagrams have been

ounted orretly, yields the full result at tree level:

houtjini

tree

= �

i�

2

m

2

A

legs

H(a; b; ; d; e; f)

where A

legs

ontains all the fators living on external legs and so on that will be

the same for all diagrams, and

H(a; b; ; d; e; f) =

X

ylfabg

ylfdefg

�abd

(a+ b)(a� d)(b� d)

+

ab

(a+ b)(b+ )(+ a)

;



Exat S-matries 3

with the sum running over all yli permutations of fa; b; g and fd; e; fg.

Now I need the following fat:

If a+ b+  = d+ e+ f and

1

a

+

1

b

+

1



=

1

d

+

1

e

+

1

f

then H(a; b; ; d; e; f) � �1 :

The two onditions are the so-far ignored onservation of left- and right- lightone

momenta. The formula makes no mention of the signs of the arguments to H ,

and ertainly holds with  negative. The onlusion:

� In 1+1-dimensional ��

4

theory, the 2! 4 amplitude is a onstant at tree level.

It is now very tempting to anel this amplitude ompletely, by adding a term

�

1

6!

�

2

m

2

�

6

to the original Lagrangian. In 1+1 dimensions this does not spoil renormalis-

ability, and gives a theory in whih the 2! 4 amplitude vanishes at tree level.

With �

2

= �=m

2

, the new Lagrangian is

L =

1

2

(��)

2

�

m

2

�

2

�

1

2

�

2

�

2

+

1

4!

�

4

�

4

+

1

6!

�

6

�

6

�

:

This is already urious, but it is possible to go muh further. Calulating the

2! 6 amplitude (left as an exerise for the energeti reader) should reveal that

this is now onstant, ready to be killed o� by a judiiously-hosen �

8

term, and

so on. At eah stage a residual onstant piee an be removed by a (uniquely-

determined) higher-order interation. Keep going, and in�nitely-many diagrams

later you should �nd

L =

1

2

(��)

2

�

m

2

�

2

[osh(��) � 1℄ ;

the sinh-Gordon Lagrangian. Sending � to i� onverts this into the well-known

sine-Gordon model, to whih the disussion will return in later letures.

The laim of uniqueness just made deserves a small aveat. I began the

alulation with no �

3

term in the initial Lagrangian, and a disrete � ! ��

symmetry whih persisted throughout. But what if I had instead started with a

nonzero �

3

term, and tried to play the same game? This is de�nitely a harder

problem, but the �nal answer an be predited with a fair degree of on�dene:

L =

1

2

(��)

2

�

1

2

m

2

�

2

�

1

3!

��

3

�

1

4!

3�

2

m

2

�

4

� : : :

=

1

2

(��)

2

�

m

2

6�

2

�

e

2��

+ 2e

���

� 3

�

;

where this time � = �=m

2

. The speial properties of this Lagrangian have

been been notied by various authors over the years, the earliest probably being

M.Tzitz�eia, in an artile published in 1910.
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Exerise: verify the relationship between the �

3

and �

4

ouplings in the Lagrangian

just given by means of a tree-level alulation.

Suggestion: onsider a 2 ! 3 proess with both in momenta equal to (1; 1), and one

of the out momenta equal to (1+Æ; (1+Æ)

�1

) with Æ small. For the desired result it will

suÆe to demand that the ontributions to the amplitude proportional to Æ

�2

anel

one all relevant diagrams have been added together. Even this is a little subtle. . .

One last omment on the uniqueness question: it is easy to see that all possi-

bilities for a single interating massive salar �eld with no tree-level prodution

have now been exhausted. Starting with a �

3

or �

4

interation term must, if

it works at all, lead to one of the two theories just disussed: the higher �

m

ouplings are uniquely determined by the need to anel the onstant part of

the 2! m�2 prodution amplitude. On the other hand, if both the �

3

and �

4

ouplings are set to zero, then the same argument shows that all higher ouplings

must also be zero, and the theory is free.

To summarise, it appears that in 1+1 dimensions there are some interating

Lagrangians with the remarkable property that the resulting �eld theories have

no tree-level partile prodution. Araf'eva and Korepin showed, in 1974, that

for the sinh-Gordon model this is also true at one loop. The tree-level result was

a sign of interesting lassial behaviour; that it persists to one loop is evidene

that the quantum theory might also be rather speial.

Before ontinuing along this line, I want to return to the 3 ! 3 amplitude.

Should we onlude that its onneted part is also zero? Contrary to initial

expetations, the answer to this question is a de�nite no. For the 3! 3 proess,

it is no longer legitimate to forget about the i�'s. For the diagrams of type (A),

the intermediate partile an now be on-shell, and when this happens the i�

must be retained until all ontributing diagrams have been added together. This

is relevant whenever the set of ingoing momenta is equal to the set of outgoing

momenta, and in suh situations it turns out that the �nal result is indeed

nonzero. Thus the onneted part of the 3 ! 3 amplitude does not vanish, but

it does ontain an additional delta-funtion whih enfores the equality of the

initial and �nal sets of momenta. We have found a model for whih, at least at

tree level, the onneted 3 ! 3 amplitude violates at ertain points two of the

usual assumptions made of an analyti S-matrix:

� it is not found by rossing the 2! 4 amplitude;

� it is not analyti in the residual momenta one overall momentum onservation

has been imposed.

1

Even more remarkably, the interation, while nontrivial, a�ets the partii-

pating partiles in a minimal way: it does not hange their momenta. It is lear

that something odd is going on, but it is not so lear quite what, and even less

1

It should be mentioned that developments in the theory of analyti S-matries

have inluded a general understanding of phenomena suh as these, whih are not

restrited to 1+1 dimensions. See, for example, Chandler (1969) and Iagolnitzer

(1973,1978a). The 1+1 dimensional ase is treated in Iagolnitzer (1978b).
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lear why. Evaluating yet more Feynman diagrams is unlikely to shed muh light

on these questions, and besides, an in�nite amount of work would be needed be-

fore we ould be ompletely sure that any of these properties feature in the full

quantum theory. A more sophistiated approah is needed. What ould fore

these amplitudes to vanish, irrespetive of the struture of the Feynman dia-

grams? One possibility is that onservation laws might limit the set of out states

aessible from any given in state. The far-reahing onsequenes of this idea

are the subjet of the next leture.

2 Conserved quantities and fatorisability

After the somewhat informal introdution, the time has ome to be a little more

preise, at least to the extent of pausing to set up some notation.

First, I should allow for more than one partile type, so di�erent masses m

a

,

m

b

and so on make an appearane. A single partile of mass m

a

will be on-shell

when its light-one momenta p

a

, �p

a

satisfy p

a

�p

a

= m

2

a

. It will be onvenient to

solve this equation not via the variable a = p

a

=m

a

used in the last leture, but

rather via a parameter � = log a alled the rapidity. Thus,

p

a

= m

a

e

�

a

; �p

a

= m

a

e

��

a

:

Reall that a was a positive real number for the forward omponent of the mass

shell; this orresponds to � ranging over the entire real axis. The bakwards

omponent of the mass shell, found by negating a, an be parametrised by this

same rapidity so long as it is shifted onto the line Im � = �. This will be relevant

when disussing the rossing of amplitudes.

An n-partile asymptoti state an now be written as

jA

a

1

(�

1

)A

a

2

(�

2

) : : : A

a

n

(�

n

)i
in

out

where the symbol A

a

i

(�

i

) denotes a partile of type a

i

, travelling with rapidity

�

i

. By smearing the momenta a little so as to produe wavepakets, eah partile

an be assigned an approximate position at eah moment. In a massive theory,

the only sort of theory I will be bothering with, all interations are short-ranged

and so the state behaves like a olletion of free partiles exept at times when

two or more wavepakets overlap. All of this an be made more preise, but not

in these letures.

An in state is haraterised by there being no further interations as t! �1.

This means that the fastest partile must be on the left, the slowest on the right,

with all of the others ordered in between. It is onvenient to represent this situ-

ation by giving the A

a

i

(�

i

) a life outside the j i

in

and j i

out

ket vetors, thinking

of them as nonommuting symbols with their order on the page reeting the

spatial ordering of the partiles that they represent. Thus an in state would be

written

A

a

1

(�

1

)A

a

2

(�

2

) : : : A

a

n

(�

n

)
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with

�

1

> �

2

> : : : > �

n

:

Similarly, an out state has no further interations as t ! +1, and so eah

partile must be to the left of all partiles travelling faster than it, and to the

right of all partiles travelling slower. In terms of the non-ommuting symbols,

one suh state is

A

b

1

(�

1

)A

b

2

(�

2

) : : : A

b

n

(�

n

)

now with

�

1

< �

2

< : : : < �

n

:

Produts of the symbols with other orderings of the rapidities an be thought

of as representing states at other times when all the partiles are momentarily

well-separated. Asymptoti ompleteness translates, at least partially, into the

laim that any suh produt an be expanded either as a sum of produts in the

in-state ordering, or as a sum of produts in the out-state ordering.

The S-matrix provides the mapping between the in-state basis and the out-

state basis. In the new notation this reads, for a two-partile in-state,

A

a

1

(�

1

)A

a

2

(�

2

) =

1

X

n=2

X

�

0

1

<:::<�

0

n

S

b

1

:::b

n

a

1

a

2

(�

1

; �

2

; �

0

1

: : : �

0

n

)A

b

1

(�

0

1

) : : : A

b

n

(�

0

n

) ;

where �

1

> �

2

, a sum on b

1

: : : b

n

is implied, and the sum on the �

0

i

will gen-

erally involve a number of integrals, with the rapidities appearing additionally

onstrained by the overall onservation of left- and right- lightone momenta:

m

a

1

e

��

1

+m

a

2

e

��

2

= m

b

1

e

��

0

1

+ : : :+m

b

n

e

��

0

n

:

The notation works beause the number of dimensions of spae, namely 1,

mathes the `dimensionality' of a sequene of symbols in a line of mathemat-

is; it an't be used for higher-dimensional theories. However, at this stage it

makes no mention of integrability, and an be set up for any massive quantum

�eld theory in 1+1 dimensions.

2

Next, to the onserved quantities. One suh is energy-momentum, a spin-one

operator. In lightone omponents this ats on a one-partile state as

P jA

a

(�)i = m

a

e

�

jA

a

(�)i ;

�

P jA

a

(�)i = m

a

e

��

jA

a

(�)i :

Beyond this, operators an be envisaged transforming in higher representations

of the 1+1 dimensional Lorentz group:

Q

s

jA

a

(�)i = q

(s)

a

e

s�

jA

a

(�)i :

2

One aveat, though: in nonintegrable theories amplitudes for the sattering of

wavepakets usually depend on impat parameters as well as momenta. Thus in

general the notation should not be taken too literally, but rather used as a short-

hand for reording momentum spae results. In integrable ases we'll see shortly that

this dependene goes away, and so I an a�ord to be a little areless about this point.
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The integer s is alled the (Lorentz) spin of Q

s

. Sine Q

jsj

transforms as s opies

of P , and Q

�jsj

as s opies of

�

P , it makes sense to think of Q

s

and Q

�s

as rank

jsj objets. The simple `left-right' splitting is speial to 1+1 dimensions.

