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Abstra
t. The aim of these notes is to provide an elementary introdu
tion to some

of the basi
 elements of exa
t S-matrix theory. This is a large subje
t, and only the

beginnings will be 
overed here. A parti
ular omission is any serious dis
ussion of the

Yang-Baxter equation; instead, the fo
us will be on questions of analyti
 stru
ture,

and the bootstrap equations. Even then, what I have to say will only be a sket
h of the

simpler aspe
ts. The hope is to give a hint of the many 
urious features of s
attering

theories in 1+1 dimensions.

DTP-98/69; hep-th/9810026

1 Introdu
tion { what's so spe
ial about 1+1?

To get things started, I want to des
ribe a parti
ularly simple 
al
ulation that


an be done in probably the simplest nontrivial quantum �eld theory imaginable,

namely ��

4

theory in a universe with only one spatial dimension.

The Lagrangian to 
onsider is

L =

1

2

(��)

2

�

1

2

m

2

�

2

�

�

4!

�

4

;

resulting in the Feynman rules

=

i

p

2

�m

2

+ i�

�

�

�

�r

= �i�

The task is to 
al
ulate the 
onne
ted 2 ! 4 produ
tion amplitude, at tree

level. A
tually, to keep tra
k of the diagrams it is a little easier to look at the

3! 3 pro
ess, leaving impli
it the understanding that one of the out momenta

will be 
rossed to in at the end. I'll label the three in parti
les as a, b, 
, and

the three out parti
les as d, e, f , and opt to 
ross 
 from in to out later. It also

helps to adopt light-
one 
oordinates from the outset, using

(p; �p) = (p

0

+p

1

; p

0

�p

1

)

http://de.arxiv.org/abs/hep-th/9810026v1
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and then solving the mass-shell 
ondition p�p = m

2

by writing the in and out

momenta as

p

a

= (ma;ma

�1

) ; p

b

= (mb;mb

�1

)

and so on, with a; b; : : : real numbers, positive for parti
les travelling forwards in

time. In terms of these variables, the 
rossing from 3! 3 to 2! 4 amounts to

a 
ontinuation from 
 to �
. For the 3! 3 amplitude there are just two 
lasses

of diagram:

r

r

r

r

a b 
 a b 


d e f d e f

(A) (B)

�

�

�

�

�

�

�

�

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

�

�

�S

S

S

S

S

S�

�

�

The internal momentum in (A) is p = m(a+b�d; a

�1

+b

�1

�d

�1

), and so its

propagator 
ontributes

i

p

2

�m

2

=

i

m

2

1

(a+b�d)(a

�1

+b

�1

�d

�1

)� 1

=

i

m

2

�abd

(a+b)(a�d)(b�d)

to the total s
attering amplitude. Given the agreement above that one of the out

momenta is a
tually in-going, this propagator is never on-shell, and so forgetting

about the i� does not 
ause any error. The same remark applies to diagram (B),

for whi
h

i

p

2

�m

2

=

i

m

2

1

(a+b+
)(a

�1

+b

�1

+


�1

)� 1

=

i

m

2

ab


(a+b)(a+
)(b+
)

:

Adding these together, with a brief pause to 
he
k that the diagrams have been


ounted 
orre
tly, yields the full result at tree level:

houtjini

tree

= �

i�

2

m

2

A

legs

H(a; b; 
; d; e; f)

where A

legs


ontains all the fa
tors living on external legs and so on that will be

the same for all diagrams, and

H(a; b; 
; d; e; f) =

X


y
lfab
g


y
lfdefg

�abd

(a+ b)(a� d)(b� d)

+

ab


(a+ b)(b+ 
)(
+ a)

;
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with the sum running over all 
y
li
 permutations of fa; b; 
g and fd; e; fg.

Now I need the following fa
t:

If a+ b+ 
 = d+ e+ f and

1

a

+

1

b

+

1




=

1

d

+

1

e

+

1

f

then H(a; b; 
; d; e; f) � �1 :

The two 
onditions are the so-far ignored 
onservation of left- and right- light
one

momenta. The formula makes no mention of the signs of the arguments to H ,

and 
ertainly holds with 
 negative. The 
on
lusion:

� In 1+1-dimensional ��

4

theory, the 2! 4 amplitude is a 
onstant at tree level.

It is now very tempting to 
an
el this amplitude 
ompletely, by adding a term

�

1

6!

�

2

m

2

�

6

to the original Lagrangian. In 1+1 dimensions this does not spoil renormalis-

ability, and gives a theory in whi
h the 2! 4 amplitude vanishes at tree level.

With �

2

= �=m

2

, the new Lagrangian is

L =

1

2

(��)

2

�

m

2

�

2

�

1

2

�

2

�

2

+

1

4!

�

4

�

4

+

1

6!

�

6

�

6

�

:

This is already 
urious, but it is possible to go mu
h further. Cal
ulating the

2! 6 amplitude (left as an exer
ise for the energeti
 reader) should reveal that

this is now 
onstant, ready to be killed o� by a judi
iously-
hosen �

8

term, and

so on. At ea
h stage a residual 
onstant pie
e 
an be removed by a (uniquely-

determined) higher-order intera
tion. Keep going, and in�nitely-many diagrams

later you should �nd

L =

1

2

(��)

2

�

m

2

�

2

[
osh(��) � 1℄ ;

the sinh-Gordon Lagrangian. Sending � to i� 
onverts this into the well-known

sine-Gordon model, to whi
h the dis
ussion will return in later le
tures.

The 
laim of uniqueness just made deserves a small 
aveat. I began the


al
ulation with no �

3

term in the initial Lagrangian, and a dis
rete � ! ��

symmetry whi
h persisted throughout. But what if I had instead started with a

nonzero �

3

term, and tried to play the same game? This is de�nitely a harder

problem, but the �nal answer 
an be predi
ted with a fair degree of 
on�den
e:

L =

1

2

(��)

2

�

1

2

m

2

�

2

�

1

3!

��

3

�

1

4!

3�

2

m

2

�

4

� : : :

=

1

2

(��)

2

�

m

2

6�

2

�

e

2��

+ 2e

���

� 3

�

;

where this time � = �=m

2

. The spe
ial properties of this Lagrangian have

been been noti
ed by various authors over the years, the earliest probably being

M.Tzitz�ei
a, in an arti
le published in 1910.
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Exer
ise: verify the relationship between the �

3

and �

4


ouplings in the Lagrangian

just given by means of a tree-level 
al
ulation.

Suggestion: 
onsider a 2 ! 3 pro
ess with both in momenta equal to (1; 1), and one

of the out momenta equal to (1+Æ; (1+Æ)

�1

) with Æ small. For the desired result it will

suÆ
e to demand that the 
ontributions to the amplitude proportional to Æ

�2


an
el

on
e all relevant diagrams have been added together. Even this is a little subtle. . .

One last 
omment on the uniqueness question: it is easy to see that all possi-

bilities for a single intera
ting massive s
alar �eld with no tree-level produ
tion

have now been exhausted. Starting with a �

3

or �

4

intera
tion term must, if

it works at all, lead to one of the two theories just dis
ussed: the higher �

m


ouplings are uniquely determined by the need to 
an
el the 
onstant part of

the 2! m�2 produ
tion amplitude. On the other hand, if both the �

3

and �

4


ouplings are set to zero, then the same argument shows that all higher 
ouplings

must also be zero, and the theory is free.

To summarise, it appears that in 1+1 dimensions there are some intera
ting

Lagrangians with the remarkable property that the resulting �eld theories have

no tree-level parti
le produ
tion. Araf'eva and Korepin showed, in 1974, that

for the sinh-Gordon model this is also true at one loop. The tree-level result was

a sign of interesting 
lassi
al behaviour; that it persists to one loop is eviden
e

that the quantum theory might also be rather spe
ial.

Before 
ontinuing along this line, I want to return to the 3 ! 3 amplitude.

Should we 
on
lude that its 
onne
ted part is also zero? Contrary to initial

expe
tations, the answer to this question is a de�nite no. For the 3! 3 pro
ess,

it is no longer legitimate to forget about the i�'s. For the diagrams of type (A),

the intermediate parti
le 
an now be on-shell, and when this happens the i�

must be retained until all 
ontributing diagrams have been added together. This

is relevant whenever the set of ingoing momenta is equal to the set of outgoing

momenta, and in su
h situations it turns out that the �nal result is indeed

nonzero. Thus the 
onne
ted part of the 3 ! 3 amplitude does not vanish, but

it does 
ontain an additional delta-fun
tion whi
h enfor
es the equality of the

initial and �nal sets of momenta. We have found a model for whi
h, at least at

tree level, the 
onne
ted 3 ! 3 amplitude violates at 
ertain points two of the

usual assumptions made of an analyti
 S-matrix:

� it is not found by 
rossing the 2! 4 amplitude;

� it is not analyti
 in the residual momenta on
e overall momentum 
onservation

has been imposed.

1

Even more remarkably, the intera
tion, while nontrivial, a�e
ts the parti
i-

pating parti
les in a minimal way: it does not 
hange their momenta. It is 
lear

that something odd is going on, but it is not so 
lear quite what, and even less

1

It should be mentioned that developments in the theory of analyti
 S-matri
es

have in
luded a general understanding of phenomena su
h as these, whi
h are not

restri
ted to 1+1 dimensions. See, for example, Chandler (1969) and Iagolnitzer

(1973,1978a). The 1+1 dimensional 
ase is treated in Iagolnitzer (1978b).
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lear why. Evaluating yet more Feynman diagrams is unlikely to shed mu
h light

on these questions, and besides, an in�nite amount of work would be needed be-

fore we 
ould be 
ompletely sure that any of these properties feature in the full

quantum theory. A more sophisti
ated approa
h is needed. What 
ould for
e

these amplitudes to vanish, irrespe
tive of the stru
ture of the Feynman dia-

grams? One possibility is that 
onservation laws might limit the set of out states

a

essible from any given in state. The far-rea
hing 
onsequen
es of this idea

are the subje
t of the next le
ture.

2 Conserved quantities and fa
torisability

After the somewhat informal introdu
tion, the time has 
ome to be a little more

pre
ise, at least to the extent of pausing to set up some notation.

First, I should allow for more than one parti
le type, so di�erent masses m

a

,

m

b

and so on make an appearan
e. A single parti
le of mass m

a

will be on-shell

when its light-
one momenta p

a

, �p

a

satisfy p

a

�p

a

= m

2

a

. It will be 
onvenient to

solve this equation not via the variable a = p

a

=m

a

used in the last le
ture, but

rather via a parameter � = log a 
alled the rapidity. Thus,

p

a

= m

a

e

�

a

; �p

a

= m

a

e

��

a

:

Re
all that a was a positive real number for the forward 
omponent of the mass

shell; this 
orresponds to � ranging over the entire real axis. The ba
kwards


omponent of the mass shell, found by negating a, 
an be parametrised by this

same rapidity so long as it is shifted onto the line Im � = �. This will be relevant

when dis
ussing the 
rossing of amplitudes.

An n-parti
le asymptoti
 state 
an now be written as

jA

a

1

(�

1

)A

a

2

(�

2

) : : : A

a

n

(�

n

)i
in

out

where the symbol A

a

i

(�

i

) denotes a parti
le of type a

i

, travelling with rapidity

�

i

. By smearing the momenta a little so as to produ
e wavepa
kets, ea
h parti
le


an be assigned an approximate position at ea
h moment. In a massive theory,

the only sort of theory I will be bothering with, all intera
tions are short-ranged

and so the state behaves like a 
olle
tion of free parti
les ex
ept at times when

two or more wavepa
kets overlap. All of this 
an be made more pre
ise, but not

in these le
tures.

An in state is 
hara
terised by there being no further intera
tions as t! �1.

This means that the fastest parti
le must be on the left, the slowest on the right,

with all of the others ordered in between. It is 
onvenient to represent this situ-

ation by giving the A

a

i

(�

i

) a life outside the j i

in

and j i

out

ket ve
tors, thinking

of them as non
ommuting symbols with their order on the page re
e
ting the

spatial ordering of the parti
les that they represent. Thus an in state would be

written

A

a

1

(�

1

)A

a

2

(�

2

) : : : A

a

n

(�

n

)
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with

�

1

> �

2

> : : : > �

n

:

Similarly, an out state has no further intera
tions as t ! +1, and so ea
h

parti
le must be to the left of all parti
les travelling faster than it, and to the

right of all parti
les travelling slower. In terms of the non-
ommuting symbols,

one su
h state is

A

b

1

(�

1

)A

b

2

(�

2

) : : : A

b

n

(�

n

)

now with

�

1

< �

2

< : : : < �

n

:

Produ
ts of the symbols with other orderings of the rapidities 
an be thought

of as representing states at other times when all the parti
les are momentarily

well-separated. Asymptoti
 
ompleteness translates, at least partially, into the


laim that any su
h produ
t 
an be expanded either as a sum of produ
ts in the

in-state ordering, or as a sum of produ
ts in the out-state ordering.