I'll only onsider those operators Q

s

that ome as integrals of loal densi-

ties, and this has the important onsequene that their ation on multipartile

wavepakets is additive:

Q

s

jA

a

1

(�) : : : A

a

n

(�

n

)i = (q

(s)

a

1

e

s�

1

+ : : :+ q

(s)

a

n

e

s�

n

)jA

a

1

(�) : : : A

a

n

(�

n

)i :

These are alled loal onserved harges and they are all in involution (they

ommute) sine, essentially by assumption, they have been simultaneously diago-

nalised by the basis of asymptoti multipartile states that I have hosen. This is

not inevitable: nonloal harges, often assoiated with frational-spin operators,

an be very important. The papers of L�usher (1978), Zamolodhikov (1989)

and Bernard and Lelair (1991) are good starting-points for those interested in

this aspet of the subjet.

Even without the more exoti possibilities, the onsequenes of the extra

loal onserved harges are profound. In fat, Coleman and Mandula showed in

1967 that in three spatial dimensions the existene of even just one onserved

harge transforming as a tensor of seond or higher rank fores the S-matrix

of the model to be trivial. (For a simple-minded explanation of this fat, see

later in this leture.) This is not true in 1+1 dimensions, but nevertheless the

possibilities for the S-matrix are severely limited: it must be onsistent with

� no partile prodution;

� equality of the sets of initial and �nal momenta;

� fatorisability of the n! n S-matrix into a produt of 2! 2 S-matries.

The �rst two of these properties sum up the behaviour whih had emerged

experimentally by the end of the last leture, and the third is a bonus, rendering

the task of �nding the full S-matries of a whole lass of 1+1 dimensional models

genuinely feasible.

I shall outline a ouple of arguments for why these properties should follow

from the existene of the onserved harges.

The �rst simply imposes the onservation of the harges diretly. Consider

an n! m amplitude, with ingoing partiles A

a

1

(�

1

); : : :, A

a

n

(�

n

), and outgoing

partiles A

b

1

(�

0

1

); : : :, A

b

m

(�

0

m

). If a harge Q

s

is onserved, then an initial eigen-

state of Q

s

with a given eigenvalue must evolve into a superposition of states all

sharing that same eigenvalue. For the amplitude under disussion this implies

that

q

(s)

a

1

e

s�

1

+ : : :+ q

(s)

a

n

e

s�

n

= q

(s)

b

1

e

s�

0

1

+ : : :+ q

(s)

b

n

e

s�

0

m

:

Now if onserved harges Q

s

exist for in�nitely many values of s, then there

will be in�nitely many suh equations, and for generi in momenta the only way

to satisfy them all will be the trivial one, namely n = m and, perhaps after a

reordering of the out momenta,

�

i

= �

0

i

; q

(s)

a

i

= q

(s)

b

i

i = 1 : : : n ;



8 PatrikDorey

where s runs over the spins of the non-trivial onserved harges with nonzero spin

(or over all the nonzero integers, if we agree to set q

(s)

� 0 for those s at whih

a loal onserved harge annot be de�ned). This does not quite imply that the

outgoing set of labels, fb

1

; : : : b

n

g, is equal to the ingoing set fa

1

; : : : a

n

g { they

just need to agree about the values of all of the nonzero spin onserved harges.

Nevertheless, it is enough to establish the absene of partile prodution, and

the equality of the initial and �nal sets of momenta, though fatorisability is

harder to see from this point of view. One aveat should also be mentioned:

in many models, it turns out that there are some solutions to the onservation

onstraints with n 6= m. However these are only found for exeptional sets of

ingoing momenta, whih are unphysial to boot, so this fat does not hange

the onlusions for the S-matrix. (In fat, they are assoiated with solutions to

the onserved harged bootstrap equations, a topi to be dissussed in a later

leture.) A more severe problem omes with the realisation that this argument

hasn't esaped the in�nite workload mentioned at the end of the last leture.

Consider, for example, a two-partile ollision. As the relative momenta of the

inident partiles inreases, the number of partiles permitted energetially in

the out state grows without limit. To be absolutely sure that, no matter how

fast the two partiles are �red at eah other, only two partiles will ome out,

in�nitely many onservation onstraints are needed. This might not matter {

pratial onsiderations are always going to limit the relative momenta to whih

we have aess { were we not ambitious enough to hope for an exat formula

for the S-matrix. This requires an understanding of all energy sales, and so the

in�nite amount of work appears to be unavoidable.

This should be motivation enough for the seond argument, whih an be

found in a 1980 artile by Parke, itself building on an observation whih dates

bak at least to Shankar and Witten (1978). The argument also establishes fa-

torisability and imposes the Yang-Baxter equation on the two-partile S-matrix.

The key is to make use of the fat that we're dealing with a loal, ausal quan-

tum �eld theory, by onsidering the e�et of the onserved harges on loalised

wavepakets.

First take a single-partile state, with position spae wavefuntion

 (x) /

Z

1

�1

dpe

�a

2

(p�p

1

)

2

e

ip(x�x

1

)

:

This desribes a partile with spatial momentum approximately p

1

, and position

approximately x

1

. At on this with an operator giving a momentum-dependent

phase fator e

�i�(p)

. The wavefuntion beomes

~

 (x) /

Z

1

�1

dpe

�a

2

(p�p

1

)

2

e

ip(x�x

1

)

e

�i�(p)

:

Most of the integral omes from p � p

1

, and �(p) an be expanded in powers of

(p�p

1

) to �nd ~p

1

and ~x

1

, the revised values of the momentum and position:

~p

1

= p

1

; ~x

1

= x

1

+ �

0

(p

1

) :
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For a multipartile state a produt of one-partile wavefuntions will be a

good approximation when the partiles are well separated, and on suh a state

jp

a

p

b

: : :i, the ation is to shift the position of partile a by �

0

(p

a

), that of b by

�

0

(p

b

), and so on.

Stritly speaking, for ompatibility with the earlier disussions I should now

onsider the ations of the operators Q

jsj

and Q

�jsj

, as Parke did in his artile.

However the essentials of the argument will be onveyed if I instead assume the

onservation of operators P

s

ating on one-partile and well-separated multipar-

tile states as (P

1

)

s

, with P

1

the spatial part of the two-momentum operator.

Ating with e

�i�P

s

, the phase fator is �

s

(p) = �p

s

, so a partile with momen-

tum p

a

will have its position shifted by s�p

s�1

a

. The ase s = 1, momentum

itself, just translates every partile by the same amount �. But, ruially, for

s > 1 partiles with di�erent momenta are moved by di�erent amounts.

The argument ontinues as follows. First onsider a 2! m proess, labelled

as in �gure 1.

�

�

��

A

A

AK

�

�

�7

�

�

�Æ

S

S

So

��

��

1 2

m+2 3

4

: : :

: : :

Fig. 1. A 2! m proess

For the amplitude to be non-vanishing, the time when the �rst two partiles

ollide, all it t

12

, must preede the time t

23

when the trajetory of partile 2,

the slower inomer, intersets that of partile 3, the fastest outgoer:

t

12

� t

23

:

Why should this be so? Nothing an happen until the wavepakets of partiles 1

and 2 overlap. After this, it suÆes to follow the path of the rightmost partile

until all have separated in order to establish the inequality. Note that this ould

be violated on mirosopi timesales, but not marosopially: hene the term

`maroausality' for this sort of property.

The onstraint is rendered vastly more powerful if there is a onserved higher-

spin harge P

s

in the model. Sine it must ommute with the S-matrix, we have

hfinaljSjinitiali = hfinalje

i�P

s

Se

�i�P

s

jinitiali
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and so e

i�P

s

an be used to rearrange the initial and �nal on�gurations without

hanging the amplitude. All that remains { and for this you should onsult

Parke's artile { is to show that if any of the outgoing rapidities are di�erent

from �

1

or �

2

, then shifting the on�gurations around in this way will give a

pattern of trajetories for whih t

12

> t

23

. By maroausality the amplitude

for this pattern must vanish, and then by the insensitivity of the amplitudes to

shifts indued by e

i�P

s

all of the other amplitudes, inluding the one initially

under onsideration, must also vanish. Hene the only possibilities for the two

inoming partiles are two outgoing partiles with the same pair of rapidities as

before the interation, whih is the result required for n=2.

To omplete the missing step, Parke atually needed to assume the existene

of two extra harges of higher spin. However, sine a parity-onjugate pair Q

s

,

Q

�s

will do, this is sarely a problem, at least in parity-symmetri theories.

For ompleteness, I should mention that there is a quiker argument for this

2 ! m amplitude, to be found in Polyakov (1977), whih revives the previous

line of reasoning, though with a slight twist. As previously noted, if the �rst

argument is attempted with the time in �gure 1 running up the page, more and

more onserved harges will be needed as m inreases in order to eliminate all

the undesired possibilities for the �nal on�guration. But by T -invariane, the

2 ! m amplitude will only be nonvanishing if the same is true of the time-

reversed m! 2 amplitude. But now there are just two outgoing momenta, and

these are �xed, up to a disrete ambiguity, by energy-momentum onservation

and the on-shell ondition. After this, any extra harge will suÆe to eliminate

the proess. Eonomial as this argument is, it does not over the generalm! n

amplitude, and fatorisability and the Yang-Baxter equation are missed.

One other aside before moving on: however the higher-spin onserved harges

are used to reshu�e the positions of an inident pair of partiles, if their rapidities

di�er then their trajetories will still ross somewhere. This is speial to 1+1

dimensions: with more than one spatial dimension to play with, onserved higher

spin harges an be used to make trajetories miss eah other ompletely, even

on marosopi sales. It is then but a short step to dedue that the S-matrix

must be trivial { and this, in admittedly skethy form, is an argument for the

Coleman-Mandula theorem alluded to earlier.

To deal with three inoming partiles, onsider �rst how the trajetories

would look were there no interations in the model. Figure 2 shows the three

distint possibilities { whih one atually ours depends on the partiular spatial

positions of the inident wavepakets.

In ases 1 and 3, when we swith the interation bak on again the results

just established for two inident partiles, together with loality, are enough

to see that the pitures do not hange in any essential way. Furthermore, as

the interation proeeds by a series of two-body ollisions, these amplitudes

must fatorise into produts of 2 ! 2 amplitudes. Case 2 in general would

give something new. However, using e

�i�P

s

in the manner disussed at length

above, it an be onverted into one of the other ases. Hene there is never

any partile prodution, individual momenta are onserved, and the amplitudes
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�

�

�

�

�

�

�

�7

6

S

S

S

S

S

S

S

So

s

s

s

(1)

�

�

�

�

�

�

�

�7

6

S

S

S

S

S

S

S

So

t

(2)

�

�

�

�

�

�

�

�7

6

S

S

S

S

S

S

S

So

s

s

s

(3)

Fig. 2. Possibilities for a 3! 3 proess

always fatorise. In addition, the equality of amplitudes 1 and 3 gives a onstraint

on the two-body amplitudes, known as the Yang-Baxter equation. More on this

in the next leture, one the neessary notation has been set up.

To go beyond three inoming partiles, an indutive argument an be used,

showing that a set of n inident partiles an always be shu�ed around in suh

a way that the interation ours via a sequene of events in whih at most n�1

partiles are partiipating.

The ultimate onlusion is that in any loal sattering theory in 1+1 dimen-

sions with a ouple of loal higher-spin onserved harges (and a parity-onjugate

pair fQ

s

; Q

�s

g, s > 1, will ertainly do), there is no partile prodution, the �nal

set of momenta is equal to the initial set, and the n! n S-matrix fatorises into

a produt of 2! 2 S-matries. These are the three properties promised earlier,

and now they an be established with only a �nite amount of work.

Finally, I would like to mention a mild paradox that might at �rst sight seem

troubling. If fp

0

1

: : : p

0

n

g = fp

1

: : : p

n

g for every set of ingoing momenta, then

surely

P

(p

a

)

s

is onserved for all s, resulting in onserved harges at all spins,

in any model for whih the arguments above apply? This reasoning misses a key

feature of the objets we are dealing with: for Q

s

to qualify as a loal onserved

harge, it must be possible to write it as the integral of a loal onserved density:

Q

s

=

Z

1

�1

T

s+1

dx :

There is no a priori reason why suh a density should exist, even if the sums

P

(p

a

)

s

happen to be onserved. In fat, the set of spins s at whih this an be

done forms a rather good �ngerprint for a model, and turns out to onstrain its

behaviour in important ways.

3 The two-partile S-matrix

One the two-partile S-matrix is known, fatorisability tells us that the entire

S-matrix follows. To �nd the two-partile S-matrix beomes the main goal. In
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the algebrai notation of the last leture, we an write

jA

i

(�

1

)A

j

(�

2

)i

in

= S

kl

ij

(�

1

� �

2

)jA

k

(�

1

)A

l

(�

2

)i

out

as

A

i

(�

1

)A

j

(�

2

) = S

kl

ij

(�

1

� �

2

)A

l

(�

2

)A

k

(�

1

) ;

with �

1

> �

2

to ensure that in and out states are orretly represented. A

sum over k and l is implied, with k 6= i and l 6= j being possible in those

situations where some partiles are not distinguished by the Q

s6=0

onserved

harges. Lorentz boosts shift rapidities by a onstant, and so S only depends on

the di�erene �

1

� �

2

= �

12

.

S

kl

ij

(�

1

� �

2

) =

�

�

�7

S

S

So

�

�

�

�7

S

S

S

So

t

A

i

(�

1

) A

j

(�

2

)

A

l

(�

2

) A

k

(�

1

)

Fig. 3. The two-partile S-matrix

In a theory with r di�erent partile types, knowledge of the r

4

funtions

S

kl

ij

(�) will thus give the full S-matrix. Not all of these funtions are independent,

and their analyti properties are heavily onstrained. Suh general features are

the subjet of this leture.

First, as just mentioned, in an integrable model the matrix element S

kl

ij

an

only be nonzero if A

i

and A

k

, and A

j

and A

l

, agree on the values of all of the loal

onserved harges with nonzero spin (whih, in partiular, requiresm

i

= m

k

and

m

j

= m

l

). Next, the assumptions of P , C and T invariane imply

S

kl

ij

(�) = S

lk

ji

(�) ; S

kl

ij

(�) = S

�

k

�

l

�{�|

(�) ; S

kl

ij

(�) = S

ji

lk

(�) :

Analyti properties of the S-matrix are usually disussed in terms of the Man-

delstam variables s, t and u:

s = (p

1

+p

2

)

2

; t = (p

1

�p

3

)

2

; u = (p

1

�p

4

)

2

;

with s+t+u =

P

4

i=1

m

2

i

. In 1+1 dimensions only one of these is independent,

and it is standard to fous on s, the square of the forward-hannel momentum.

In terms of the rapidity di�erene �

12

= �

1

� �

2

,

s = m

2

i

+m

2

j

+ 2m

i

m

j

osh �

12

:

For a physial proess, �

12

is real and so s is real and satis�es s � (m

i

+m

j

)

2

. But

we an onsider the ontinuation of S(s) up into the omplex plane. Plaing the
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branh uts in the traditional way, this results in a funtion with the following

properties:

� S is a singlevalued, meromorphi funtion on the omplex plane with uts on

the portions of the real axis s � (m

i

�m

j

)

2

and s � (m

i

+m

j

)

2

. Physial values

of S(s) are found for s just above the right-hand ut. This �rst sheet of the full

Riemann surfae for S is alled the physial sheet.

� S is real-analyti: it takes omplex-onjugate values at omplex-onjugate

points:

S

kl

ij

(s

�

) =

�

S

kl

ij

(s)

�

�

:

In partiular S(s) is real if s is real and (m

i

�m

j

)

2

� s � (m

i

+m

j

)

2

.

The situation is depited in �gure 4.

CUT !  CUT

s s

(m

i

�m

j

)

2

(m

i

+m

j

)

2

D

A

C

B

�

�

�

�/

physial values

� � � �

s

Fig. 4. The physial sheet

Unitarity requires that S(s

+

)S

y

(s

+

) = 1 whenever s

+

is a physial value for

s, just above the right-hand ut: s

+

= s + i0, s > (m

i

+m

j

)

2

. This should be

understood as a matrix equation, with a sum over a omplete set of asymptoti

states hiding between S and S

y

. As s

+

grows, it beomes energetially possible

for states with more and more partiles to partiipate in the sum. Generally

this brings the 2 ! m S-matrix elements into the story with m = 3; 4; : : : , and

gives the 2! 2 S-matrix elements a series of branh points along the real axis,

loated at the 3; 4; : : : partile thresholds. However for an integrable model these

prodution amplitudes should all be zero, and so for all physial s

+

unitarity

reads

S

kl

ij

(s

+

)

�

S

nm

kl

(s

+

)

�

�

= Æ

n

i

Æ

m

l

:

With the help of real analytiity this an be rewritten as

S

kl

ij

(s

+

)S

nm

kl

(s

�

) = Æ

n

i

Æ

m

l

;

with s

�

= s�i0, just below the right-hand ut. This equation shows the need for

a branh ut running rightwards from the two-partile threshold s = (m

i

+m

j

)

2

;

if we aept that the ut atually starts at this threshold, then it is easy to see
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that the branh is of square-root type. The argument goes as follows. Let S



(s) be

the funtion obtained by analyti ontinuation of S(s) one antilokwise around

the branh point. Unitarity amounts to the requirement that S(s

+

)S



(s

+

) = 1

for all physial values of s

+

. When written in this way, the relation an be

analytially ontinued to all s, so

S



(s) = S

�1

(s) :

In partiular, if s

�

is a point just below the ut, then

S



(s

�

) = S

�1

(s

�

) = S(s

+

) ;

the last equality following from a seond appliation of unitarity. Now S



(s

�

) is

just the analyti ontinuation of S(s

+

) twie around (m

i

+m

j

)

2

. Therefore, twie

round the branh point gets us bak to where we started, and the singularity is

indeed a square root.

So muh for the right-hand ut. The left-hand half of the �gure, ontaining

the seond ut running in the opposite diretion, an be understood via the

fundamentally relativisti property of rossing. If one of the inoming partiles,

say j, is rossed to beome outgoing while simultaneously one of the outgoers,

say l, rosses in the opposite sense and beomes ingoing, then the amplitude for

another physial two-partile sattering proess results. For this new amplitude

the inomers are i and

�

l, and the outgoers k and �|, where an overbar has been

introdued to denote the (possibly trivial) operation of onjugation on partile

labels. All of this amounts to looking at �gure 3 from the side, with the forward-

hannel momentum now not s but rather t = (p

1

� p

3

)

2

. In this partiular ase

p

3

= p

2

, and the relation between t and s is very simple:

t = (p

1

� p

2

)

2

= 2p

2

1

+ 2p

2

2

� (p

1

+ p

2

)

2

= 2m

2

i

+ 2m

2

j

� s :

Crossing symmetry states that the amplitude for this proess an be obtained

by analyti ontinuation of the previous amplitude into a region of the s plane

where t beomes physial, that is t 2 IR and t � (m

i

+m

j

)

2

. Physial amplitudes

orrespond to approahing this line segment from above in the t plane, and hene

from below in the s plane. Thus the amplitudes are on the lower edge of the left-

hand ut, marked A on �gure 4. In equations:

S

kl

ij

(s

+

) = S

k�|

i

�

l

(2m

2

i

+ 2m

2

j

� s

+

) :

" "

(on C) (on A)

Clearly the ross-hannel branh point at (m

i

�m

j

)

2

must also be a square root,

but this does not mean that the Riemann surfae for S(s) has just two sheets.

Continuing through the left-hand ut an, and usually does, onnet with a

di�erent sheet from that found through the right-hand ut. Stepping up and

down to left and right, the typial S(s), even for an integrable model, lives on

an in�nite over of the physial sheet.
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This looks rather ompliated, but simpli�es onsiderably if, following Zamo-

lodhikov, attention is swithed from the Mandelstam variable s to the rapidity

di�erene �. The transformation is

� = osh

�1

 

s�m

2

i

�m

2

j

2m

i

m

j

!

= log

�

1

2m

i

m

j

�

s�m

2

i

�m

2

j

+

q

(s� (m

i

+m

j

)

2

)(s� (m

i

�m

j

)

2

)

��

and it maps the physial sheet into the region

0 � Im � � �

of the � plane alled the physial strip. Most importantly, the uts are opened

up, so that S(�) is analyti at the images 0 and i� of the two physial-sheet

branh points, and also at the images in� of the branh points on all of the

other, unphysial, sheets. Sine, by integrability, these are expeted to be the

only branh points, S is a meromorphi funtion of �. The other sheets are

mapped onto a suession of strips

n� � Im � � (n+1)� :

The new image of the Riemann surfae is shown in �gure 5.

-r

r

6

0

i�A

B

D

C

physial strip

(unphysial)

(unphysial)

�

�

�

�

�

Fig. 5. The � plane

The previous relations an now be translated to give a list of onstraints on

S(�) to be arried forward into later letures:

� Real analytiity: S(�) is real for � purely imaginary;

� Unitarity: S

nm

ij

(�)S

kl

nm

(��) = Æ

k

i

Æ

l

j

;

� Crossing: S

kl

ij

(�) = S

k�|

i

�

l

(i� � �) :
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A ouple of remarks: �rst, both the unitarity and the rossing equations an now

be analytially ontinued, and apply to the whole of the � plane, not just along

the line segments of physial values. Seond, the unitarity onstraint means that

it is onsistent to extend the algebrai relation

A

i

(�

1

)A

j

(�

2

) = S

kl

ij

(�

1

� �

2

)A

l

(�

2

)A

k

(�

1

)

to �

1

< �

2

. Unitarity then beomes a onsequene of the algebra, and the single-

valued nature of produts of the non-ommuting symbols.

Finally to some un�nished business from the previous leture. Shifting tra-

jetories showed that the amplitudes (1) and (3) of �gure 2 must be equal. If the

two-partile S-matrix is not ompletely diagonal, this equality is not automati

but instead results in the following onsisteny ondition:

S

��

ij

(�

12

)S

n

�k

(�

13

)S

ml

�

(�

23

) = S

�

jk

(�

23

)S

�l

i

(�

13

)S

nm

��

(�

12

) ;

where �

ab

= �

a

��

b

, and �

1

, �

2

and �

3

are the rapidities of partiles i, j and k. This

is the Yang-Baxter equation, fored by the ability of the onserved harges to

shift partile trajetories around. In theories where partiles appear in multiplets

transforming under some symmetry group, this equation together with some min-

imality assumptions is often enough to onjeture the omplete funtional form

of S. The equation is equivalent to assoiativity for the algebra of the A

i

(�)'s:

moving from A

i

(�

1

)A

j

(�

2

)A

k

(�

3

) to a sum of produts A

l

(�

3

)A

m

(�

2

)A

n

(�

1

), the

result is independent of the order of the pair transpositions, if and only if the

Yang-Baxter equation holds for the two-partile S-matrix elements.