The S-matrix provides the mapping between the in-state basis and the out-

state basis. In the new notation this reads, for a two-parti
le in-state,

A

a

1

(�

1

)A

a

2

(�

2

) =

1

X

n=2

X

�

0

1

<:::<�

0

n

S

b

1

:::b

n

a

1

a

2

(�

1

; �

2

; �

0

1

: : : �

0

n

)A

b

1

(�

0

1

) : : : A

b

n

(�

0

n

) ;

where �

1

> �

2

, a sum on b

1

: : : b

n

is implied, and the sum on the �

0

i

will gen-

erally involve a number of integrals, with the rapidities appearing additionally


onstrained by the overall 
onservation of left- and right- light
one momenta:

m

a

1

e

��

1

+m

a

2

e

��

2

= m

b

1

e

��

0

1

+ : : :+m

b

n

e

��

0

n

:

The notation works be
ause the number of dimensions of spa
e, namely 1,

mat
hes the `dimensionality' of a sequen
e of symbols in a line of mathemat-

i
s; it 
an't be used for higher-dimensional theories. However, at this stage it

makes no mention of integrability, and 
an be set up for any massive quantum

�eld theory in 1+1 dimensions.

2

Next, to the 
onserved quantities. One su
h is energy-momentum, a spin-one

operator. In light
one 
omponents this a
ts on a one-parti
le state as

P jA

a

(�)i = m

a

e

�

jA

a

(�)i ;

�

P jA

a

(�)i = m

a

e

��

jA

a

(�)i :

Beyond this, operators 
an be envisaged transforming in higher representations

of the 1+1 dimensional Lorentz group:

Q

s

jA

a

(�)i = q

(s)

a

e

s�

jA

a

(�)i :

2

One 
aveat, though: in nonintegrable theories amplitudes for the s
attering of

wavepa
kets usually depend on impa
t parameters as well as momenta. Thus in

general the notation should not be taken too literally, but rather used as a short-

hand for re
ording momentum spa
e results. In integrable 
ases we'll see shortly that

this dependen
e goes away, and so I 
an a�ord to be a little 
areless about this point.
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The integer s is 
alled the (Lorentz) spin of Q

s

. Sin
e Q

jsj

transforms as s 
opies

of P , and Q

�jsj

as s 
opies of

�

P , it makes sense to think of Q

s

and Q

�s

as rank

jsj obje
ts. The simple `left-right' splitting is spe
ial to 1+1 dimensions.

I'll only 
onsider those operators Q

s

that 
ome as integrals of lo
al densi-

ties, and this has the important 
onsequen
e that their a
tion on multiparti
le

wavepa
kets is additive:

Q

s

jA

a

1

(�) : : : A

a

n

(�

n

)i = (q

(s)

a

1

e

s�

1

+ : : :+ q

(s)

a

n

e

s�

n

)jA

a

1

(�) : : : A

a

n

(�

n

)i :

These are 
alled lo
al 
onserved 
harges and they are all in involution (they


ommute) sin
e, essentially by assumption, they have been simultaneously diago-

nalised by the basis of asymptoti
 multiparti
le states that I have 
hosen. This is

not inevitable: nonlo
al 
harges, often asso
iated with fra
tional-spin operators,


an be very important. The papers of L�us
her (1978), Zamolod
hikov (1989
)

and Bernard and Le
lair (1991) are good starting-points for those interested in

this aspe
t of the subje
t.

Even without the more exoti
 possibilities, the 
onsequen
es of the extra

lo
al 
onserved 
harges are profound. In fa
t, Coleman and Mandula showed in

1967 that in three spatial dimensions the existen
e of even just one 
onserved


harge transforming as a tensor of se
ond or higher rank for
es the S-matrix

of the model to be trivial. (For a simple-minded explanation of this fa
t, see

later in this le
ture.) This is not true in 1+1 dimensions, but nevertheless the

possibilities for the S-matrix are severely limited: it must be 
onsistent with

� no parti
le produ
tion;

� equality of the sets of initial and �nal momenta;

� fa
torisability of the n! n S-matrix into a produ
t of 2! 2 S-matri
es.

The �rst two of these properties sum up the behaviour whi
h had emerged

experimentally by the end of the last le
ture, and the third is a bonus, rendering

the task of �nding the full S-matri
es of a whole 
lass of 1+1 dimensional models

genuinely feasible.

I shall outline a 
ouple of arguments for why these properties should follow

from the existen
e of the 
onserved 
harges.

The �rst simply imposes the 
onservation of the 
harges dire
tly. Consider

an n! m amplitude, with ingoing parti
les A

a

1

(�

1

); : : :, A

a

n

(�

n

), and outgoing

parti
les A

b

1

(�

0

1

); : : :, A

b

m

(�

0

m

). If a 
harge Q

s

is 
onserved, then an initial eigen-

state of Q

s

with a given eigenvalue must evolve into a superposition of states all

sharing that same eigenvalue. For the amplitude under dis
ussion this implies

that

q

(s)

a

1

e

s�

1

+ : : :+ q

(s)

a

n

e

s�

n

= q

(s)

b

1

e

s�

0

1

+ : : :+ q

(s)

b

n

e

s�

0

m

:

Now if 
onserved 
harges Q

s

exist for in�nitely many values of s, then there

will be in�nitely many su
h equations, and for generi
 in momenta the only way

to satisfy them all will be the trivial one, namely n = m and, perhaps after a

reordering of the out momenta,

�

i

= �

0

i

; q

(s)

a

i

= q

(s)

b

i

i = 1 : : : n ;



8 Patri
kDorey

where s runs over the spins of the non-trivial 
onserved 
harges with nonzero spin

(or over all the nonzero integers, if we agree to set q

(s)

� 0 for those s at whi
h

a lo
al 
onserved 
harge 
annot be de�ned). This does not quite imply that the

outgoing set of labels, fb

1

; : : : b

n

g, is equal to the ingoing set fa

1

; : : : a

n

g { they

just need to agree about the values of all of the nonzero spin 
onserved 
harges.

Nevertheless, it is enough to establish the absen
e of parti
le produ
tion, and

the equality of the initial and �nal sets of momenta, though fa
torisability is

harder to see from this point of view. One 
aveat should also be mentioned:

in many models, it turns out that there are some solutions to the 
onservation


onstraints with n 6= m. However these are only found for ex
eptional sets of

ingoing momenta, whi
h are unphysi
al to boot, so this fa
t does not 
hange

the 
on
lusions for the S-matrix. (In fa
t, they are asso
iated with solutions to

the 
onserved 
harged bootstrap equations, a topi
 to be dis
sussed in a later

le
ture.) A more severe problem 
omes with the realisation that this argument

hasn't es
aped the in�nite workload mentioned at the end of the last le
ture.

Consider, for example, a two-parti
le 
ollision. As the relative momenta of the

in
ident parti
les in
reases, the number of parti
les permitted energeti
ally in

the out state grows without limit. To be absolutely sure that, no matter how

fast the two parti
les are �red at ea
h other, only two parti
les will 
ome out,

in�nitely many 
onservation 
onstraints are needed. This might not matter {

pra
ti
al 
onsiderations are always going to limit the relative momenta to whi
h

we have a

ess { were we not ambitious enough to hope for an exa
t formula

for the S-matrix. This requires an understanding of all energy s
ales, and so the

in�nite amount of work appears to be unavoidable.

This should be motivation enough for the se
ond argument, whi
h 
an be

found in a 1980 arti
le by Parke, itself building on an observation whi
h dates

ba
k at least to Shankar and Witten (1978). The argument also establishes fa
-

torisability and imposes the Yang-Baxter equation on the two-parti
le S-matrix.

The key is to make use of the fa
t that we're dealing with a lo
al, 
ausal quan-

tum �eld theory, by 
onsidering the e�e
t of the 
onserved 
harges on lo
alised

wavepa
kets.

First take a single-parti
le state, with position spa
e wavefun
tion

 (x) /

Z

1

�1

dpe

�a

2

(p�p

1

)

2

e

ip(x�x

1

)

:

This des
ribes a parti
le with spatial momentum approximately p

1

, and position

approximately x

1

. A
t on this with an operator giving a momentum-dependent

phase fa
tor e

�i�(p)

. The wavefun
tion be
omes

~

 (x) /

Z

1

�1

dpe

�a

2

(p�p

1

)

2

e

ip(x�x

1

)

e

�i�(p)

:

Most of the integral 
omes from p � p

1

, and �(p) 
an be expanded in powers of

(p�p

1

) to �nd ~p

1

and ~x

1

, the revised values of the momentum and position:

~p

1

= p

1

; ~x

1

= x

1

+ �

0

(p

1

) :
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For a multiparti
le state a produ
t of one-parti
le wavefun
tions will be a

good approximation when the parti
les are well separated, and on su
h a state

jp

a

p

b

: : :i, the a
tion is to shift the position of parti
le a by �

0

(p

a

), that of b by

�

0

(p

b

), and so on.

Stri
tly speaking, for 
ompatibility with the earlier dis
ussions I should now


onsider the a
tions of the operators Q

jsj

and Q

�jsj

, as Parke did in his arti
le.

However the essentials of the argument will be 
onveyed if I instead assume the


onservation of operators P

s

a
ting on one-parti
le and well-separated multipar-

ti
le states as (P

1

)

s

, with P

1

the spatial part of the two-momentum operator.

A
ting with e

�i�P

s

, the phase fa
tor is �

s

(p) = �p

s

, so a parti
le with momen-

tum p

a

will have its position shifted by s�p

s�1

a

. The 
ase s = 1, momentum

itself, just translates every parti
le by the same amount �. But, 
ru
ially, for

s > 1 parti
les with di�erent momenta are moved by di�erent amounts.

The argument 
ontinues as follows. First 
onsider a 2! m pro
ess, labelled

as in �gure 1.

�

�

��

A

A

AK

�

�

�7

�

�

�Æ

S

S

So

��

��

1 2

m+2 3

4

: : :

: : :

Fig. 1. A 2! m pro
ess

For the amplitude to be non-vanishing, the time when the �rst two parti
les


ollide, 
all it t

12

, must pre
ede the time t

23

when the traje
tory of parti
le 2,

the slower in
omer, interse
ts that of parti
le 3, the fastest outgoer:

t

12

� t

23

:

Why should this be so? Nothing 
an happen until the wavepa
kets of parti
les 1

and 2 overlap. After this, it suÆ
es to follow the path of the rightmost parti
le

until all have separated in order to establish the inequality. Note that this 
ould

be violated on mi
ros
opi
 times
ales, but not ma
ros
opi
ally: hen
e the term

`ma
ro
ausality' for this sort of property.

The 
onstraint is rendered vastly more powerful if there is a 
onserved higher-

spin 
harge P

s

in the model. Sin
e it must 
ommute with the S-matrix, we have

hfinaljSjinitiali = hfinalje

i�P

s

Se

�i�P

s

jinitiali
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and so e

i�P

s


an be used to rearrange the initial and �nal 
on�gurations without


hanging the amplitude. All that remains { and for this you should 
onsult

Parke's arti
le { is to show that if any of the outgoing rapidities are di�erent

from �

1

or �

2

, then shifting the 
on�gurations around in this way will give a

pattern of traje
tories for whi
h t

12

> t

23

. By ma
ro
ausality the amplitude

for this pattern must vanish, and then by the insensitivity of the amplitudes to

shifts indu
ed by e

i�P

s

all of the other amplitudes, in
luding the one initially

under 
onsideration, must also vanish. Hen
e the only possibilities for the two

in
oming parti
les are two outgoing parti
les with the same pair of rapidities as

before the intera
tion, whi
h is the result required for n=2.

To 
omplete the missing step, Parke a
tually needed to assume the existen
e

of two extra 
harges of higher spin. However, sin
e a parity-
onjugate pair Q

s

,

Q

�s

will do, this is s
ar
ely a problem, at least in parity-symmetri
 theories.