4 Pole struture and bound states

The remaining features of �gures 4 and 5 are the rosses marked between the two

thresholds. The �rst things one might expet to �nd in these loations are simple

poles orresponding to stable bound states, appearing either in the forward (s)

or the rossed (t) hannel:

r

r

�

�S

S

6

s

S

S�

�

rr

�

�

S

S

-

t

S

S

�

�

This is potentially important { for example, it might signal the presene

of hitherto unsuspeted partiles in the spetrum of the model. Most of the

remaining letures will be spent on this point. I'll start by realling a seletion

of reasons why the assoiation between simple poles in an S-matrix and bound

states is natural:

� Potential sattering: in quantum mehanis, if the S-matrix for the sattering

of a partile o� a potential has a pole { whih, as it happens, is always simple
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{ then it is possible to use it to onstrut a wavefuntion for the partile bound

to the potential;

� tree-level Feynman diagrams;

� an `axiom', justi�ed if by nothing else by experiene in 3+1 dimensions.

It turns out that life isn't so simple in 1+1 dimensions. To explain this I'll

use the grandparent of all integrable �eld theories, the sine-Gordon model. Take

the sinh-Gordon Lagrangian introdued in the �rst leture, and replae � by i�.

Re-zeroing the energy of the lassial ground state, you will �nd

L =

1

2

(��)

2

� V (�)

with

V (�) =

m

2

�

2

[1� os(��)℄ :

There is extra struture here, as ompared to the sinh-Gordon model, sine there

are in�nitely-many lassial vaua, �(x) = 2n�=�, n 2 ZZ. There is a onserved,

spin-zero topologial harge Q

0

:

Q

0

=

�

2�

Z

1

�1

�

x

�dx

whih is non-zero for on�gurations whih interpolate between di�erent vaua.

(Formally the harge an also be de�ned, and is onserved, for the sinh-Gordon

model { the only problem is that it is identially zero for all �nite-energy on-

�gurations.)

Classially, the model has a soliton s with Q

0

= +1, and an antisoliton �s

with Q

0

= �1, both with mass M , say, and both interpolating between neigh-

bouring vaua. There are no lassially stable solutions with jQ

0

j > 1. Solitons

repel solitons, antisolitons repel antisolitons, but solitons and antisolitons at-

trat. Therefore the lassial theory additionally sees a ontinuous family of

so-alled breather solutions, whih are s�s bound states. Although not stati,

they are periodi in time and in most respets behave just like further partile

states. Their `masses' range from 0 (tightly-bound) to 2M (almost unbound).

In the quantum theory, the breather spetrum beomes disrete, just as would

be expeted from quantum mehanis. If s and �s have massM , then the breather

masses are

M

k

= 2M sin

�k

h

; k = 1; 2; : : : <

8�

�

2

� 1

where

h =

16�

�

2

�

1�

�

2

8�

�

:

This was found by Dashen, Hasslaher and Neveu in 1975 via a semilassial

quantisation of the two-soliton solution, and is thought to be exat. Notie that

as � ! 0, orresponding to the lassial limit, the ontinuous breather spetrum

is reovered.
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The S-matrix elements of the solitons provide an illustration of the notational

tehnology set up earlier. The model turns out to possess higher-spin onserved

harges, and so all of the previous disussions apply. However at generi values

of �

2

none of them breaks the � ! �� symmetry of the original Lagrangian,

and so none an be used to distinguish the soliton from the antisoliton. That

leaves Q

0

, whih makes a �ne job of distinguishing a single soliton from a single

antisoliton but, as we shall now see, is not quite powerful enough when ating

on two-partile states to rule out nondiagonal sattering.

Consider a general two-partile in-state jA(�

1

)

s;�s

A(�

2

)

s;�s

i

in

, eah partile

either a soliton or an antisoliton. The higher-spin harges an be used in the

ways explained earlier to show that any out-state into whih this state evolves

must again ontain two partiles with rapidities �

1

and �

2

, eah either a soliton

or an antisoliton. Thus before reourse is made to the spin-zero harge, a four-

dimensional spae of out-states is available. The topologial harge Q

0

ats in

this spae as follows:

Q

0

0

B

B

�

jA

s

(�

1

)A

s

(�

2

)i

jA

s

(�

1

)A

�s

(�

2

)i

jA

�s

(�

1

)A

s

(�

2

)i

jA

�s

(�

1

)A

�s

(�

2

)i

1

C

C

A

=

0

B

B

�

2

0

0

�2

1

C

C

A

0

B

B

�

jA

s

(�

1

)A

s

(�

2

)i

jA

s

(�

1

)A

�s

(�

2

)i

jA

�s

(�

1

)A

s

(�

2

)i

jA

�s

(�

1

)A

�s

(�

2

)i

1

C

C

A

:

The soliton-soliton and antisoliton-antisoliton states are piked out uniquely, and

therefore must satter diagonally. The same annot be said for the remaining

two states, and it is through this loophole that nondiagonal sattering enters the

story.

Taking harge onjugation symmetry into aount, there are just three inde-

pendent amplitudes to be determined. With � = �

1

� �

2

, these an be written

as:

0

B

B

�

jA

s

(�

1

)A

s

(�

2

)i

in

jA

s

(�

1

)A

�s

(�

2

)i

in

jA

�s

(�

1

)A

s

(�

2

)i

in

jA

�s

(�

1

)A

�s

(�

2

)i

in

1

C

C

A

=

0

B

B

�

S(�)

S

T

(�) S

R

(�)

S

R

(�) S

T

(�)

S(�)

1

C

C

A

0

B

B

�

jA

s

(�

1

)A

s

(�

2

)i

out

jA

s

(�

1

)A

�s

(�

2

)i

out

jA

�s

(�

1

)A

s

(�

2

)i

out

jA

�s

(�

1

)A

�s

(�

2

)i

out

1

C

C

A

:

The same information an be given pitorially:

S(�) =

�

�

�

�t

s s

s s

=

�

�

�

�t

�s �s

�s �s

S

T

(�) =

�

�

�

�t

s �s

�s

s

=

�

�

�

�t

�s s

s

�s

S

R

(�) =

�

�

�

�t

�s s

�s

s

=

�

�

�

�t

s �s

s

�s
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and also using the nonommuting symbols:

A

s

(�

1

)A

s

(�

2

) = S(�)A

s

(�

2

)A

s

(�

1

)

A

s

(�

1

)A

�s

(�

2

) = S

T

(�)A

�s

(�

2

)A

s

(�

1

) + S

R

(�)A

s

(�

2

)A

�s

(�

1

) :

Unitarity and rossing onstrain these amplitudes. As a simple exerise, it is

worthwhile to hek that unitarity amounts to

S(�)S(��) = 1

S

T

(�)S

T

(��) + S

R

(�)S

R

(��) = 1

S

T

(�)S

R

(��) + S

R

(�)S

T

(��) = 0

while rossing is

S(i� � �) = S

T

(�)

S

R

(i� � �) = S

R

(�)

In 1977, Zamolodhikov was able to build on the earlier proposal of Korepin and

Faddeev (1975) for the speial points h = 2n, n 2 IN (at whih S

R

(�) vanishes),

to onjeture an exat formula for the S-matrix. Subsequent derivations made

use of the Yang-Baxter equation, but in any event I only want to quote the

physial pole struture here. (A pole is alled `physial' if, like the rosses on

�gure 5, it lies on the physial strip.) A moment's thought about the ways that

the vaua �t together shows that:

� S

T

an only form breathers in the forward hannel;

� S an only form breathers in the rossed hannel;

� S

R

an form both.

This is preisely mathed by Zamolodhikov's S-matrix: in terms of B(�) =

2�

2

=(8���

2

) = 4=h, the poles of S

T

, S and S

R

in the physial strip are found

at the following points:

� S

T

: (1� k

B

2

)�i, k = 1; 2; : : : :

0 i�

�

3

rd

breather

�

2

nd

breather

�

1

st

breather

� � �

B

2

�

B

2

�

B

2

�

- - -

� S: k

B

2

�i, k = 1; 2; : : : :

0 i�

�

1

st

breather

�

2

nd

breather

�

3

rd

breather

� � �

B

2

�

B

2

�

B

2

�

- - -

� S

R

: (1�k

B

2

)�i , k

B

2

�i, k = 1; 2; : : : :

0 i�

�

1

st

�

2

nd

�

3

rd

�

3

rd

�

2

nd

�

1

st

� � �

B

2

�

B

2

�

B

2

�

- - -

� � �

B

2

�

B

2

�

B

2

�

- - -
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(Beyond the physial strip, S

T

, S and S

R

have a proliferating set of unphysial

poles, there to �x up rossing and unitarity, but this aspet will not be important

below.) In the illustrations, the partiles responsible for the poles have also been

indiated. To hek that these have been plaed orretly, all that is needed is

some elementary kinematis. Suppose that a soliton s and an antisoliton �s, of

masses M

s

= M

�s

= M and moving with respetive rapidities �

1

and �

2

= ��

1

,

fuse to form a (stationary) breather of massM

b

. The relative rapidity of the two

partiles is �

12

= 2�

1

, and the S-matrix will normally have a simple, forward-

hannel pole at exatly this point. Conservation of energy ditates that M

b

=

2M osh(�

12

=2) . It will be onvenient to write this speial value of �

12

as iU

b

s�s

,

where U

b

s�s

is alled the fusing angle for the fusing s �s! b:

s

M

s

M

�s

M

b

�

�

S

S

7

w

U

b

s�s

U

s

bs

U

�s

�sb

By onvention, an arrow pointing forwards in time marks a soliton, and an arrow

pointing bakwards an antisoliton; lines without arrows are breathers of some

sort. Rotating the diagram by �2�=3 gives pitures of b s and �s b sattering,

and the orresponding fusing angles have also been indiated. If all of the poles

in S

T

are forward-hannel, then the values of the fusing angles follow from the

positions of these poles:

U

b

s�s

=

�

1� k

B

2

�

� ; U

s

bs

= U

�s

�sb

=

�

1

2

+ k

B

4

�

� :

The angles are all real, reeting the fat that the bound states are below thresh-

old and the relative rapidities at whih they are formed purely imaginary. The

masses of the orresponding bound states are therefore

M

b

= 2M os

�

�

2

�k

B

4

�

�

= 2M sin

�

k�

h

�

;

and these math the spetrum of breather masses.

For later use, the preise relationship between S

T

, S and S

R

is:

S

T

(iu) = S(i��iu) =

sin(

2

B

u)

sin(

2

B

�)

S

R

(iu) :

The �rst equality is merely rossing symmetry, whilst the fator of sin(

2

B

u)

multiplying S

R

is there to exlude the rossed-hannel poles in S

R

from S

T

, and

the forward-hannel poles in S

R

from S.