For 
ompleteness, I should mention that there is a qui
ker argument for this

2 ! m amplitude, to be found in Polyakov (1977), whi
h revives the previous

line of reasoning, though with a slight twist. As previously noted, if the �rst

argument is attempted with the time in �gure 1 running up the page, more and

more 
onserved 
harges will be needed as m in
reases in order to eliminate all

the undesired possibilities for the �nal 
on�guration. But by T -invarian
e, the

2 ! m amplitude will only be nonvanishing if the same is true of the time-

reversed m! 2 amplitude. But now there are just two outgoing momenta, and

these are �xed, up to a dis
rete ambiguity, by energy-momentum 
onservation

and the on-shell 
ondition. After this, any extra 
harge will suÆ
e to eliminate

the pro
ess. E
onomi
al as this argument is, it does not 
over the generalm! n

amplitude, and fa
torisability and the Yang-Baxter equation are missed.

One other aside before moving on: however the higher-spin 
onserved 
harges

are used to reshu�e the positions of an in
ident pair of parti
les, if their rapidities

di�er then their traje
tories will still 
ross somewhere. This is spe
ial to 1+1

dimensions: with more than one spatial dimension to play with, 
onserved higher

spin 
harges 
an be used to make traje
tories miss ea
h other 
ompletely, even

on ma
ros
opi
 s
ales. It is then but a short step to dedu
e that the S-matrix

must be trivial { and this, in admittedly sket
hy form, is an argument for the

Coleman-Mandula theorem alluded to earlier.

To deal with three in
oming parti
les, 
onsider �rst how the traje
tories

would look were there no intera
tions in the model. Figure 2 shows the three

distin
t possibilities { whi
h one a
tually o

urs depends on the parti
ular spatial

positions of the in
ident wavepa
kets.

In 
ases 1 and 3, when we swit
h the intera
tion ba
k on again the results

just established for two in
ident parti
les, together with lo
ality, are enough

to see that the pi
tures do not 
hange in any essential way. Furthermore, as

the intera
tion pro
eeds by a series of two-body 
ollisions, these amplitudes

must fa
torise into produ
ts of 2 ! 2 amplitudes. Case 2 in general would

give something new. However, using e

�i�P

s

in the manner dis
ussed at length

above, it 
an be 
onverted into one of the other 
ases. Hen
e there is never

any parti
le produ
tion, individual momenta are 
onserved, and the amplitudes
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�

�

�

�

�

�

�

�7

6

S

S

S

S

S

S

S

So

s

s

s

(1)

�

�

�

�

�

�

�

�7

6

S

S

S

S

S

S

S

So

t

(2)

�

�

�

�

�

�

�

�7

6

S

S

S

S

S

S

S

So

s

s

s

(3)

Fig. 2. Possibilities for a 3! 3 pro
ess

always fa
torise. In addition, the equality of amplitudes 1 and 3 gives a 
onstraint

on the two-body amplitudes, known as the Yang-Baxter equation. More on this

in the next le
ture, on
e the ne
essary notation has been set up.

To go beyond three in
oming parti
les, an indu
tive argument 
an be used,

showing that a set of n in
ident parti
les 
an always be shu�ed around in su
h

a way that the intera
tion o

urs via a sequen
e of events in whi
h at most n�1

parti
les are parti
ipating.

The ultimate 
on
lusion is that in any lo
al s
attering theory in 1+1 dimen-

sions with a 
ouple of lo
al higher-spin 
onserved 
harges (and a parity-
onjugate

pair fQ

s

; Q

�s

g, s > 1, will 
ertainly do), there is no parti
le produ
tion, the �nal

set of momenta is equal to the initial set, and the n! n S-matrix fa
torises into

a produ
t of 2! 2 S-matri
es. These are the three properties promised earlier,

and now they 
an be established with only a �nite amount of work.

Finally, I would like to mention a mild paradox that might at �rst sight seem

troubling. If fp

0

1

: : : p

0

n

g = fp

1

: : : p

n

g for every set of ingoing momenta, then

surely

P

(p

a

)

s

is 
onserved for all s, resulting in 
onserved 
harges at all spins,

in any model for whi
h the arguments above apply? This reasoning misses a key

feature of the obje
ts we are dealing with: for Q

s

to qualify as a lo
al 
onserved


harge, it must be possible to write it as the integral of a lo
al 
onserved density:

Q

s

=

Z

1

�1

T

s+1

dx :

There is no a priori reason why su
h a density should exist, even if the sums

P

(p

a

)

s

happen to be 
onserved. In fa
t, the set of spins s at whi
h this 
an be

done forms a rather good �ngerprint for a model, and turns out to 
onstrain its

behaviour in important ways.

3 The two-parti
le S-matrix

On
e the two-parti
le S-matrix is known, fa
torisability tells us that the entire

S-matrix follows. To �nd the two-parti
le S-matrix be
omes the main goal. In



12 Patri
kDorey

the algebrai
 notation of the last le
ture, we 
an write

jA

i

(�

1

)A

j

(�

2

)i

in

= S

kl

ij

(�

1

� �

2

)jA

k

(�

1

)A

l

(�

2

)i

out

as

A

i

(�

1

)A

j

(�

2

) = S

kl

ij

(�

1

� �

2

)A

l

(�

2

)A

k

(�

1

) ;

with �

1

> �

2

to ensure that in and out states are 
orre
tly represented. A

sum over k and l is implied, with k 6= i and l 6= j being possible in those

situations where some parti
les are not distinguished by the Q

s6=0


onserved


harges. Lorentz boosts shift rapidities by a 
onstant, and so S only depends on

the di�eren
e �

1

� �

2

= �

12

.

S

kl

ij

(�

1

� �

2

) =

�

�

�7

S

S

So

�

�

�

�7

S

S

S

So

t

A

i

(�

1

) A

j

(�

2

)

A

l

(�

2

) A

k

(�

1

)

Fig. 3. The two-parti
le S-matrix

In a theory with r di�erent parti
le types, knowledge of the r

4

fun
tions

S

kl

ij

(�) will thus give the full S-matrix. Not all of these fun
tions are independent,

and their analyti
 properties are heavily 
onstrained. Su
h general features are

the subje
t of this le
ture.

First, as just mentioned, in an integrable model the matrix element S

kl

ij


an

only be nonzero if A

i

and A

k

, and A

j

and A

l

, agree on the values of all of the lo
al


onserved 
harges with nonzero spin (whi
h, in parti
ular, requiresm

i

= m

k

and

m

j

= m

l

). Next, the assumptions of P , C and T invarian
e imply

S

kl

ij

(�) = S

lk

ji

(�) ; S

kl

ij

(�) = S

�

k

�

l

�{�|

(�) ; S

kl

ij

(�) = S

ji

lk

(�) :

Analyti
 properties of the S-matrix are usually dis
ussed in terms of the Man-

delstam variables s, t and u:

s = (p

1

+p

2

)

2

; t = (p

1

�p

3

)

2

; u = (p

1

�p

4

)

2

;

with s+t+u =

P

4

i=1

m

2

i

. In 1+1 dimensions only one of these is independent,

and it is standard to fo
us on s, the square of the forward-
hannel momentum.

In terms of the rapidity di�eren
e �

12

= �

1

� �

2

,

s = m

2

i

+m

2

j

+ 2m

i

m

j


osh �

12

:

For a physi
al pro
ess, �

12

is real and so s is real and satis�es s � (m

i

+m

j

)

2

. But

we 
an 
onsider the 
ontinuation of S(s) up into the 
omplex plane. Pla
ing the
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bran
h 
uts in the traditional way, this results in a fun
tion with the following

properties:

� S is a singlevalued, meromorphi
 fun
tion on the 
omplex plane with 
uts on

the portions of the real axis s � (m

i

�m

j

)

2

and s � (m

i

+m

j

)

2

. Physi
al values

of S(s) are found for s just above the right-hand 
ut. This �rst sheet of the full

Riemann surfa
e for S is 
alled the physi
al sheet.

� S is real-analyti
: it takes 
omplex-
onjugate values at 
omplex-
onjugate

points:

S

kl

ij

(s

�

) =

�

S

kl

ij

(s)

�

�

:

In parti
ular S(s) is real if s is real and (m

i

�m

j

)

2

� s � (m

i

+m

j

)

2

.

The situation is depi
ted in �gure 4.

CUT !  CUT

s s

(m

i

�m

j

)

2

(m

i

+m

j

)

2

D

A

C

B

�

�

�

�/

physi
al values

� � � �

s

Fig. 4. The physi
al sheet

Unitarity requires that S(s

+

)S

y

(s

+

) = 1 whenever s

+

is a physi
al value for

s, just above the right-hand 
ut: s

+

= s + i0, s > (m

i

+m

j

)

2

. This should be

understood as a matrix equation, with a sum over a 
omplete set of asymptoti


states hiding between S and S

y

. As s

+

grows, it be
omes energeti
ally possible

for states with more and more parti
les to parti
ipate in the sum. Generally

this brings the 2 ! m S-matrix elements into the story with m = 3; 4; : : : , and

gives the 2! 2 S-matrix elements a series of bran
h points along the real axis,

lo
ated at the 3; 4; : : : parti
le thresholds. However for an integrable model these

produ
tion amplitudes should all be zero, and so for all physi
al s

+

unitarity

reads

S

kl

ij

(s

+

)

�

S

nm

kl

(s

+

)

�

�

= Æ

n

i

Æ

m

l

:

With the help of real analyti
ity this 
an be rewritten as

S

kl

ij

(s

+

)S

nm

kl

(s

�

) = Æ

n

i

Æ

m

l

;

with s

�

= s�i0, just below the right-hand 
ut. This equation shows the need for

a bran
h 
ut running rightwards from the two-parti
le threshold s = (m

i

+m

j

)

2

;

if we a

ept that the 
ut a
tually starts at this threshold, then it is easy to see
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that the bran
h is of square-root type. The argument goes as follows. Let S




(s) be

the fun
tion obtained by analyti
 
ontinuation of S(s) on
e anti
lo
kwise around

the bran
h point. Unitarity amounts to the requirement that S(s

+

)S




(s

+

) = 1

for all physi
al values of s

+

. When written in this way, the relation 
an be

analyti
ally 
ontinued to all s, so

S




(s) = S

�1

(s) :

In parti
ular, if s

�

is a point just below the 
ut, then

S




(s

�

) = S

�1

(s

�

) = S(s

+

) ;

the last equality following from a se
ond appli
ation of unitarity. Now S




(s

�

) is

just the analyti
 
ontinuation of S(s

+

) twi
e around (m

i

+m

j

)

2

. Therefore, twi
e

round the bran
h point gets us ba
k to where we started, and the singularity is

indeed a square root.

So mu
h for the right-hand 
ut. The left-hand half of the �gure, 
ontaining

the se
ond 
ut running in the opposite dire
tion, 
an be understood via the

fundamentally relativisti
 property of 
rossing. If one of the in
oming parti
les,

say j, is 
rossed to be
ome outgoing while simultaneously one of the outgoers,

say l, 
rosses in the opposite sense and be
omes ingoing, then the amplitude for

another physi
al two-parti
le s
attering pro
ess results. For this new amplitude

the in
omers are i and

�

l, and the outgoers k and �|, where an overbar has been

introdu
ed to denote the (possibly trivial) operation of 
onjugation on parti
le

labels. All of this amounts to looking at �gure 3 from the side, with the forward-


hannel momentum now not s but rather t = (p

1

� p

3

)

2

. In this parti
ular 
ase

p

3

= p

2

, and the relation between t and s is very simple:

t = (p

1

� p

2

)

2

= 2p

2

1

+ 2p

2

2

� (p

1

+ p

2

)

2

= 2m

2

i

+ 2m

2

j

� s :

Crossing symmetry states that the amplitude for this pro
ess 
an be obtained

by analyti
 
ontinuation of the previous amplitude into a region of the s plane

where t be
omes physi
al, that is t 2 IR and t � (m

i

+m

j

)

2

. Physi
al amplitudes


orrespond to approa
hing this line segment from above in the t plane, and hen
e

from below in the s plane. Thus the amplitudes are on the lower edge of the left-

hand 
ut, marked A on �gure 4. In equations:

S

kl

ij

(s

+

) = S

k�|

i

�

l

(2m

2

i

+ 2m

2

j

� s

+

) :

" "

(on C) (on A)

Clearly the 
ross-
hannel bran
h point at (m

i

�m

j

)

2

must also be a square root,

but this does not mean that the Riemann surfa
e for S(s) has just two sheets.

Continuing through the left-hand 
ut 
an, and usually does, 
onne
t with a

di�erent sheet from that found through the right-hand 
ut. Stepping up and

down to left and right, the typi
al S(s), even for an integrable model, lives on

an in�nite 
over of the physi
al sheet.
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This looks rather 
ompli
ated, but simpli�es 
onsiderably if, following Zamo-

lod
hikov, attention is swit
hed from the Mandelstam variable s to the rapidity

di�eren
e �. The transformation is

� = 
osh

�1

 

s�m

2

i

�m

2

j

2m

i

m

j

!

= log

�

1

2m

i

m

j

�

s�m

2

i

�m

2

j

+

q

(s� (m

i

+m

j

)

2

)(s� (m

i

�m

j

)

2

)

��

and it maps the physi
al sheet into the region

0 � Im � � �

of the � plane 
alled the physi
al strip. Most importantly, the 
uts are opened

up, so that S(�) is analyti
 at the images 0 and i� of the two physi
al-sheet

bran
h points, and also at the images in� of the bran
h points on all of the

other, unphysi
al, sheets. Sin
e, by integrability, these are expe
ted to be the

only bran
h points, S is a meromorphi
 fun
tion of �. The other sheets are

mapped onto a su

ession of strips

n� � Im � � (n+1)� :

The new image of the Riemann surfa
e is shown in �gure 5.

-r

r

6

0

i�A

B

D

C

physi
al strip

(unphysi
al)

(unphysi
al)

�

�

�

�

�

Fig. 5. The � plane

The previous relations 
an now be translated to give a list of 
onstraints on

S(�) to be 
arried forward into later le
tures:

� Real analyti
ity: S(�) is real for � purely imaginary;

� Unitarity: S

nm

ij

(�)S

kl

nm

(��) = Æ

k

i

Æ

l

j

;

� Crossing: S

kl

ij

(�) = S

k�|

i

�

l

(i� � �) :
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A 
ouple of remarks: �rst, both the unitarity and the 
rossing equations 
an now

be analyti
ally 
ontinued, and apply to the whole of the � plane, not just along

the line segments of physi
al values. Se
ond, the unitarity 
onstraint means that

it is 
onsistent to extend the algebrai
 relation

A

i

(�

1

)A

j

(�

2

) = S

kl

ij

(�

1

� �

2

)A

l

(�

2

)A

k

(�

1

)

to �

1

< �

2

. Unitarity then be
omes a 
onsequen
e of the algebra, and the single-

valued nature of produ
ts of the non-
ommuting symbols.

Finally to some un�nished business from the previous le
ture. Shifting tra-

je
tories showed that the amplitudes (1) and (3) of �gure 2 must be equal. If the

two-parti
le S-matrix is not 
ompletely diagonal, this equality is not automati


but instead results in the following 
onsisten
y 
ondition:

S

��

ij

(�

12

)S

n


�k

(�

13

)S

ml

�


(�

23

) = S

�


jk

(�

23

)S

�l

i


(�

13

)S

nm

��

(�

12

) ;

where �

ab

= �

a

��

b

, and �

1

, �

2

and �

3

are the rapidities of parti
les i, j and k. This

is the Yang-Baxter equation, for
ed by the ability of the 
onserved 
harges to

shift parti
le traje
tories around. In theories where parti
les appear in multiplets

transforming under some symmetry group, this equation together with some min-

imality assumptions is often enough to 
onje
ture the 
omplete fun
tional form

of S. The equation is equivalent to asso
iativity for the algebra of the A

i

(�)'s:

moving from A

i

(�

1

)A

j

(�

2

)A

k

(�

3

) to a sum of produ
ts A

l

(�

3

)A

m

(�

2

)A

n

(�

1

), the

result is independent of the order of the pair transpositions, if and only if the

Yang-Baxter equation holds for the two-parti
le S-matrix elements.

4 Pole stru
ture and bound states

The remaining features of �gures 4 and 5 are the 
rosses marked between the two

thresholds. The �rst things one might expe
t to �nd in these lo
ations are simple

poles 
orresponding to stable bound states, appearing either in the forward (s)

or the 
rossed (t) 
hannel:

r

r

�

�S

S

6

s

S

S�

�

rr

�

�

S

S

-

t

S

S

�

�

This is potentially important { for example, it might signal the presen
e

of hitherto unsuspe
ted parti
les in the spe
trum of the model. Most of the

remaining le
tures will be spent on this point. I'll start by re
alling a sele
tion

of reasons why the asso
iation between simple poles in an S-matrix and bound

states is natural:

� Potential s
attering: in quantum me
hani
s, if the S-matrix for the s
attering

of a parti
le o� a potential has a pole { whi
h, as it happens, is always simple
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{ then it is possible to use it to 
onstru
t a wavefun
tion for the parti
le bound

to the potential;

� tree-level Feynman diagrams;

� an `axiom', justi�ed if by nothing else by experien
e in 3+1 dimensions.

It turns out that life isn't so simple in 1+1 dimensions. To explain this I'll

use the grandparent of all integrable �eld theories, the sine-Gordon model. Take

the sinh-Gordon Lagrangian introdu
ed in the �rst le
ture, and repla
e � by i�.

Re-zeroing the energy of the 
lassi
al ground state, you will �nd

L =

1

2

(��)

2

� V (�)

with

V (�) =

m

2

�

2

[1� 
os(��)℄ :

There is extra stru
ture here, as 
ompared to the sinh-Gordon model, sin
e there

are in�nitely-many 
lassi
al va
ua, �(x) = 2n�=�, n 2 ZZ. There is a 
onserved,

spin-zero topologi
al 
harge Q

0

:

Q

0

=

�

2�

Z

1

�1

�

x

�dx

whi
h is non-zero for 
on�gurations whi
h interpolate between di�erent va
ua.

(Formally the 
harge 
an also be de�ned, and is 
onserved, for the sinh-Gordon

model { the only problem is that it is identi
ally zero for all �nite-energy 
on-

�gurations.)

Classi
ally, the model has a soliton s with Q

0

= +1, and an antisoliton �s

with Q

0

= �1, both with mass M , say, and both interpolating between neigh-

bouring va
ua. There are no 
lassi
ally stable solutions with jQ

0

j > 1. Solitons

repel solitons, antisolitons repel antisolitons, but solitons and antisolitons at-

tra
t. Therefore the 
lassi
al theory additionally sees a 
ontinuous family of

so-
alled breather solutions, whi
h are s�s bound states. Although not stati
,

they are periodi
 in time and in most respe
ts behave just like further parti
le

states. Their `masses' range from 0 (tightly-bound) to 2M (almost unbound).

In the quantum theory, the breather spe
trum be
omes dis
rete, just as would

be expe
ted from quantum me
hani
s. If s and �s have massM , then the breather

masses are

M

k

= 2M sin

�k

h

; k = 1; 2; : : : <

8�

�

2

� 1

where

h =

16�

�

2

�

1�

�

2

8�

�

:

This was found by Dashen, Hassla
her and Neveu in 1975 via a semi
lassi
al

quantisation of the two-soliton solution, and is thought to be exa
t. Noti
e that

as � ! 0, 
orresponding to the 
lassi
al limit, the 
ontinuous breather spe
trum

is re
overed.
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The S-matrix elements of the solitons provide an illustration of the notational

te
hnology set up earlier. The model turns out to possess higher-spin 
onserved


harges, and so all of the previous dis
ussions apply. However at generi
 values

of �

2

none of them breaks the � ! �� symmetry of the original Lagrangian,

and so none 
an be used to distinguish the soliton from the antisoliton. That

leaves Q

0

, whi
h makes a �ne job of distinguishing a single soliton from a single

antisoliton but, as we shall now see, is not quite powerful enough when a
ting

on two-parti
le states to rule out nondiagonal s
attering.

Consider a general two-parti
le in-state jA(�

1

)

s;�s

A(�

2

)

s;�s

i

in

, ea
h parti
le

either a soliton or an antisoliton. The higher-spin 
harges 
an be used in the

ways explained earlier to show that any out-state into whi
h this state evolves

must again 
ontain two parti
les with rapidities �

1

and �

2

, ea
h either a soliton

or an antisoliton. Thus before re
ourse is made to the spin-zero 
harge, a four-

dimensional spa
e of out-states is available. The topologi
al 
harge Q

0

a
ts in

this spa
e as follows:

Q

0

0

B

B

�

jA

s

(�

1

)A

s

(�

2

)i

jA

s

(�

1

)A

�s

(�

2

)i

jA

�s

(�

1

)A

s

(�

2

)i

jA

�s

(�

1

)A

�s

(�

2

)i

1

C

C

A

=

0

B

B

�

2

0

0

�2

1

C

C

A

0

B

B

�

jA

s

(�

1

)A

s

(�

2

)i

jA

s

(�

1

)A

�s

(�

2

)i

jA

�s

(�

1

)A

s

(�

2

)i

jA

�s

(�

1

)A

�s

(�

2

)i

1

C

C

A

:

The soliton-soliton and antisoliton-antisoliton states are pi
ked out uniquely, and

therefore must s
atter diagonally. The same 
annot be said for the remaining

two states, and it is through this loophole that nondiagonal s
attering enters the

story.

Taking 
harge 
onjugation symmetry into a

ount, there are just three inde-

pendent amplitudes to be determined. With � = �

1

� �

2

, these 
an be written

as:

0

B

B

�

jA

s

(�

1

)A

s

(�

2

)i

in

jA

s

(�

1

)A

�s

(�

2

)i

in

jA

�s

(�

1

)A

s

(�

2

)i

in

jA

�s

(�

1

)A

�s

(�

2

)i

in

1

C

C

A

=

0

B

B

�

S(�)

S

T

(�) S

R

(�)

S

R

(�) S

T

(�)

S(�)

1

C

C

A

0

B

B

�

jA

s

(�

1

)A

s

(�

2

)i

out

jA

s

(�

1

)A

�s

(�

2

)i

out

jA

�s

(�

1

)A

s

(�

2

)i

out

jA

�s

(�

1

)A

�s

(�

2

)i

out

1

C

C

A

:

The same information 
an be given pi
torially:

S(�) =

�

�

�

�t

s s

s s

=

�

�

�

�t

�s �s

�s �s

S

T

(�) =

�

�

�

�t

s �s

�s

s

=

�

�

�

�t

�s s

s

�s

S

R

(�) =

�

�

�

�t

�s s

�s

s

=

�

�

�

�t

s �s

s

�s
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and also using the non
ommuting symbols:

A

s

(�

1

)A

s

(�

2

) = S(�)A

s

(�

2

)A

s

(�

1

)

A

s

(�

1

)A

�s

(�

2

) = S

T

(�)A

�s

(�

2

)A

s

(�

1

) + S

R

(�)A

s

(�

2

)A

�s

(�

1

) :

Unitarity and 
rossing 
onstrain these amplitudes. As a simple exer
ise, it is

worthwhile to 
he
k that unitarity amounts to

S(�)S(��) = 1

S

T

(�)S

T

(��) + S

R

(�)S

R

(��) = 1

S

T

(�)S

R

(��) + S

R

(�)S

T

(��) = 0

while 
rossing is

S(i� � �) = S

T

(�)

S

R

(i� � �) = S

R

(�)

In 1977, Zamolod
hikov was able to build on the earlier proposal of Korepin and

Faddeev (1975) for the spe
ial points h = 2n, n 2 IN (at whi
h S

R

(�) vanishes),

to 
onje
ture an exa
t formula for the S-matrix. Subsequent derivations made

use of the Yang-Baxter equation, but in any event I only want to quote the

physi
al pole stru
ture here. (A pole is 
alled `physi
al' if, like the 
rosses on

�gure 5, it lies on the physi
al strip.) A moment's thought about the ways that

the va
ua �t together shows that:

� S

T


an only form breathers in the forward 
hannel;

� S 
an only form breathers in the 
rossed 
hannel;

� S

R


an form both.