There are also S-matrix elements involving the breathers. These an be de-

dued using bootstrap equations, to be desribed a little later, but for now the

fous is elsewhere and so I'll just quote the required result, onerning the sat-

tering of two opies of the �rst breather:
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� S

11

has poles at i

B

2

� and i� � i

B

2

�:

0 i�

�

2

nd

breather

�

2

nd

breather

� �

B

2

�

B

2

�

- -

This looks �ne: it is easy to hek that the pole at i

B

2

� an be blamed on a

opy of the seond breather as a forward-hannel bound state, and the other one

on the same partile appearing in the rossed hannel. But now onsider what

happens as �, and hene B=2, inreases. Eah time B=2 passes an inverse integer,

a pole in S

T

leaves the physial strip and the orresponding breather leaves the

spetrum of the model. Finally, when B=2 passes 1=2, the seond breather drops

out. The theory, now well into the quantum regime, has just the soliton, the

antisoliton, and the �rst breather in its spetrum. And this is problematial: S

11

still has a pair of simple poles. How an this be, if the partile previously invoked

to explain them is no longer there?

The answer was found by Coleman and Thun in 1978, and requires a prelim-

inary diversion into the subjet of anomalous threshold singularities. These are

most simply understood by asking how an individual Feynman diagram might

beome singular. If the external momenta are suh that a number of internal

propagators an �nd themselves simultaneously on-shell, then it turns out that

the loop integrals give rise to a singularity in the amplitude. Apart from the

somewhat trivial examples provided by tree-level diagrams, these singularities

are always branh points in spaetimes of dimension higher than two; but in 1+1

dimensions, they an give rise to poles instead.

One this is known, the problem of identifying the positions of suh singu-

larities beomes a geometrial exerise in gluing together a olletion of on-shell

verties so as to make a pattern that loses. For three-point verties, the on-

shell requirement simply fores the relative Minkowski momenta to be equal to

i times the fusing angles. If all ouplings are below threshold, then all fusing an-

gles are real and the resulting patterns an be drawn as �gures in two Eulidean

dimensions. These pitures are known as Landau, or on-shell, diagrams.

In fat, the haraterisation as so far given also enompasses the more usual

multipartile thresholds, whih are assoiated in perturbation theory with on-

shell diagrams of the following type:

��

��

��

��

"

all on-shell

(Exeptionally, time is running sideways in this piture.) Here, the on-shell par-

tiles are all in the same hannel, and the value of s at whih the singularity is

found is simply the square of the sum of the masses of the intermediate on-shell

partiles. To qualify as `anomalous', something more exoti should be going on,

and the position of the singularity will no longer have suh a straightforward
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relationship with the mass spetrum of the model.

The moral is that when we ome to analyse the pole struture of an S-matrix

in 1+1 dimensions there are more things to worry about than just the tree-level

proesses disussed so far. Returning to the sine-Gordon model, as the point

B=2 = 1=2 is passed, an on-shell diagram does indeed enter the game as far as

the sattering of two of the �rst breathers is onerned:

�

�

�

�

�

�

�

7

7

S

S

S

S

S

S

S

w

w

�

�

�

�

Z

Z

Z

Z

�

�

�

�	

(1�B=2)�

�

��

(B�1)�

s

s s

s

s

This diagram only invokes the solitons and antisolitons on the internal lines,

whih are present in the spetrum whatever the oupling. A ouple of internal

angles are marked, making it lear that the �gure will only lose if B=2 � 1=2.

However we are not quite out of the woods yet: diagrams of this sort are expeted

to yield double poles when evaluated in 1+1 dimensions, and not the single poles

that we are after as soon as B=2 passes 1=2. (Atually at B=2 = 1=2, S

11

does

indeed have a double pole, but the understanding of a single extra point is

sarely major progress.) The �nal ingredient is to notie that for B=2 > 1=2,

two of the internal lines must inevitably ross over. When a soliton and an

antisoliton meet we should allow for reetion as well as transmission, sine we

have already seen that both amplitudes are generally nonzero. Thus not one but

four diagrams are relevant to the amplitude near to the value of �

12

of interest.

The full story is given by the diagrams

�

�

�

�

7

7

S

S

S

S

w

w

�

�

�

�

Z

Z

Z

Z

�

�

q

q q

q

q

+

�

�

�

�

7

/

S

S

S

S

o

w

�

�

�

�

Z

Z

Z

Z

�

-

q

q q

q

q

together with their overall onjugates, in whih all arrows are reversed. Individ-

ually eah diagram ontributes a double pole, but these must be added together

with the orret relative weights. The only di�erene between the two diagrams

shown is that the entral blob on the �rst arries with it a fator of S

T

(�), and

the entral blob of the seond a fator of S

R

(�). At the pole position, the value

of � is �xed by the on-shell requirement to be equal to iu, with u = (B�1)�.

Referring bak to the earlier expression relating S

T

to S

R

, we have

S

T

((B�1)�i) =

sin(

2

B

(B�1)�)

sin(

2

B

�)

S

R

((B�1)�i)

= �S

R

((B�1)�i)
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Thus exatly when the individual diagrams have a double pole, S

T

+ S

R

= 0, a

anellation ours, and the �eld-theoreti predition is for a simple pole, exatly

as seen in the S-matrix. Coleman and Thun dubbed explanations of this sort

`prosai', sine they do not rely on properties speial to integrable �eld theories

{ a non-integrable (albeit very �nely-tuned) theory would be perfetly apable

of exhibiting the same behaviour. Nonetheless, there is a ertain miraulous

quality about the result. The anellation between S

T

and S

R

is very deliate:

S

T

desribes a lassially-allowed proess, while S

R

does not (there is no lassial

reetion of solitons). It is also noteworthy that the Landau diagrams expose

intrinsially �eld-theoretial aspets of the theory, sine loops are involved. Their

relevane tells us that quantum mehanial intuitions about bound states and

pole struture may oasionally be misleading.

Some general lessons an be drawn from all of this:

� The S-matrix an have poles between � = 0 and � = i� ;

� these an be �rst order, seond order, or in fat muh higher order (examples

up to 12

th

order are found in the aÆne Toda �eld theories);

� even for a �rst-order pole, a diret interpretation in terms of a bound state is

not inevitable;

� but there is always some (prosai

TM

) explanation in terms of standard �eld

theory.

5 Bootstrap equations

If we deide that our theory does ontain a bound state, then the next task is

to �nd the S-matrix elements involving this new partile, and then to look for

evidene of further bound states in these, and so on. Rather than ontinuing

with the sine-Gordon example, whih showed how ompliated the story an

beome, I will make a tatial retreat at this point to a lass of models where

the behaviour is rather simpler, and the workings of the bound states an be

seen more leanly. The struture is still rewardingly rih, so this won't be too

great a sari�e.

The key onession is to assume that there are no degeneraies among the

one-partile states one all of the non-zero spin onserved harges have been

spei�ed. This loses o� the loophole exploited by the sine-Gordon model, and

fores the sattering to be diagonal.

The S-matrix now only needs two indies:

S

ij

(�

1

� �

2

) =

�

�

�7

S

S

So

�

�

�7

S

S

So

s

A

i

(�

1

) A

j

(�

2

)

A

j

(�

2

) A

i

(�

1

)
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Two of the previous onstraints on the two-partile S-matrix elements an

therefore be simpli�ed:

� Unitarity: S

ij

(�)S

ij

(��) = 1 ;

� Crossing: S

ij

(�) = S

i�|

(i� � �) :

(In ontrast to its previous inarnation, there is no sum on repeated indies in

the unitarity equation.) Combining these two reveals the important fat that

S

ij

(�+2�i) = S

ij

(�) ;

so that for diagonal sattering the Riemann surfae for the S-matrix really is

just a double over of the omplex plane { whether you go round the left or the

right branh point in �gure 4, you always land up on the same unphysial sheet.

The simpli�ation is even more drasti for the third onstraint: the loss of

matrix struture, already evident in the revised unitarity equation, means that

the Yang-Baxter equation is trivially satis�ed for any S

ij

(�) whatsoever.

Fortunately, a vestige of algebrai struture does remain, in the guise of the

pattern of bound states. Suppose that S

ij

(�

12

) has a simple pole, at �

12

= iU

k

ij

say, whih really is due to the formation of a forward-hannel bound state. Note

that, in a unitary theory, forward and rossed hannel poles an be distinguished

by the fat that the residues are positive-real multiples of i in the forward han-

nel, and negative-real multiples in the rossed hannel. The previous piture of

the sattering proess an be `expanded' near to the pole:

S

ij

(�

12

� iU

k

ij

) �

�

�

�7

S

S

So

�

�

�7

S

S

So

6

s

s

A

i

(�

1

) A

j

(�

2

)

A

j

(�

2

) A

i

(�

1

)

A

�

k

(�

3

)

(The intermediate partile is labelled

�

k for onveniene, in antiipation of a

onvention that all indies on a three-point oupling will be ingoing.) There are

a number of immediate onsequenes:

(1) The quantum oupling C

ijk

is nonzero at the point where partiles i, j and

k are all on shell.

(2) At the rapidity di�erene �

12

= iU

k

ij

, the intermediate partile A

�

k

(�

3

) is

on shell and survives for marosopi times. On general grounds (the `boot-

strap priniple', or `nulear demoray'), A

�

k

is expeted to be one of the other

asymptoti one-partile states of the model.

(3) Sine s = m

2

k

when this happens, we have

m

2

k

= m

2

i

+m

2

j

+ 2m

i

m

j

osU

k

ij

:
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Of ourse, the U

k

ij

are just the fusing angles already seen in the last leture.

For a more geometrial haraterisation of the fusing angles, observe that the

formula just given is familiar from elementary trigonometry, and implies that

U

k

ij

is the outside angle of a `mass triangle' of sides m

i

, m

j

and m

k

:

-Z

Z

Z

Z

Z

Z

Z}

�

�

�

�

�/

m

i

m

j

m

k

�

�	

U

k

ij

(C

ijk

6= 0 )

With C

ijk

6= 0 , poles are also present in S

jk

and S

ki

. From the triangle just

drawn, the three fusing angles involved satisfy

U

k

ij

+ U

i

jk

+ U

j

ki

= 2� :

Conrete examples, the nonzero quantum ouplings C

bs�s

in the sine-Gordon

model, were mentioned in the last leture.