This is pre
isely mat
hed by Zamolod
hikov's S-matrix: in terms of B(�) =

2�

2

=(8���

2

) = 4=h, the poles of S

T

, S and S

R

in the physi
al strip are found

at the following points:

� S

T

: (1� k

B

2

)�i, k = 1; 2; : : : :

0 i�

�

3

rd

breather

�

2

nd

breather

�

1

st

breather

� � �

B

2

�

B

2

�

B

2

�

- - -

� S: k

B

2

�i, k = 1; 2; : : : :

0 i�

�

1

st

breather

�

2

nd

breather

�

3

rd

breather

� � �

B

2

�

B

2

�

B

2

�

- - -

� S

R

: (1�k

B

2

)�i , k

B

2

�i, k = 1; 2; : : : :

0 i�

�

1

st

�

2

nd

�

3

rd

�

3

rd

�

2

nd

�

1

st

� � �

B

2

�

B

2

�

B

2

�

- - -

� � �

B

2

�

B

2

�

B

2

�

- - -
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(Beyond the physi
al strip, S

T

, S and S

R

have a proliferating set of unphysi
al

poles, there to �x up 
rossing and unitarity, but this aspe
t will not be important

below.) In the illustrations, the parti
les responsible for the poles have also been

indi
ated. To 
he
k that these have been pla
ed 
orre
tly, all that is needed is

some elementary kinemati
s. Suppose that a soliton s and an antisoliton �s, of

masses M

s

= M

�s

= M and moving with respe
tive rapidities �

1

and �

2

= ��

1

,

fuse to form a (stationary) breather of massM

b

. The relative rapidity of the two

parti
les is �

12

= 2�

1

, and the S-matrix will normally have a simple, forward-


hannel pole at exa
tly this point. Conservation of energy di
tates that M

b

=

2M 
osh(�

12

=2) . It will be 
onvenient to write this spe
ial value of �

12

as iU

b

s�s

,

where U

b

s�s

is 
alled the fusing angle for the fusing s �s! b:

s

M

s

M

�s

M

b

�

�

S

S

7

w

U

b

s�s

U

s

bs

U

�s

�sb

By 
onvention, an arrow pointing forwards in time marks a soliton, and an arrow

pointing ba
kwards an antisoliton; lines without arrows are breathers of some

sort. Rotating the diagram by �2�=3 gives pi
tures of b s and �s b s
attering,

and the 
orresponding fusing angles have also been indi
ated. If all of the poles

in S

T

are forward-
hannel, then the values of the fusing angles follow from the

positions of these poles:

U

b

s�s

=

�

1� k

B

2

�

� ; U

s

bs

= U

�s

�sb

=

�

1

2

+ k

B

4

�

� :

The angles are all real, re
e
ting the fa
t that the bound states are below thresh-

old and the relative rapidities at whi
h they are formed purely imaginary. The

masses of the 
orresponding bound states are therefore

M

b

= 2M 
os

�

�

2

�k

B

4

�

�

= 2M sin

�

k�

h

�

;

and these mat
h the spe
trum of breather masses.

For later use, the pre
ise relationship between S

T

, S and S

R

is:

S

T

(iu) = S(i��iu) =

sin(

2

B

u)

sin(

2

B

�)

S

R

(iu) :

The �rst equality is merely 
rossing symmetry, whilst the fa
tor of sin(

2

B

u)

multiplying S

R

is there to ex
lude the 
rossed-
hannel poles in S

R

from S

T

, and

the forward-
hannel poles in S

R

from S.

There are also S-matrix elements involving the breathers. These 
an be de-

du
ed using bootstrap equations, to be des
ribed a little later, but for now the

fo
us is elsewhere and so I'll just quote the required result, 
on
erning the s
at-

tering of two 
opies of the �rst breather:
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� S

11

has poles at i

B

2

� and i� � i

B

2

�:

0 i�

�

2

nd

breather

�

2

nd

breather

� �

B

2

�

B

2

�

- -

This looks �ne: it is easy to 
he
k that the pole at i

B

2

� 
an be blamed on a


opy of the se
ond breather as a forward-
hannel bound state, and the other one

on the same parti
le appearing in the 
rossed 
hannel. But now 
onsider what

happens as �, and hen
e B=2, in
reases. Ea
h time B=2 passes an inverse integer,

a pole in S

T

leaves the physi
al strip and the 
orresponding breather leaves the

spe
trum of the model. Finally, when B=2 passes 1=2, the se
ond breather drops

out. The theory, now well into the quantum regime, has just the soliton, the

antisoliton, and the �rst breather in its spe
trum. And this is problemati
al: S

11

still has a pair of simple poles. How 
an this be, if the parti
le previously invoked

to explain them is no longer there?

The answer was found by Coleman and Thun in 1978, and requires a prelim-

inary diversion into the subje
t of anomalous threshold singularities. These are

most simply understood by asking how an individual Feynman diagram might

be
ome singular. If the external momenta are su
h that a number of internal

propagators 
an �nd themselves simultaneously on-shell, then it turns out that

the loop integrals give rise to a singularity in the amplitude. Apart from the

somewhat trivial examples provided by tree-level diagrams, these singularities

are always bran
h points in spa
etimes of dimension higher than two; but in 1+1

dimensions, they 
an give rise to poles instead.

On
e this is known, the problem of identifying the positions of su
h singu-

larities be
omes a geometri
al exer
ise in gluing together a 
olle
tion of on-shell

verti
es so as to make a pattern that 
loses. For three-point verti
es, the on-

shell requirement simply for
es the relative Minkowski momenta to be equal to

i times the fusing angles. If all 
ouplings are below threshold, then all fusing an-

gles are real and the resulting patterns 
an be drawn as �gures in two Eu
lidean

dimensions. These pi
tures are known as Landau, or on-shell, diagrams.

In fa
t, the 
hara
terisation as so far given also en
ompasses the more usual

multiparti
le thresholds, whi
h are asso
iated in perturbation theory with on-

shell diagrams of the following type:

��

��

��

��

"

all on-shell

(Ex
eptionally, time is running sideways in this pi
ture.) Here, the on-shell par-

ti
les are all in the same 
hannel, and the value of s at whi
h the singularity is

found is simply the square of the sum of the masses of the intermediate on-shell

parti
les. To qualify as `anomalous', something more exoti
 should be going on,

and the position of the singularity will no longer have su
h a straightforward
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relationship with the mass spe
trum of the model.

The moral is that when we 
ome to analyse the pole stru
ture of an S-matrix

in 1+1 dimensions there are more things to worry about than just the tree-level

pro
esses dis
ussed so far. Returning to the sine-Gordon model, as the point

B=2 = 1=2 is passed, an on-shell diagram does indeed enter the game as far as

the s
attering of two of the �rst breathers is 
on
erned:

�

�

�

�

�

�

�

7

7

S

S

S

S

S

S

S

w

w

�

�

�

�

Z

Z

Z

Z

�

�

�

�	

(1�B=2)�

�

��

(B�1)�

s

s s

s

s

This diagram only invokes the solitons and antisolitons on the internal lines,

whi
h are present in the spe
trum whatever the 
oupling. A 
ouple of internal

angles are marked, making it 
lear that the �gure will only 
lose if B=2 � 1=2.

However we are not quite out of the woods yet: diagrams of this sort are expe
ted

to yield double poles when evaluated in 1+1 dimensions, and not the single poles

that we are after as soon as B=2 passes 1=2. (A
tually at B=2 = 1=2, S

11

does

indeed have a double pole, but the understanding of a single extra point is

s
ar
ely major progress.) The �nal ingredient is to noti
e that for B=2 > 1=2,

two of the internal lines must inevitably 
ross over. When a soliton and an

antisoliton meet we should allow for re
e
tion as well as transmission, sin
e we

have already seen that both amplitudes are generally nonzero. Thus not one but

four diagrams are relevant to the amplitude near to the value of �

12

of interest.

The full story is given by the diagrams

�

�

�

�

7

7

S

S

S

S

w

w

�

�

�

�

Z

Z

Z

Z

�

�

q

q q

q

q

+

�

�

�

�

7

/

S

S

S

S

o

w

�

�

�

�

Z

Z

Z

Z

�

-

q

q q

q

q

together with their overall 
onjugates, in whi
h all arrows are reversed. Individ-

ually ea
h diagram 
ontributes a double pole, but these must be added together

with the 
orre
t relative weights. The only di�eren
e between the two diagrams

shown is that the 
entral blob on the �rst 
arries with it a fa
tor of S

T

(�), and

the 
entral blob of the se
ond a fa
tor of S

R

(�). At the pole position, the value

of � is �xed by the on-shell requirement to be equal to iu, with u = (B�1)�.

Referring ba
k to the earlier expression relating S

T

to S

R

, we have

S

T

((B�1)�i) =

sin(

2

B

(B�1)�)

sin(

2

B

�)

S

R

((B�1)�i)

= �S

R

((B�1)�i)
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Thus exa
tly when the individual diagrams have a double pole, S

T

+ S

R

= 0, a


an
ellation o

urs, and the �eld-theoreti
 predi
tion is for a simple pole, exa
tly

as seen in the S-matrix. Coleman and Thun dubbed explanations of this sort

`prosai
', sin
e they do not rely on properties spe
ial to integrable �eld theories

{ a non-integrable (albeit very �nely-tuned) theory would be perfe
tly 
apable

of exhibiting the same behaviour. Nonetheless, there is a 
ertain mira
ulous

quality about the result. The 
an
ellation between S

T

and S

R

is very deli
ate:

S

T

des
ribes a 
lassi
ally-allowed pro
ess, while S

R

does not (there is no 
lassi
al

re
e
tion of solitons). It is also noteworthy that the Landau diagrams expose

intrinsi
ally �eld-theoreti
al aspe
ts of the theory, sin
e loops are involved. Their

relevan
e tells us that quantum me
hani
al intuitions about bound states and

pole stru
ture may o

asionally be misleading.

Some general lessons 
an be drawn from all of this:

� The S-matrix 
an have poles between � = 0 and � = i� ;

� these 
an be �rst order, se
ond order, or in fa
t mu
h higher order (examples

up to 12

th

order are found in the aÆne Toda �eld theories);

� even for a �rst-order pole, a dire
t interpretation in terms of a bound state is

not inevitable;

� but there is always some (prosai


TM

) explanation in terms of standard �eld

theory.

5 Bootstrap equations

If we de
ide that our theory does 
ontain a bound state, then the next task is

to �nd the S-matrix elements involving this new parti
le, and then to look for

eviden
e of further bound states in these, and so on. Rather than 
ontinuing

with the sine-Gordon example, whi
h showed how 
ompli
ated the story 
an

be
ome, I will make a ta
ti
al retreat at this point to a 
lass of models where

the behaviour is rather simpler, and the workings of the bound states 
an be

seen more 
leanly. The stru
ture is still rewardingly ri
h, so this won't be too

great a sa
ri�
e.

The key 
on
ession is to assume that there are no degenera
ies among the

one-parti
le states on
e all of the non-zero spin 
onserved 
harges have been

spe
i�ed. This 
loses o� the loophole exploited by the sine-Gordon model, and

for
es the s
attering to be diagonal.

The S-matrix now only needs two indi
es:

S

ij

(�

1

� �

2

) =

�

�

�7

S

S

So

�

�

�7

S

S

So

s

A

i

(�

1

) A

j

(�

2

)

A

j

(�

2

) A

i

(�

1

)
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Two of the previous 
onstraints on the two-parti
le S-matrix elements 
an

therefore be simpli�ed:

� Unitarity: S

ij

(�)S

ij

(��) = 1 ;

� Crossing: S

ij

(�) = S

i�|

(i� � �) :

(In 
ontrast to its previous in
arnation, there is no sum on repeated indi
es in

the unitarity equation.) Combining these two reveals the important fa
t that

S

ij

(�+2�i) = S

ij

(�) ;

so that for diagonal s
attering the Riemann surfa
e for the S-matrix really is

just a double 
over of the 
omplex plane { whether you go round the left or the

right bran
h point in �gure 4, you always land up on the same unphysi
al sheet.

The simpli�
ation is even more drasti
 for the third 
onstraint: the loss of

matrix stru
ture, already evident in the revised unitarity equation, means that

the Yang-Baxter equation is trivially satis�ed for any S

ij

(�) whatsoever.

Fortunately, a vestige of algebrai
 stru
ture does remain, in the guise of the

pattern of bound states. Suppose that S

ij

(�

12

) has a simple pole, at �

12

= iU

k

ij

say, whi
h really is due to the formation of a forward-
hannel bound state. Note

that, in a unitary theory, forward and 
rossed 
hannel poles 
an be distinguished

by the fa
t that the residues are positive-real multiples of i in the forward 
han-

nel, and negative-real multiples in the 
rossed 
hannel. The previous pi
ture of

the s
attering pro
ess 
an be `expanded' near to the pole:

S

ij

(�

12

� iU

k

ij

) �

�

�

�7

S

S

So

�

�

�7

S

S

So

6

s

s

A

i

(�

1

) A

j

(�

2

)

A

j

(�

2

) A

i

(�

1

)

A

�

k

(�

3

)

(The intermediate parti
le is labelled

�

k for 
onvenien
e, in anti
ipation of a


onvention that all indi
es on a three-point 
oupling will be ingoing.) There are

a number of immediate 
onsequen
es:

(1) The quantum 
oupling C

ijk

is nonzero at the point where parti
les i, j and

k are all on shell.

(2) At the rapidity di�eren
e �

12

= iU

k

ij

, the intermediate parti
le A

�

k

(�

3

) is

on shell and survives for ma
ros
opi
 times. On general grounds (the `boot-

strap prin
iple', or `nu
lear demo
ra
y'), A

�

k

is expe
ted to be one of the other

asymptoti
 one-parti
le states of the model.

(3) Sin
e s = m

2

k

when this happens, we have

m

2

k

= m

2

i

+m

2

j

+ 2m

i

m

j


osU

k

ij

:
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Of 
ourse, the U

k

ij

are just the fusing angles already seen in the last le
ture.

For a more geometri
al 
hara
terisation of the fusing angles, observe that the

formula just given is familiar from elementary trigonometry, and implies that

U

k

ij

is the outside angle of a `mass triangle' of sides m

i

, m

j

and m

k

:

-Z

Z

Z

Z

Z

Z

Z}

�

�

�

�

�/

m

i

m

j

m

k

�

�	

U

k

ij

(C

ijk

6= 0 )

With C

ijk

6= 0 , poles are also present in S

jk

and S

ki

. From the triangle just

drawn, the three fusing angles involved satisfy

U

k

ij

+ U

i

jk

+ U

j

ki

= 2� :

Con
rete examples, the nonzero quantum 
ouplings C

bs�s

in the sine-Gordon

model, were mentioned in the last le
ture.

Sin
e the

�

k is supposed to be long-lived when �

12

= iU

k

jk

, it should be possible

to evaluate a 
onserved 
harge Q

s

after the fusing of i and j into

�

k, as well

as before. The a
tion of Q

s

on jA

�

k

(�

3

)i and jA

i

(�

1

)A

j

(�

2

)i was given at the

beginning of the se
ond le
ture; equating the two at the relevant rapidities gives

a 
onstraint on the numbers q

(s)

i

whi
h 
hara
terise Q

s

:

C

ijk

6= 0 ) q

(s)

�

k

= q

(s)

i

e

is

�

U

j

ki

+ q

(s)

j

e

�is

�

U

i

kj

;

where

�

U = ��U . (To see this, swit
h to the frame where

�

k is stationary. Then

�

1

= i

�

U

j

ki

and �

2

= �i

�

U

i

kj

.) The relations q

(s)

�

k

= (�1)

s+1

q

(s)

k

and

�

U +

�

U +

�

U = �


an be employed to put this into a more symmetri
al form:

C

ijk

6= 0 ) q

(s)

i

+ q

(s)

j

e

isU

k

ij

+ q

(s)

k

e

is(U

k

ij

+U

i

jk

)

= 0 :

Drawing this equation in the 
omplex plane shows that it has a ni
e interpreta-

tion as a 
losure 
ondition for a `generalised mass triangle':

-H

H

H

H

H

H

H

H

H

H

H

HY

A

A

A

A

A

AU

H

H

q

(s)

i

q

(s)

j

q

(s)

k

�

�	

sU

k

ij

�

�

�1

sU

i

jk

(C

ijk

6= 0 )

(Note that the three angles for this triangle, sU

k

ij

, sU

i

jk

and sU

j

ki

, now add up

to 2�s instead of just 2�.)
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This set of equations 
onstitutes the 
onserved 
harge bootstrap. Given a

set of masses and three-point 
ouplings, the fusing angles 
an be determined by

the mass triangles. The angles in the higher-spin triangles are then �xed, and at

any given spin s the demand that all of the triangles at that spin should 
lose

provides an overdetermined set of 
onditions on the values of the q

(s)

i

. Should

the only solution be the trivial one, q

(s)

i

= 0 for all i, then we 
an 
on
lude that

Q

s

� 0 and there is no 
onserved 
harge of that spin. The surprise is that there

should be any 
hoi
e of the initial masses and 
ouplings su
h that the higher-spin

triangles 
an be made to 
lose for at least an in�nite subset of spins. However,

when this does happen, the set of spins at whi
h the triangles do 
lose gives

a

ess to the �ngerprint of spins mentioned earlier, without the need to �nd the

lo
al 
onserved densities expli
itly.

A fair amount of physi
al intuition has been used to arrive at these 
on
lu-

sions, and one parti
ular point deserves mention. Given that the fusing angles

are always real in appli
ations of interest, most if not all of the momenta entering

the dis
ussion are 
omplex, and this might 
ast doubt on the spa
etime language

that has been used throughout. I have impli
itly assumed that the states, their

fusings, and the a
tion on them of the 
onserved 
harges, 
ontinue to behave in

the expe
ted manner after the ne
essary analyti
 
ontinuations have been made.

For the S-matrix we 
an use a similar argument. Consider another parti
le

l, whi
h might intera
t either before or after parti
les i and j fuse to form

�

k.

Whi
h depends on the impa
t parameter, but in an integrable model this should

be irrelevant. Translating this into equations,

C

ijk

6= 0 ) S

l

�

k

(�) = S

li

(� � i

�

U

j

ki

)S

lj

(� +

�

U

i

jk

) ;

and this is the S-matrix bootstrap equation. It 
an be given a more symmetri
al

appearan
e using 
rossing symmetry and unitarity, be
oming:

C

ijk

6= 0 ) S

li

(�)S

lj

(� + iU

k

ij

)S

lk

(� + i(U

k

ij

+U

i

jk

)) = 1 :

Imposing these relations for ea
h non-vanishing three-point 
oupling provides an

overdetermined set of fun
tional equations, and again it is rather surprising that

there are any solutions. In fa
t the two bootstraps are rather dire
tly related:

Exer
ise: with the help of a logarithmi
 derivative and a Fourier expansion, show that

ea
h solution to the S-matrix bootstrap 
ontains within it a solution to the 
orrespond-

ing 
onserved 
harge bootstrap.

Starting from an initial guess of a single S-matrix element, we 
an now sear
h

for poles, infer some three-point 
ouplings, apply the bootstrap to dedu
e further

S-matrix elements, and then iterate away. If the pro
ess 
loses on a �nite set of

parti
les, then we 
an 
halk up a su

ess and go on to another problem; if not,

then the initial guess should probably be revised. This is pre
isely the approa
h

that A.B.Zamolod
hikov took in his pioneering work, (1989a) and (1989b), on

perturbed 
onformal �eld theories. The next le
ture is devoted to a parti
ularly

interesting example of this pro
edure whi
h relates to the behaviour of the T =

T




Ising model, in a small magneti
 �eld.



Exa
t S-matri
es 27

6 Zamolod
hikov's E

8

-related S-matrix

The 
riti
al Ising model is found at zero magneti
 �eld, with the temperature


arefully adjusted to the 
riti
al value T




. If the 
ontinuum limit is taken at

this point, the result is well-known to be des
ribed by the 
 =

1

2


onformal

�eld theory, a very well-understood obje
t. In the papers (1989a) and (1989b),

Zamolod
hikov probed nearby points by 
onsidering the a
tions

S

pert

= S

CFT

+ �

Z

d

2

x�(x) ;

where S

CFT

is a notional a
tion for the 
 =

1

2


onformal �eld theory, inside of

whi
h � sits as one of the spinless, relevant �elds. There are just two of these for

the Ising model, and one of them, usually labelled �, 
an be identi�ed with the

s
aling limit of the lo
al magnetisations (spins) on the latti
e. Thus perturbing

by � 
orresponds to swit
hing on a magneti
 �eld. The game now is to exploit

the great 
ontrol that we have of the unperturbed situation to divine some

information about the perturbed model. In this parti
ular 
ase, Zamolod
hikov

used an ingenious argument, based on the 
ounting of dimensions in Virasoro

representations, to establish that the perturbed model supported at the very

least lo
al 
onserved 
harges with the following spins:

s = 1; 7; 11; 13; 17; 19:

This tells us two things. First, there are 
ertainly enough 
harges here to employ

Parke's argument, and so the perturbed model, if massive, possesses a fa
toris-

able S-matrix (and the model must be massive, sin
e the 
-theorem tells us that

the 
entral 
harge of any 
onformal infrared limit would be less than

1

2

, and there

is no su
h unitary 
onformal �eld theory). Se
ond, we now have the �rst part of

the �ngerprint of 
onserved spins, and 
an hope to use this information to build

a bridge between the ultraviolet information residing in the 
hara
terisation of

the model as a perturbed 
onformal �eld theory, and the infrared information

that would be revealed if we knew its S-matrix.

To 
ommen
e the sear
h for this S-matrix, suppose that the massive theory

possesses a parti
le of mass m

1

, say. In addition, assume for the time being that

the model falls into the simplest 
lass, that of diagonal s
attering theories. The

magneti
 �eld breaks the ZZ

2

symmetry of the unperturbed model, and so there

is no reason to ex
lude an intera
tion of �

3

type from the e�e
tive Lagrangian

of the perturbed theory. This pla
es the model in the same general 
lass as the

se
ond example dis
ussed in the �rst le
ture, and makes it natural for C

111

to be

nonzero. For this 
oupling the mass triangle is equilateral, and the fusing angles

are therefore all equal to 2�=3. The 
onserved 
harge bootstrap equation is

C

111

6= 0 ) q

(s)

1

+ q

(s)

1

e

2�is=3

+ q

(s)

1

e

4�is=3

= 0 :

This equation has a nontrivial solution whenever s has no 
ommon divisor

with 6 :

s = 1; 5; 7; 11; 13; 17 : : : :
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This is too mu
h of a good thing: the �ngerprint 
ontains rather too many spins

for 
omfort. Whilst the unwanted 
harges might vanish for other reasons, it

would be more satisfying if the 
ast of parti
les 
ould be enlarged a little, so as

to restri
t the set of 
onserved spins a bit more. Besides, earlier work des
ribed

in M
Coy and Wu (1978) had led Zamolod
hikov to suspe
t the presen
e of at

least a 
ouple of further masses in the parti
le spe
trum. Taking things one step

at a time, he �rst enlarged the spe
trum by adding just one more parti
le type,

with mass m

2

, and supposed that both C

112

and C

221

were nonzero. The fusing

angles are not so easily determined now, but if the ignoran
e is en
oded in the

pair of numbers y

1

= exp(iU

1

21

) and y

2

= exp(iU

2

12

), then two of the bootstrap

equations are:

C

121

6= 0 ) q

(s)

1

+ q

(s)

2

(y

1

)

s

+ q

(s)

1

(y

1

)

2s

= 0 ;

C

212

6= 0 ) q

(s)

2

+ q

(s)

1

(y

2

)

s

+ q

(s)

2

(y

2

)

2s

= 0 :

Eliminating q

(s)

1

and q

(s)

2

,

(y

s

1

+ y

�s

1

)(y

s

2

+ y

�s

2

) = 1 ;

at least at those values of s for whi
h there is a nontrivial 
onserved 
harge.

If there are more than a 
ouple of these, then the system is overdetermined;

nevertheless, if y

1

= exp(4�i=5) and y

2

= exp(3�i=5) then there is a solution for

every odd s whi
h is not a multiple of 5. This yields the following set of fusing

angles:

U

1

12

= U

1

21

= 4�=5 ; U

2

11

= 2�=5 ;

U

2

21

= U

2

12

= 3�=5 ; U

1

22

= 4�=5 ;

and the golden mass ratio

m

2

m

1

= 2 
os

�

5

:

(There are other solutions su
h as (�y

1

;�y

2

) or (y

2

; y

1

), but the 
hoi
e taken is

the only one whi
h yields sensible fusing angles and m

1

< m

2

.)

This is very promising: the multiples of 5 were exa
tly the values of s that had

to be eliminated in order to mat
h the sets of 
onserved spins. Thus en
ouraged,

we 
an start to think about the S-matrix.

It has been assumed that all the parti
les are self-
onjugate (the absen
e of

any even spins from the �ngerprint is a good hint that this assumption is 
or-

re
t) and so ea
h S-matrix element S

ij

must be individually 
rossing-symmetri
,

S

ij

(�) = S

ij

(i���), as well as unitary. It is 
onvenient to 
onstru
t these as

produ
ts of a basi
 `building blo
k' (x)(�), where

(x)(�) =

sinh

�

�

2

+

i�x

60

�

sinh

�

�

2

�

i�x

60

�

:

(The 60 in the denominators has been 
hosen with advan
e knowledge of the �nal

answer, so that all of the arguments x will turn out to be integers.) Unitarity is
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built into these blo
ks, whilst the 
rossing symmetry just mentioned is assured

if ea
h blo
k (x) is always a

ompanied by (30�x). The blo
k (x) has a single

physi
al-strip pole at i�x=30, and no physi
al-strip zeroes.