Sine the

�

k is supposed to be long-lived when �

12

= iU

k

jk

, it should be possible

to evaluate a onserved harge Q

s

after the fusing of i and j into

�

k, as well

as before. The ation of Q

s

on jA

�

k

(�

3

)i and jA

i

(�

1

)A

j

(�

2

)i was given at the

beginning of the seond leture; equating the two at the relevant rapidities gives

a onstraint on the numbers q

(s)

i

whih haraterise Q

s

:

C

ijk

6= 0 ) q

(s)

�

k

= q

(s)

i

e

is

�

U

j

ki

+ q

(s)

j

e

�is

�

U

i

kj

;

where

�

U = ��U . (To see this, swith to the frame where

�

k is stationary. Then

�

1

= i

�

U

j

ki

and �

2

= �i

�

U

i

kj

.) The relations q

(s)

�

k

= (�1)

s+1

q

(s)

k

and

�

U +

�

U +

�

U = �

an be employed to put this into a more symmetrial form:

C

ijk

6= 0 ) q

(s)

i

+ q

(s)

j

e

isU

k

ij

+ q

(s)

k

e

is(U

k

ij

+U

i

jk

)

= 0 :

Drawing this equation in the omplex plane shows that it has a nie interpreta-

tion as a losure ondition for a `generalised mass triangle':

-H

H

H

H

H

H

H

H

H

H

H

HY

A

A

A

A

A

AU

H

H

q

(s)

i

q

(s)

j

q

(s)

k

�

�	

sU

k

ij

�

�

�1

sU

i

jk

(C

ijk

6= 0 )

(Note that the three angles for this triangle, sU

k

ij

, sU

i

jk

and sU

j

ki

, now add up

to 2�s instead of just 2�.)
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This set of equations onstitutes the onserved harge bootstrap. Given a

set of masses and three-point ouplings, the fusing angles an be determined by

the mass triangles. The angles in the higher-spin triangles are then �xed, and at

any given spin s the demand that all of the triangles at that spin should lose

provides an overdetermined set of onditions on the values of the q

(s)

i

. Should

the only solution be the trivial one, q

(s)

i

= 0 for all i, then we an onlude that

Q

s

� 0 and there is no onserved harge of that spin. The surprise is that there

should be any hoie of the initial masses and ouplings suh that the higher-spin

triangles an be made to lose for at least an in�nite subset of spins. However,

when this does happen, the set of spins at whih the triangles do lose gives

aess to the �ngerprint of spins mentioned earlier, without the need to �nd the

loal onserved densities expliitly.

A fair amount of physial intuition has been used to arrive at these onlu-

sions, and one partiular point deserves mention. Given that the fusing angles

are always real in appliations of interest, most if not all of the momenta entering

the disussion are omplex, and this might ast doubt on the spaetime language

that has been used throughout. I have impliitly assumed that the states, their

fusings, and the ation on them of the onserved harges, ontinue to behave in

the expeted manner after the neessary analyti ontinuations have been made.

For the S-matrix we an use a similar argument. Consider another partile

l, whih might interat either before or after partiles i and j fuse to form

�

k.

Whih depends on the impat parameter, but in an integrable model this should

be irrelevant. Translating this into equations,

C

ijk

6= 0 ) S

l

�

k

(�) = S

li

(� � i

�

U

j

ki

)S

lj

(� +

�

U

i

jk

) ;

and this is the S-matrix bootstrap equation. It an be given a more symmetrial

appearane using rossing symmetry and unitarity, beoming:

C

ijk

6= 0 ) S

li

(�)S

lj

(� + iU

k

ij

)S

lk

(� + i(U

k

ij

+U

i

jk

)) = 1 :

Imposing these relations for eah non-vanishing three-point oupling provides an

overdetermined set of funtional equations, and again it is rather surprising that

there are any solutions. In fat the two bootstraps are rather diretly related:

Exerise: with the help of a logarithmi derivative and a Fourier expansion, show that

eah solution to the S-matrix bootstrap ontains within it a solution to the orrespond-

ing onserved harge bootstrap.

Starting from an initial guess of a single S-matrix element, we an now searh

for poles, infer some three-point ouplings, apply the bootstrap to dedue further

S-matrix elements, and then iterate away. If the proess loses on a �nite set of

partiles, then we an halk up a suess and go on to another problem; if not,

then the initial guess should probably be revised. This is preisely the approah

that A.B.Zamolodhikov took in his pioneering work, (1989a) and (1989b), on

perturbed onformal �eld theories. The next leture is devoted to a partiularly

interesting example of this proedure whih relates to the behaviour of the T =

T



Ising model, in a small magneti �eld.
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6 Zamolodhikov's E

8

-related S-matrix

The ritial Ising model is found at zero magneti �eld, with the temperature

arefully adjusted to the ritial value T



. If the ontinuum limit is taken at

this point, the result is well-known to be desribed by the  =

1

2

onformal

�eld theory, a very well-understood objet. In the papers (1989a) and (1989b),

Zamolodhikov probed nearby points by onsidering the ations

S

pert

= S

CFT

+ �

Z

d

2

x�(x) ;

where S

CFT

is a notional ation for the  =

1

2

onformal �eld theory, inside of

whih � sits as one of the spinless, relevant �elds. There are just two of these for

the Ising model, and one of them, usually labelled �, an be identi�ed with the

saling limit of the loal magnetisations (spins) on the lattie. Thus perturbing

by � orresponds to swithing on a magneti �eld. The game now is to exploit

the great ontrol that we have of the unperturbed situation to divine some

information about the perturbed model. In this partiular ase, Zamolodhikov

used an ingenious argument, based on the ounting of dimensions in Virasoro

representations, to establish that the perturbed model supported at the very

least loal onserved harges with the following spins:

s = 1; 7; 11; 13; 17; 19:

This tells us two things. First, there are ertainly enough harges here to employ

Parke's argument, and so the perturbed model, if massive, possesses a fatoris-

able S-matrix (and the model must be massive, sine the -theorem tells us that

the entral harge of any onformal infrared limit would be less than

1

2

, and there

is no suh unitary onformal �eld theory). Seond, we now have the �rst part of

the �ngerprint of onserved spins, and an hope to use this information to build

a bridge between the ultraviolet information residing in the haraterisation of

the model as a perturbed onformal �eld theory, and the infrared information

that would be revealed if we knew its S-matrix.

To ommene the searh for this S-matrix, suppose that the massive theory

possesses a partile of mass m

1

, say. In addition, assume for the time being that

the model falls into the simplest lass, that of diagonal sattering theories. The

magneti �eld breaks the ZZ

2

symmetry of the unperturbed model, and so there

is no reason to exlude an interation of �

3

type from the e�etive Lagrangian

of the perturbed theory. This plaes the model in the same general lass as the

seond example disussed in the �rst leture, and makes it natural for C

111

to be

nonzero. For this oupling the mass triangle is equilateral, and the fusing angles

are therefore all equal to 2�=3. The onserved harge bootstrap equation is

C

111

6= 0 ) q

(s)

1

+ q

(s)

1

e

2�is=3

+ q

(s)

1

e

4�is=3

= 0 :

This equation has a nontrivial solution whenever s has no ommon divisor

with 6 :

s = 1; 5; 7; 11; 13; 17 : : : :
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This is too muh of a good thing: the �ngerprint ontains rather too many spins

for omfort. Whilst the unwanted harges might vanish for other reasons, it

would be more satisfying if the ast of partiles ould be enlarged a little, so as

to restrit the set of onserved spins a bit more. Besides, earlier work desribed

in MCoy and Wu (1978) had led Zamolodhikov to suspet the presene of at

least a ouple of further masses in the partile spetrum. Taking things one step

at a time, he �rst enlarged the spetrum by adding just one more partile type,

with mass m

2

, and supposed that both C

112

and C

221

were nonzero. The fusing

angles are not so easily determined now, but if the ignorane is enoded in the

pair of numbers y

1

= exp(iU

1

21

) and y

2

= exp(iU

2

12

), then two of the bootstrap

equations are:

C

121

6= 0 ) q

(s)

1

+ q

(s)

2

(y

1

)

s

+ q

(s)

1

(y

1

)

2s

= 0 ;

C

212

6= 0 ) q

(s)

2

+ q

(s)

1

(y

2

)

s

+ q

(s)

2

(y

2

)

2s

= 0 :

Eliminating q

(s)

1

and q

(s)

2

,

(y

s

1

+ y

�s

1

)(y

s

2

+ y

�s

2

) = 1 ;

at least at those values of s for whih there is a nontrivial onserved harge.

If there are more than a ouple of these, then the system is overdetermined;

nevertheless, if y

1

= exp(4�i=5) and y

2

= exp(3�i=5) then there is a solution for

every odd s whih is not a multiple of 5. This yields the following set of fusing

angles:

U

1

12

= U

1

21

= 4�=5 ; U

2

11

= 2�=5 ;

U

2

21

= U

2

12

= 3�=5 ; U

1

22

= 4�=5 ;

and the golden mass ratio

m

2

m

1

= 2 os

�

5

:

(There are other solutions suh as (�y

1

;�y

2

) or (y

2

; y

1

), but the hoie taken is

the only one whih yields sensible fusing angles and m

1

< m

2

.)

This is very promising: the multiples of 5 were exatly the values of s that had

to be eliminated in order to math the sets of onserved spins. Thus enouraged,

we an start to think about the S-matrix.

It has been assumed that all the partiles are self-onjugate (the absene of

any even spins from the �ngerprint is a good hint that this assumption is or-

ret) and so eah S-matrix element S

ij

must be individually rossing-symmetri,

S

ij

(�) = S

ij

(i���), as well as unitary. It is onvenient to onstrut these as

produts of a basi `building blok' (x)(�), where

(x)(�) =

sinh

�

�

2

+

i�x

60

�

sinh

�

�

2

�

i�x

60

�

:

(The 60 in the denominators has been hosen with advane knowledge of the �nal

answer, so that all of the arguments x will turn out to be integers.) Unitarity is
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built into these bloks, whilst the rossing symmetry just mentioned is assured

if eah blok (x) is always aompanied by (30�x). The blok (x) has a single

physial-strip pole at i�x=30, and no physial-strip zeroes.

Consider �rst S

11

(�). The nonzero ouplings C

111

and C

112

imply forward-

hannel poles at iU

1

11

= 2�i=3 and iU

2

11

= 2�i=5. Inorporating these and their

rossed partners into a �rst guess for the S-matrix element gives

S

11

= (10)(12)(18)(20) :

However this an't be the whole story. The S-matrix bootstrap equation for

the �

3

oupling C

111

requires that S

11

(��i�=3)S

11

(�+i�=3) should be equal to

S

11

(�). But it is easy to hek that for the guess just given,

S

11

(��i�=3)S

11

(�+i�=3) = �(2)(8)(10)(20)(22)(28) ;

whih is not the desired answer. Stare at the equations long enough, though, and

you might just spot that all will be well if the initial guess is multiplied by the

fator �(2)(28). Thus the minimal solution to the onstraints imposed so far is

S

11

= �(2)(10)(12)(18)(20)(28) :

The bootstrap equations have fored the addition of two extra poles, and the

simplest option is to suppose that these are the forward- and rossed-hannel

signals of a further partile, with mass m

3

= 2m

1

os(�=30), and a nonzero

oupling C

113

. Of ourse, the story is not over yet. Using the bootstrap for the

fusing 1 1! 2 allows S

12

to be obtained from the provisional S

11

:

S

12

= (6)(8)(12)(14)(16)(18)(22)(24) :

The poles from the bloks (14), (18) and (24) are orretly-plaed to math

forward-hannel opies of partiles the 3, 2 and 1 respetively, those in (6), (12)

and (16) an then be blamed on the same partiles in the rossed hannel, but

the bloks (8) and (22) are not so easily dismissed, and require the addition of yet

another partile, of massm

4

say. (Consideration of the signs of the residues shows

that the forward-hannel pole is at 8�i=30.) Next, the bootstrap for 1 1 ! 3

predits

S

13

= (1)(3)(9)(11)

2

(13)(17)(19)

2

(21)(27)(29) :

(Exerise: hek at least one of these laims.)