Consider �rst S

11

(�). The nonzero 
ouplings C

111

and C

112

imply forward-


hannel poles at iU

1

11

= 2�i=3 and iU

2

11

= 2�i=5. In
orporating these and their


rossed partners into a �rst guess for the S-matrix element gives

S

11

= (10)(12)(18)(20) :

However this 
an't be the whole story. The S-matrix bootstrap equation for

the �

3


oupling C

111

requires that S

11

(��i�=3)S

11

(�+i�=3) should be equal to

S

11

(�). But it is easy to 
he
k that for the guess just given,

S

11

(��i�=3)S

11

(�+i�=3) = �(2)(8)(10)(20)(22)(28) ;

whi
h is not the desired answer. Stare at the equations long enough, though, and

you might just spot that all will be well if the initial guess is multiplied by the

fa
tor �(2)(28). Thus the minimal solution to the 
onstraints imposed so far is

S

11

= �(2)(10)(12)(18)(20)(28) :

The bootstrap equations have for
ed the addition of two extra poles, and the

simplest option is to suppose that these are the forward- and 
rossed-
hannel

signals of a further parti
le, with mass m

3

= 2m

1


os(�=30), and a nonzero


oupling C

113

. Of 
ourse, the story is not over yet. Using the bootstrap for the

fusing 1 1! 2 allows S

12

to be obtained from the provisional S

11

:

S

12

= (6)(8)(12)(14)(16)(18)(22)(24) :

The poles from the blo
ks (14), (18) and (24) are 
orre
tly-pla
ed to mat
h

forward-
hannel 
opies of parti
les the 3, 2 and 1 respe
tively, those in (6), (12)

and (16) 
an then be blamed on the same parti
les in the 
rossed 
hannel, but

the blo
ks (8) and (22) are not so easily dismissed, and require the addition of yet

another parti
le, of massm

4

say. (Consideration of the signs of the residues shows

that the forward-
hannel pole is at 8�i=30.) Next, the bootstrap for 1 1 ! 3

predi
ts

S

13

= (1)(3)(9)(11)

2

(13)(17)(19)

2

(21)(27)(29) :

(Exer
ise: 
he
k at least one of these 
laims.)

Apart from the double poles, whi
h should not be too alarming after the earlier

investigations of the sine-Gordon model, there is one more pair of simple poles

here whi
h 
annot be explained in terms of the spe
trum seen so far, and so a

further mass, m

5

say, is revealed.

There is nothing to stop the mythi
al energeti
 reader from 
ontinuing with

all this, and it turns out that no further ba
ktra
king is required { with just

one 
orre
tion to the initial guess, Zamolod
hikov had arrived at a 
onsistent


onje
ture for S

11

(�). Furthermore, the �nal answer turned out to have a number
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of intriguing properties. These 
an be summarised in a list of what might be


alled `S-matrix data':

� 8 parti
le types A

1

; : : : A

8

;

� 8 masses m

i

, i = 1; : : : 8, whi
h together form an eigenve
tor of the Cartan

matrix of the Lie algebra E

8

:

C

[E

8

℄

ij

m

j

= (2�2 
os

�

30

)m

i

;

(This allows ea
h parti
le type to be atta
hed to a spot on the E

8

Dynkin

diagram { more on this later.)

� solutions to the 
onserved-
harge bootstrap found at

s = 1; 7; 11; 13; 17; 19; 23; 29 : : :

thus �tting the �ngerprint found from perturbed 
onformal �eld theory (and

also the exponents of E

8

, repeated modulo 30);

� `
harges' asso
iated with these solutions whi
h form further eigenve
tors of

C

[E

8

℄

ij

:

C

[E

8

℄

ij

q

(s)

j

= (2�2 
os

�s

30

)q

(s)

i

;

� a full two-parti
le S-matrix whi
h is a 
olle
tion of 
ompli
ated but elementary

fun
tions, with poles at integer multiples of i�=30, all produ
ts of the elementary

building blo
ks introdu
ed earlier.

There is no spa
e to re
ord the full S-matrix here, but a 
omplete table 
an

be found in, for example, Braden et al. (1990).

One note of 
aution: elegant though it might be, it is not 
ompletely 
lear that

this is the answer to the question originally posed, given the number of assump-

tions that were made along the way. Probably the most 
onvin
ing reassuran
e


omes on re
al
ulating the 
entral 
harge of the unperturbed model from the


onje
tured S-matrix, using a te
hnique 
alled the thermodynami
 Bethe ansatz.

Its use in this 
ontext was �rst advo
ated by Al.B.Zamolod
hikov (1990), and

the spe
i�
 
al
ulation for the E

8

-related S-matrix 
an be found in Klassen and

Melzer (1990).

7 Coxeter geometry

It is a �nite though lengthy task to 
he
k all of the bootstrap equations for

Zamolod
hikov's S-matrix, and to verify the properties listed at the end of the

last le
ture. However there is something not 
ompletely satisfa
tory about this,

and a feeling that an underlying stru
ture remains to be dis
overed, a stru
ture

that might help to explain quite why su
h an elegant solution to the bootstrap

should exist at all. The purpose of this short se
tion, something of an aside from

the main development, is to show that at least some parts of this question 
an

be answered.



Exa
t S-matri
es 31

One mathemati
al preliminary is required, a qui
k re
ap on the Weyl group

of E

8

. Imagine a hedgehog � of 240 ve
tors, or `roots', sitting in eight dimen-

sions. They all have equal length, and together they make up the root system

of E

8

. Ea
h root 
an be written as an integer 
ombination of the simple roots

f�

1

; : : : �

8

g:

� 2 � ) � =

8

X

i=1

m

i

�

i

with m

i

2 ZZ, and the m

i

either all non-negative, or all non-positive. A
tually,

there are 240 di�erent eight-element subsets of � whi
h 
ould serve as the simple

roots, but their geometri
al properties are all identi
al, and 
an be summarised

by giving the set of their mutual inner produ
ts, as en
oded either in the Cartan

matrix

C

[E

8

℄

ij

= 2

�

i

:�

j

�

2

j

;

or the Dynkin diagram

e e e eu u u

u

�

2

�

6

�

8

�

7

�

5

�

3

�

1

�

4

Pairs of simple roots joined by a line have inner produ
t �1, and all other

pairs are orthogonal. In parti
ular this means that the bla
k-
oloured roots are

mutually orthogonal, as are the white-
oloured roots. The labelling might look

random, but re
all from the last le
ture that the ve
tor of masses formed an

eigenve
tor of the Cartan matrix, so that ea
h parti
le type in Zamolod
hikov's

S-matrix 
an be assigned to a point on the Dynkin diagram. The labels used

here 
orrespond to these parti
le labels, with m

1

< m

2

< : : : < m

8

.

For ea
h � 2 �, de�ne the Weyl re
e
tion r

�

to be the re
e
tion in the

7-dimensional hyperplane orthogonal to � :

r

�

: x 7! x� 2

�:x

�

2

� :

The produ
ts of the Weyl re
e
tions in any order and of any length together

make up W , the Weyl group of E

8

. This group maps � to itself, and is �nite:

jW j < 1. (Note that W is therefore a �nite re
e
tion group, a mu
h simpler

obje
t than the Lie group or algebra with whi
h it is asso
iated.) One more fa
t:

to generateW , it's enough to start with the set of simple re
e
tions fr

�

1

; : : : r

�

8

g,

and I will write these as fr

1

; : : : r

8

g.

Now I want to study the properties of one parti
ular element w 2 W . It is a

Coxeter element, meaning that it is a produ
t in some order of a set of simple

re
e
tions. Although the ordering is not 
ru
ial, the result I'm after is most

transparent if I pi
k

w = r

3

r

4

r

6

r

7

r

1

r

2

r

5

r

8

:
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This is a Steinberg ordering: re
e
tions of one 
olour a
t �rst, followed by those

of the other. The ordering amongst the re
e
tions of like 
olour is immaterial

{ they all 
ommute, sin
e the 
orresponding simple roots are orthogonal. The

proje
t is to see how w

�1

a
ts on �, and as a start we 
an examine the orbit of

�

1

under w

�1

. Noting that

r

i

(�

j

) = �

j

� C

[E

8

℄

ji

�

i

; (no sum on j)

the individual simple re
e
tion r

i

negates �

i

, adds �

i

to all roots �

j

joined to

�

i

by a line on the Dynkin diagram, and leaves the others alone. With this

information it doesn't take too long to 
ompute that

w

�1

(�

1

) = r

8

r

5

r

2

r

1

r

7

r

6

r

4

r

3

(�

1

) = �

3

+ �

5

:

(Exer
ise: 
he
k this!)

To 
ontinue is easy if a little tedious, a
ting repeatedly with w

�1

to �nd w

�2

(�

1

),

w

�3

(�

1

), and so on. After 30 steps, you should �nd yourself ba
k at �

1

(the

number 30 might just be familiar from the list at the end of the last le
ture).

The story for the �rst 14 of these steps is 
ontained in the following table:

14 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

13 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

12 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

11 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

10 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

9 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

8 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

7 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

6 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

5 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

4 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

3 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

2 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

1 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

0 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Images of �

1

under w

�1

The 
oeÆ
ient of �

i

in the expansion of w

�p

(�

1

) is given by the number of blobs

(�) in the i

th

position of the p

th

row. For the E

8

Weyl group, w

15

= �1 and so

the rest of the table, rows 15 to 29, 
an be omitted.

All of this might seem a long way from exa
t S-matri
es, but in fa
t the Weyl

group 
omputation just performed and the earlier bootstrap manipulations are

in some senses one and the same 
al
ulation, just looked at from orthogonal

dire
tions. To explain this somewhat delphi
 remark, I will �rst rewrite the

S-matrix elements already seen in a new and slightly more 
ompa
t notation.

Observe that, apart from the blo
ks (2) and (28) in the formula for S

11

, every

blo
k (x) in S

11

, S

12

and S

13


an be paired o� with either (x�2) or (x+2).

Noti
ing that (0) = 1 and (30) = �1, this pairing 
an be extended to the
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re
al
itrant S

11

as well, and in fa
t works for all of the other S-matrix elements

too. Thus we 
an at least save some ink if we de�ne a larger building blo
k

fxg = (x�1)(x+1) :

and rewrite the S-matrix elements found previously as

S

11

= f1gf11gf19gf29g

S

12

= f7gf13gf17gf23g

S

13

= f2gf10gf12gf18gf20gf28g

The next step is to introdu
e a pi
torial representation of these formulae. Start

by drawing a line segment to represent the interval from 0 to i� on whi
h the

physi
al-strip poles are found. Then for ea
h blo
k fxg in the S-matrix ele-

ment, pla
e a small bri
k on the line segment, running from i(x�1)�=30 to

i(x+1)�=30. (Thus, the poles are lo
ated at the ends of the bri
ks.) The formulae

just given be
ome

S

11

=

S

12

=

S

13

=

Rotate these three by 90 degrees and you should observe a neat mat
h with the

�rst three 
olumns of the table on the last page, of images of �

1

under w

�1

.

This is a glimpse of a general 
onstru
tion, whi
h allows a diagonal s
atter-

ing theory to be asso
iated with every simply-la
ed Weyl group. Further details


an be found in Dorey (1991,1992a); see also Fring and Olive (1992) and Dorey

(1992b). All of these s
attering theories were in fa
t already around in the liter-

ature: in addition to the arti
les by Zamolod
hikov already 
ited, some relevant

referen
es are K�oberle and Swie
a (1979), Sotkov and Zhu (1989), Fateev and

Zamolod
hikov (1990), Christe and Mussardo (1990a,b), Braden et al. (1990),

and Klassen and Melzer (1990). Why then worry about Weyl groups? This is

ultimately a matter of taste, but it should be mentioned that the 
onstru
tion

goes rather deeper than the 
urious 
oin
iden
es des
ribed so far. The geometry

of �nite re
e
tion groups appears to repla
e the rather more 
ompli
ated Lie

algebrai
 
on
epts that might have been a �rst guess as to the underlying math-

emati
al stru
ture. Features su
h as the 
oupling data and the pole stru
ture


an be related to simple properties of root systems, and this allows the bootstrap

equations both for the 
onserved 
urrents and for the S-matri
es to be proved

in a uniform way.
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8 AÆne Toda �eld theory

Zamolod
hikov's E

8

-related S-matrix is an example of a diagonal S-matrix with

few of the subtleties that made the treatment of the sine-Gordon model so del-

i
ate. Whilst higher poles are 
ertainly present, their orders are always just

as would be predi
ted from an initial glan
e at the possible Landau diagrams.