Apart from the double poles, whih should not be too alarming after the earlier

investigations of the sine-Gordon model, there is one more pair of simple poles

here whih annot be explained in terms of the spetrum seen so far, and so a

further mass, m

5

say, is revealed.

There is nothing to stop the mythial energeti reader from ontinuing with

all this, and it turns out that no further baktraking is required { with just

one orretion to the initial guess, Zamolodhikov had arrived at a onsistent

onjeture for S

11

(�). Furthermore, the �nal answer turned out to have a number
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of intriguing properties. These an be summarised in a list of what might be

alled `S-matrix data':

� 8 partile types A

1

; : : : A

8

;

� 8 masses m

i

, i = 1; : : : 8, whih together form an eigenvetor of the Cartan

matrix of the Lie algebra E

8

:

C

[E

8

℄

ij

m

j

= (2�2 os

�

30

)m

i

;

(This allows eah partile type to be attahed to a spot on the E

8

Dynkin

diagram { more on this later.)

� solutions to the onserved-harge bootstrap found at

s = 1; 7; 11; 13; 17; 19; 23; 29 : : :

thus �tting the �ngerprint found from perturbed onformal �eld theory (and

also the exponents of E

8

, repeated modulo 30);

� `harges' assoiated with these solutions whih form further eigenvetors of

C

[E

8

℄

ij

:

C

[E

8

℄

ij

q

(s)

j

= (2�2 os

�s

30

)q

(s)

i

;

� a full two-partile S-matrix whih is a olletion of ompliated but elementary

funtions, with poles at integer multiples of i�=30, all produts of the elementary

building bloks introdued earlier.

There is no spae to reord the full S-matrix here, but a omplete table an

be found in, for example, Braden et al. (1990).

One note of aution: elegant though it might be, it is not ompletely lear that

this is the answer to the question originally posed, given the number of assump-

tions that were made along the way. Probably the most onvining reassurane

omes on realulating the entral harge of the unperturbed model from the

onjetured S-matrix, using a tehnique alled the thermodynami Bethe ansatz.

Its use in this ontext was �rst advoated by Al.B.Zamolodhikov (1990), and

the spei� alulation for the E

8

-related S-matrix an be found in Klassen and

Melzer (1990).

7 Coxeter geometry

It is a �nite though lengthy task to hek all of the bootstrap equations for

Zamolodhikov's S-matrix, and to verify the properties listed at the end of the

last leture. However there is something not ompletely satisfatory about this,

and a feeling that an underlying struture remains to be disovered, a struture

that might help to explain quite why suh an elegant solution to the bootstrap

should exist at all. The purpose of this short setion, something of an aside from

the main development, is to show that at least some parts of this question an

be answered.
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One mathematial preliminary is required, a quik reap on the Weyl group

of E

8

. Imagine a hedgehog � of 240 vetors, or `roots', sitting in eight dimen-

sions. They all have equal length, and together they make up the root system

of E

8

. Eah root an be written as an integer ombination of the simple roots

f�

1

; : : : �

8

g:

� 2 � ) � =

8

X

i=1

m

i

�

i

with m

i

2 ZZ, and the m

i

either all non-negative, or all non-positive. Atually,

there are 240 di�erent eight-element subsets of � whih ould serve as the simple

roots, but their geometrial properties are all idential, and an be summarised

by giving the set of their mutual inner produts, as enoded either in the Cartan

matrix

C

[E

8

℄

ij

= 2

�

i

:�

j

�

2

j

;

or the Dynkin diagram

e e e eu u u

u

�

2

�

6

�

8

�

7

�

5

�

3

�

1

�

4

Pairs of simple roots joined by a line have inner produt �1, and all other

pairs are orthogonal. In partiular this means that the blak-oloured roots are

mutually orthogonal, as are the white-oloured roots. The labelling might look

random, but reall from the last leture that the vetor of masses formed an

eigenvetor of the Cartan matrix, so that eah partile type in Zamolodhikov's

S-matrix an be assigned to a point on the Dynkin diagram. The labels used

here orrespond to these partile labels, with m

1

< m

2

< : : : < m

8

.

For eah � 2 �, de�ne the Weyl reetion r

�

to be the reetion in the

7-dimensional hyperplane orthogonal to � :

r

�

: x 7! x� 2

�:x

�

2

� :

The produts of the Weyl reetions in any order and of any length together

make up W , the Weyl group of E

8

. This group maps � to itself, and is �nite:

jW j < 1. (Note that W is therefore a �nite reetion group, a muh simpler

objet than the Lie group or algebra with whih it is assoiated.) One more fat:

to generateW , it's enough to start with the set of simple reetions fr

�

1

; : : : r

�

8

g,

and I will write these as fr

1

; : : : r

8

g.

Now I want to study the properties of one partiular element w 2 W . It is a

Coxeter element, meaning that it is a produt in some order of a set of simple

reetions. Although the ordering is not ruial, the result I'm after is most

transparent if I pik

w = r

3

r

4

r

6

r

7

r

1

r

2

r

5

r

8

:
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This is a Steinberg ordering: reetions of one olour at �rst, followed by those

of the other. The ordering amongst the reetions of like olour is immaterial

{ they all ommute, sine the orresponding simple roots are orthogonal. The

projet is to see how w

�1

ats on �, and as a start we an examine the orbit of

�

1

under w

�1

. Noting that

r

i

(�

j

) = �

j

� C

[E

8

℄

ji

�

i

; (no sum on j)

the individual simple reetion r

i

negates �

i

, adds �

i

to all roots �

j

joined to

�

i

by a line on the Dynkin diagram, and leaves the others alone. With this

information it doesn't take too long to ompute that

w

�1

(�

1

) = r

8

r

5

r

2

r

1

r

7

r

6

r

4

r

3

(�

1

) = �

3

+ �

5

:

(Exerise: hek this!)

To ontinue is easy if a little tedious, ating repeatedly with w

�1

to �nd w

�2

(�

1

),

w

�3

(�

1

), and so on. After 30 steps, you should �nd yourself bak at �

1

(the

number 30 might just be familiar from the list at the end of the last leture).

The story for the �rst 14 of these steps is ontained in the following table:

14 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

13 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

12 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

11 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

10 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

9 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

8 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

7 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

6 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

5 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

4 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

3 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

2 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

1 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

0 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Images of �

1

under w

�1

The oeÆient of �

i

in the expansion of w

�p

(�

1

) is given by the number of blobs

(�) in the i

th

position of the p

th

row. For the E

8

Weyl group, w

15

= �1 and so

the rest of the table, rows 15 to 29, an be omitted.

All of this might seem a long way from exat S-matries, but in fat the Weyl

group omputation just performed and the earlier bootstrap manipulations are

in some senses one and the same alulation, just looked at from orthogonal

diretions. To explain this somewhat delphi remark, I will �rst rewrite the

S-matrix elements already seen in a new and slightly more ompat notation.

Observe that, apart from the bloks (2) and (28) in the formula for S

11

, every

blok (x) in S

11

, S

12

and S

13

an be paired o� with either (x�2) or (x+2).

Notiing that (0) = 1 and (30) = �1, this pairing an be extended to the
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realitrant S

11

as well, and in fat works for all of the other S-matrix elements

too. Thus we an at least save some ink if we de�ne a larger building blok

fxg = (x�1)(x+1) :

and rewrite the S-matrix elements found previously as

S

11

= f1gf11gf19gf29g

S

12

= f7gf13gf17gf23g

S

13

= f2gf10gf12gf18gf20gf28g

The next step is to introdue a pitorial representation of these formulae. Start

by drawing a line segment to represent the interval from 0 to i� on whih the

physial-strip poles are found. Then for eah blok fxg in the S-matrix ele-

ment, plae a small brik on the line segment, running from i(x�1)�=30 to

i(x+1)�=30. (Thus, the poles are loated at the ends of the briks.) The formulae

just given beome

S

11

=

S

12

=

S

13

=

Rotate these three by 90 degrees and you should observe a neat math with the

�rst three olumns of the table on the last page, of images of �

1

under w

�1

.

This is a glimpse of a general onstrution, whih allows a diagonal satter-

ing theory to be assoiated with every simply-laed Weyl group. Further details

an be found in Dorey (1991,1992a); see also Fring and Olive (1992) and Dorey

(1992b). All of these sattering theories were in fat already around in the liter-

ature: in addition to the artiles by Zamolodhikov already ited, some relevant

referenes are K�oberle and Swiea (1979), Sotkov and Zhu (1989), Fateev and

Zamolodhikov (1990), Christe and Mussardo (1990a,b), Braden et al. (1990),

and Klassen and Melzer (1990). Why then worry about Weyl groups? This is

ultimately a matter of taste, but it should be mentioned that the onstrution

goes rather deeper than the urious oinidenes desribed so far. The geometry

of �nite reetion groups appears to replae the rather more ompliated Lie

algebrai onepts that might have been a �rst guess as to the underlying math-

ematial struture. Features suh as the oupling data and the pole struture

an be related to simple properties of root systems, and this allows the bootstrap

equations both for the onserved urrents and for the S-matries to be proved

in a uniform way.
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8 AÆne Toda �eld theory

Zamolodhikov's E

8

-related S-matrix is an example of a diagonal S-matrix with

few of the subtleties that made the treatment of the sine-Gordon model so del-

iate. Whilst higher poles are ertainly present, their orders are always just

as would be predited from an initial glane at the possible Landau diagrams.

In partiular, simple poles are always assoiated with bound states. Sine the

anellations whih ompliated the sine-Gordon ase relied on the non-diagonal

nature of its S-matrix, one might suppose that diagonal sattering theories would

always behave in a straightforward manner. Curiously enough, this turns out not

to be true. The aÆne Toda �eld theories, the subjet of this leture, provide a

number of elegant ounterexamples.

The study of these models begins with a standard, albeit non-polynomial,

salar Lagrangian in 1+1 dimensions:

L =

1

2

(��)

2

�

m

2

�

2

r

X

a=0

n

a

e

��

a

��

:

This desribes the interation of r salar �elds, gathered together into the vetor

� 2 IR

r

. The set f�

0

: : : �

r

g is a olletion of r+1 further vetors in IR

r

, whih

must be arefully piked if the model is to be integrable. It turns out that there

is a lassially aeptable hoie for every (untwisted or twisted) aÆne Dynkin

diagram g

(k)

, thought of as enoding the mutual inner produts of the �

a

. By

onvention �

0

orresponds to the `extra' spot on the aÆne diagram, and the

integers n

a

satisfy n

0

= 1 and

P

r

a=0

n

a

�

a

= 0. The real onstant m sets a mass

sale, while � governs the strength of the interations. When � is also real, the

models generalise sinh-Gordon rather than sine-Gordon and there is no topology

to worry about. In fat one we go beyond the sinh-Gordon example making �

imaginary is no longer an innoent operation, sine in all other ases the manifest

reality of the Lagrangian is promptly lost. Despite these problems the models

with � purely imaginary have reeived a fair amount of attention, starting with

the work of Hollowood (1992). However, in this leture I will stik to the ases

where � is real.

As lassial �eld theories, these models are all integrable, and exhibit on-

served quantities at spins given by the exponents of g

(k)

, repeated modulo a

quantity alled the k

th

Coxeter number, h

(k)

:

h

(k)

= k

k

X

a=0

n

a

:

(For the untwisted diagrams, k=1 and h

(k)

is the same as the usual Coxeter

number h.)

However when we turn to the quantum theory, none of the elegant lassial

apparatus, as desribed in, for example, Mikhailov et al. (1981), Wilson (1981),

and Olive and Turok (1985), is immediately appliable. A more elementary ap-

proah is appropriate, studying the models with the standard perturbative tools
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of quantum �eld theory before proeeding to some exat onjetures. Arinshtein

et al. were the �rst to try this, for the a

(1)

n

theories, in 1979. Interest in the subjet

was renewed following Zamolodhikov's work on perturbed onformal �eld the-

ories, and the fat that in the meantime the other lassially-integrable possibil-

ities, related to the other aÆne Dynkin diagrams, had been unovered. Initially,

only the so-alled self-dual models were understood, and elements of this story

an be found in Christe and Mussardo (1990a,b) and Braden et al. (1990,1991).

The other, non self-dual, ases were more triky, sine they turned out to fall

into the lass of less straightforward sattering theories for whih simple poles

do not always have simple explanations. The ruial step was made by Delius

et al. (1992), and the papers by Corrigan et al. (1993) and Dorey (1993) an

be onsulted for the few ases not overed in their work. In the remainder of

this leture I will outline some aspets of these quantum onsiderations, but the

disussion will perfore be very skethy. In addition to the referenes just ited,

the review by Corrigan (1994) is a good plae to start for those interested in

delving deeper into this subjet. That the �eld is still developing is evined by

an artile by Oota (1997) whih appeared as these notes were being written up,

indiating that the ideas disussed in the last leture may also be relevant, if

suitably q-deformed, to the non self-dual theories that had previously resisted

any geometrial interpretation.

If we are to treat these models as ordinary quantum �eld theories, then the

�rst step must be to �nd out what the multipoint ouplings are. To this end,

the potential term in the Lagrangian an be expanded as follows:

V (�) �

m

2

�

2

r

X

a=0

n

a

e

��

a

��

=

m

2

�

2

r

X

a=0

n

a

+

1

2

(M

2

)

ij

�

i

�

j

+

1

3!

C

ijk

�

i

�

j

�

k

+ : : :

where summations on the repeated indies i, j and k running from 1 to r are

implied, and the two and three index objets

(M

2

)

ij

= m

2

r

X

a=0

n

a

�

i

a

�

j

a

and

C

ijk

= m

2

�

r

X

a=0

n

a

�

i

a

�

j

a

�

k

a

an be thought of as the mass

2

matrix and the set of three-point ouplings, at

least lassially. Muh as for theories disussed in the �rst leture, it is possible to

view the C

ijk

as ontaining the `bones' of the model, with the higher ouplings,

hidden as ` + : : : ', there just to tidy away any residual prodution amplitude

bakgrounds that would otherwise spoil integrability. Now the general idea is the

following: �rst diagonaliseM

2

to �nd the lassial partile massesm

1

: : :m

r

, and
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then ompute the C

ijk

in the eigenbasis of M

2

to �nd the lassial three-point

ouplings between the orresponding one-partile states. At this level there are

already some surprises: for example, it turns out that in all of the untwisted

ases, the set of masses form the eigenvetor, with lowest eigenvalue, of the

orresponding non-aÆne Cartan matrix. This was initially notied on a ase-by-

ase basis, before being proved in a general way by Freeman (1991). The Coxeter

element, desribed in the last leture, turns out to be ruial in this disussion.

This work was further elaborated by Fring et al. (1991), eluidating in partiular

earlier observations about the three-point ouplings.

However it has been obtained, one the lassial data is known two things an

be done: on the one hand the masses and three-point ouplings an be fed into

the bootstrap to make some initial onjetures as to the full quantum S-matries,

and on the other perturbation theory an be attempted in order to hek these

onjetures. As hinted above, the aÆne Toda �eld theories split into two lasses

when this programme is attempted: `straightforward' and `not straightforward'.

To make this distintion more preise, de�ne a duality operation on the set of

all aÆne Dynkin diagrams by

f�

0

: : : �

r

g $ f�

_

0

: : : �

_

r

g

where

�

_

a

�

2

�

2

a

�

a

:

(This is sometimes alled Langlands duality.)

When appropriately normalised, the sets of vetors assoiated with the a

(1)

n

,

d

(1)

n

, e

(1)

n

and a

(2)

2n

aÆne Dynkin diagrams are self-dual in this sense, and the

orresponding aÆne Toda �eld theories are also alled self-dual. These are the

`straightforward' ases: onjetures based on the lassial data lead to self-

onsistent quantum S-matries, and to date these have passed all perturbative

heks to whih they have been subjeted. For example, the mass ratios, and

hene the fusing angles, are preserved at one loop. As a result, the bootstrap

struture is essentially blind to the value of the oupling �, whih enters into

the S-matries via a funtion

B(�) =

1

2�

�

2

1 + �

2

=4�

:

There is a simple relationship between the S-matries for ertain perturbed on-

formal �eld theories and the S-matries for the self-dual aÆne Toda models: all

that has to be done is to replae building bloks of the type seen in the last

leture

fxg

PCFT

� (x�1)(x+1)

by the slightly more elaborate bloks

fxg

toda

�

(x�1)(x+1)

(x�1+B)(x+1�B)

:
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Zamolodhikov'sE
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-related S-matrix is related in this way to the S-matrix of the

e

(1)

8

aÆne Toda �eld theory; more generally, for g 2 fa; d; eg the orrespondene

is between the g aÆne Toda �eld theory and a perturbation of the g

1

�g

1

=g

2

oset model, while a

(2)

2n

turns into a perturbation of the nonunitary minimal

modelM(2; 2n+3). (Note though that the fators of 60 appearing in the earlier

de�nition of (x) should be replaed by 2h, with h the relevant Coxeter number).

For every self-dual aÆne Toda S-matrix, there is thus a ompanion `minimal'

S-matrix, sharing the same physial pole struture but laking the oupling-

onstant dependent physial strip zeroes, whih in the Toda theories serve to

anel the poles in the � ! 0 limit. Note also that replaing � by 4�=� sends B

to 2�B and leaves the Toda bloks unhanged { a strong-weak oupling duality.

The remaining, non self-dual, models behave in a muh more ompliated

way. The lassial data is still elegant, but there is quantum trouble: onjetures

based on the raw lassial data are no longer self-onsistent, and perturbative

heks show varying mass ratios, ausing the fusing angles to depend on the value

of the oupling onstant. These perturbative results are reinfored by the results

of Kaush and Watts (1992) and Feigin and Frenkel (1993), whih indiate that

the orret general implementation of strong-weak oupling duality is not only to

replae � by 4�=�, but also to replae eah �

a

by its dual, �

_

a

. (Of ourse, for the

self-dual theories this latter operation has no e�et and so the earlier statement

of duality remains orret for these ases.) This means that for eah dual pair

of lassial aÆne Toda �eld theories, there should be just one quantum theory

{ there are `fewer' genuinely distint quantum theories than expeted, and the

di�erent lassial theories an be reovered by taking strong or weak oupling

limits. The predited dualities are:

b

(1)

n

$ a

(2)

2n�1

g

(1)

2

$ d

(3)

4



(1)

n

$ d

(2)

n+1

f

(1)

4

$ e

(2)

6

(Exerise: ompare and ontrast the lassial onserved harge �ngerprints for these

models. Are they ompatible with duality?)

If this piture is orret, then the mass ratios have no option but to vary:

if a model is non self-dual, then (as an be heked ase-by-ase) its lassial

mass spetrum is always di�erent from that of its dual. One spetrum is found

at � ! 0, the other at � !1, and the quantum theory, if it exists at all, must

�nd some way of interpolating between the two. Given the apparent rigidity

of the bootstrap equations, this looks to be rather a tall order. Nevertheless,

Delius et al. (1992) deided to take the perturbatively-alulated shifts in the

mass ratios seriously, and were led to a set of onjetures for most of the models

in the above list (the only ases that remained were d

(3)

4

, e

(2)

6

and f

(1)

4

, and these

were subsequently found to behave in just the same way). Whenever onjetures

existed for both halves of a dual pair, they swapped over under � ! 4�=�.

In fat, Delius et al. made their proposals independently of any expetations of

duality; that it emerged anyway from their alulations an be seen in retrospet
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as strong evidene that they were on the right trak. Further support ame from

the numerial results of Watts and Weston (1992), who examined the oupling-

dependene of the single mass ratio found in the g

(1)

2

=d

(3)

4

dual pair.

With the mass ratios depending on the oupling, it is no longer possible

to use the simple building bloks fxg

toda

introdued earlier. A slightly more

elaborate two-index blok fx; yg an be found in Dorey (1993), and is probably

the most diret generalisation of the self-dual bloks. One point to note is that

the natural way for the oupling to enter these bloks requires the previous

de�nition of the funtion B(�) to be slightly modi�ed, so as to enompass the

non self-dual theories as well:

B(�) =

1

2�

�

2

h=h

_

+ �

2

=4�

:

Here h is the Coxeter number of the relevant aÆne Dynkin diagram, and h

_

that of its (Langlands) dual.

There are, however, a ouple of features of the non self-dual S-matries whih

give pause for thought. Some simple poles, expeted on the basis of the nonzero

lassial ouplings and quantum mass ratios, turn out to be absent, whilst other

simple poles, whih are present in the quantum S-matries, are not at loations

whih math any of the partile masses.

The resolution of the �rst problem appears to be that quantum orretions

exatly anel some of the lassial three-point ouplings, when evaluated on

shell. This means that some quantum ouplings C

ijk

vanish even though their

lassial ounterparts do not. The result is very deliate and has only been

heked to one loop, but is probably neessary if duality is to hold, for the

simple reason that the set of lassial three-point ouplings in a theory and its

dual do not in general oinide. Those ouplings whih show signs of vanishing

one quantum e�ets are taken into aount are preisely those whih are anyway

absent at the lassial level in the dual model.

As for the seond problem, the mehanism is not too far removed from that

operating in the sine-Gordon model. However, as mentioned at the beginning

of this leture, the fat that the sattering is diagonal means that we an no

longer hope to generate simple poles through anellations between ompeting

Landau diagrams. Fortunately there is a ompensating feature of the aÆne Toda

S-matries whih allows the basi idea to be saved: they all exhibit zeroes as well

as poles on the physial strip. These were already visible in the self-dual bloks

fxg

toda

de�ned earlier, and are equally present in the more general bloks fx; yg.

In the self-dual ases the zeroes are merely spetators, but in the non self-dual

theories they ome to play a muh more entral role in the pole analysis. A

detailed disussion an be found in Corrigan et al. (1993), and it turns out that

for every `anomalous' simple pole in the non self-dual aÆne Toda S-matries,

Landau diagrams an be drawn in whih some internal lines ross. Just as for

sine-Gordon, the S-matrix elements for these internal rossings must be fatored

into the alulation before the overall order of any pole an be predited. This

time, these fators vanish individually as the diagrams are put on shell, and
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thereby manage to demote ostensibly higher poles into the simple poles that are

required in order to math the quantum S-matries.

Further reading, and aknowledgements
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