In parti
ular, simple poles are always asso
iated with bound states. Sin
e the


an
ellations whi
h 
ompli
ated the sine-Gordon 
ase relied on the non-diagonal

nature of its S-matrix, one might suppose that diagonal s
attering theories would

always behave in a straightforward manner. Curiously enough, this turns out not

to be true. The aÆne Toda �eld theories, the subje
t of this le
ture, provide a

number of elegant 
ounterexamples.

The study of these models begins with a standard, albeit non-polynomial,

s
alar Lagrangian in 1+1 dimensions:

L =

1

2

(��)

2

�

m

2

�

2

r

X

a=0

n

a

e

��

a

��

:

This des
ribes the intera
tion of r s
alar �elds, gathered together into the ve
tor

� 2 IR

r

. The set f�

0

: : : �

r

g is a 
olle
tion of r+1 further ve
tors in IR

r

, whi
h

must be 
arefully pi
ked if the model is to be integrable. It turns out that there

is a 
lassi
ally a

eptable 
hoi
e for every (untwisted or twisted) aÆne Dynkin

diagram g

(k)

, thought of as en
oding the mutual inner produ
ts of the �

a

. By


onvention �

0


orresponds to the `extra' spot on the aÆne diagram, and the

integers n

a

satisfy n

0

= 1 and

P

r

a=0

n

a

�

a

= 0. The real 
onstant m sets a mass

s
ale, while � governs the strength of the intera
tions. When � is also real, the

models generalise sinh-Gordon rather than sine-Gordon and there is no topology

to worry about. In fa
t on
e we go beyond the sinh-Gordon example making �

imaginary is no longer an inno
ent operation, sin
e in all other 
ases the manifest

reality of the Lagrangian is promptly lost. Despite these problems the models

with � purely imaginary have re
eived a fair amount of attention, starting with

the work of Hollowood (1992). However, in this le
ture I will sti
k to the 
ases

where � is real.

As 
lassi
al �eld theories, these models are all integrable, and exhibit 
on-

served quantities at spins given by the exponents of g

(k)

, repeated modulo a

quantity 
alled the k

th

Coxeter number, h

(k)

:

h

(k)

= k

k

X

a=0

n

a

:

(For the untwisted diagrams, k=1 and h

(k)

is the same as the usual Coxeter

number h.)

However when we turn to the quantum theory, none of the elegant 
lassi
al

apparatus, as des
ribed in, for example, Mikhailov et al. (1981), Wilson (1981),

and Olive and Turok (1985), is immediately appli
able. A more elementary ap-

proa
h is appropriate, studying the models with the standard perturbative tools
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of quantum �eld theory before pro
eeding to some exa
t 
onje
tures. Arinshtein

et al. were the �rst to try this, for the a

(1)

n

theories, in 1979. Interest in the subje
t

was renewed following Zamolod
hikov's work on perturbed 
onformal �eld the-

ories, and the fa
t that in the meantime the other 
lassi
ally-integrable possibil-

ities, related to the other aÆne Dynkin diagrams, had been un
overed. Initially,

only the so-
alled self-dual models were understood, and elements of this story


an be found in Christe and Mussardo (1990a,b) and Braden et al. (1990,1991).

The other, non self-dual, 
ases were more tri
ky, sin
e they turned out to fall

into the 
lass of less straightforward s
attering theories for whi
h simple poles

do not always have simple explanations. The 
ru
ial step was made by Delius

et al. (1992), and the papers by Corrigan et al. (1993) and Dorey (1993) 
an

be 
onsulted for the few 
ases not 
overed in their work. In the remainder of

this le
ture I will outline some aspe
ts of these quantum 
onsiderations, but the

dis
ussion will perfor
e be very sket
hy. In addition to the referen
es just 
ited,

the review by Corrigan (1994) is a good pla
e to start for those interested in

delving deeper into this subje
t. That the �eld is still developing is evin
ed by

an arti
le by Oota (1997) whi
h appeared as these notes were being written up,

indi
ating that the ideas dis
ussed in the last le
ture may also be relevant, if

suitably q-deformed, to the non self-dual theories that had previously resisted

any geometri
al interpretation.

If we are to treat these models as ordinary quantum �eld theories, then the

�rst step must be to �nd out what the multipoint 
ouplings are. To this end,

the potential term in the Lagrangian 
an be expanded as follows:

V (�) �

m

2

�

2

r

X

a=0

n

a

e

��

a

��

=

m

2

�

2

r

X

a=0

n

a

+

1

2

(M

2

)

ij

�

i

�

j

+

1

3!

C

ijk

�

i

�

j

�

k

+ : : :

where summations on the repeated indi
es i, j and k running from 1 to r are

implied, and the two and three index obje
ts

(M

2

)

ij

= m

2

r

X

a=0

n

a

�

i

a

�

j

a

and

C

ijk

= m

2

�

r

X

a=0

n

a

�

i

a

�

j

a

�

k

a


an be thought of as the mass

2

matrix and the set of three-point 
ouplings, at

least 
lassi
ally. Mu
h as for theories dis
ussed in the �rst le
ture, it is possible to

view the C

ijk

as 
ontaining the `bones' of the model, with the higher 
ouplings,

hidden as ` + : : : ', there just to tidy away any residual produ
tion amplitude

ba
kgrounds that would otherwise spoil integrability. Now the general idea is the

following: �rst diagonaliseM

2

to �nd the 
lassi
al parti
le massesm

1

: : :m

r

, and
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then 
ompute the C

ijk

in the eigenbasis of M

2

to �nd the 
lassi
al three-point


ouplings between the 
orresponding one-parti
le states. At this level there are

already some surprises: for example, it turns out that in all of the untwisted


ases, the set of masses form the eigenve
tor, with lowest eigenvalue, of the


orresponding non-aÆne Cartan matrix. This was initially noti
ed on a 
ase-by-


ase basis, before being proved in a general way by Freeman (1991). The Coxeter

element, des
ribed in the last le
ture, turns out to be 
ru
ial in this dis
ussion.

This work was further elaborated by Fring et al. (1991), elu
idating in parti
ular

earlier observations about the three-point 
ouplings.

However it has been obtained, on
e the 
lassi
al data is known two things 
an

be done: on the one hand the masses and three-point 
ouplings 
an be fed into

the bootstrap to make some initial 
onje
tures as to the full quantum S-matri
es,

and on the other perturbation theory 
an be attempted in order to 
he
k these


onje
tures. As hinted above, the aÆne Toda �eld theories split into two 
lasses

when this programme is attempted: `straightforward' and `not straightforward'.

To make this distin
tion more pre
ise, de�ne a duality operation on the set of

all aÆne Dynkin diagrams by

f�

0

: : : �

r

g $ f�

_

0

: : : �

_

r

g

where

�

_

a

�

2

�

2

a

�

a

:

(This is sometimes 
alled Langlands duality.)

When appropriately normalised, the sets of ve
tors asso
iated with the a

(1)

n

,

d

(1)

n

, e

(1)

n

and a

(2)

2n

aÆne Dynkin diagrams are self-dual in this sense, and the


orresponding aÆne Toda �eld theories are also 
alled self-dual. These are the

`straightforward' 
ases: 
onje
tures based on the 
lassi
al data lead to self-


onsistent quantum S-matri
es, and to date these have passed all perturbative


he
ks to whi
h they have been subje
ted. For example, the mass ratios, and

hen
e the fusing angles, are preserved at one loop. As a result, the bootstrap

stru
ture is essentially blind to the value of the 
oupling �, whi
h enters into

the S-matri
es via a fun
tion

B(�) =

1

2�

�

2

1 + �

2

=4�

:

There is a simple relationship between the S-matri
es for 
ertain perturbed 
on-

formal �eld theories and the S-matri
es for the self-dual aÆne Toda models: all

that has to be done is to repla
e building blo
ks of the type seen in the last

le
ture

fxg

PCFT

� (x�1)(x+1)

by the slightly more elaborate blo
ks

fxg

toda

�

(x�1)(x+1)

(x�1+B)(x+1�B)

:
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Zamolod
hikov'sE

8

-related S-matrix is related in this way to the S-matrix of the

e

(1)

8

aÆne Toda �eld theory; more generally, for g 2 fa; d; eg the 
orresponden
e

is between the g aÆne Toda �eld theory and a perturbation of the g

1

�g

1

=g

2


oset model, while a

(2)

2n

turns into a perturbation of the nonunitary minimal

modelM(2; 2n+3). (Note though that the fa
tors of 60 appearing in the earlier

de�nition of (x) should be repla
ed by 2h, with h the relevant Coxeter number).

For every self-dual aÆne Toda S-matrix, there is thus a 
ompanion `minimal'

S-matrix, sharing the same physi
al pole stru
ture but la
king the 
oupling-


onstant dependent physi
al strip zeroes, whi
h in the Toda theories serve to


an
el the poles in the � ! 0 limit. Note also that repla
ing � by 4�=� sends B

to 2�B and leaves the Toda blo
ks un
hanged { a strong-weak 
oupling duality.

The remaining, non self-dual, models behave in a mu
h more 
ompli
ated

way. The 
lassi
al data is still elegant, but there is quantum trouble: 
onje
tures

based on the raw 
lassi
al data are no longer self-
onsistent, and perturbative


he
ks show varying mass ratios, 
ausing the fusing angles to depend on the value

of the 
oupling 
onstant. These perturbative results are reinfor
ed by the results

of Kaus
h and Watts (1992) and Feigin and Frenkel (1993), whi
h indi
ate that

the 
orre
t general implementation of strong-weak 
oupling duality is not only to

repla
e � by 4�=�, but also to repla
e ea
h �

a

by its dual, �

_

a

. (Of 
ourse, for the

self-dual theories this latter operation has no e�e
t and so the earlier statement

of duality remains 
orre
t for these 
ases.) This means that for ea
h dual pair

of 
lassi
al aÆne Toda �eld theories, there should be just one quantum theory

{ there are `fewer' genuinely distin
t quantum theories than expe
ted, and the

di�erent 
lassi
al theories 
an be re
overed by taking strong or weak 
oupling

limits. The predi
ted dualities are:

b

(1)

n

$ a

(2)

2n�1

g

(1)

2

$ d

(3)

4




(1)

n

$ d

(2)

n+1

f

(1)

4

$ e

(2)

6

(Exer
ise: 
ompare and 
ontrast the 
lassi
al 
onserved 
harge �ngerprints for these

models. Are they 
ompatible with duality?)

If this pi
ture is 
orre
t, then the mass ratios have no option but to vary:

if a model is non self-dual, then (as 
an be 
he
ked 
ase-by-
ase) its 
lassi
al

mass spe
trum is always di�erent from that of its dual. One spe
trum is found

at � ! 0, the other at � !1, and the quantum theory, if it exists at all, must

�nd some way of interpolating between the two. Given the apparent rigidity

of the bootstrap equations, this looks to be rather a tall order. Nevertheless,

Delius et al. (1992) de
ided to take the perturbatively-
al
ulated shifts in the

mass ratios seriously, and were led to a set of 
onje
tures for most of the models

in the above list (the only 
ases that remained were d

(3)

4

, e

(2)

6

and f

(1)

4

, and these

were subsequently found to behave in just the same way). Whenever 
onje
tures

existed for both halves of a dual pair, they swapped over under � ! 4�=�.

In fa
t, Delius et al. made their proposals independently of any expe
tations of

duality; that it emerged anyway from their 
al
ulations 
an be seen in retrospe
t
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as strong eviden
e that they were on the right tra
k. Further support 
ame from

the numeri
al results of Watts and Weston (1992), who examined the 
oupling-

dependen
e of the single mass ratio found in the g

(1)

2

=d

(3)

4

dual pair.

With the mass ratios depending on the 
oupling, it is no longer possible

to use the simple building blo
ks fxg

toda

introdu
ed earlier. A slightly more

elaborate two-index blo
k fx; yg 
an be found in Dorey (1993), and is probably

the most dire
t generalisation of the self-dual blo
ks. One point to note is that

the natural way for the 
oupling to enter these blo
ks requires the previous

de�nition of the fun
tion B(�) to be slightly modi�ed, so as to en
ompass the

non self-dual theories as well:

B(�) =

1

2�

�

2

h=h

_

+ �

2

=4�

:

Here h is the Coxeter number of the relevant aÆne Dynkin diagram, and h

_

that of its (Langlands) dual.

There are, however, a 
ouple of features of the non self-dual S-matri
es whi
h

give pause for thought. Some simple poles, expe
ted on the basis of the nonzero


lassi
al 
ouplings and quantum mass ratios, turn out to be absent, whilst other

simple poles, whi
h are present in the quantum S-matri
es, are not at lo
ations

whi
h mat
h any of the parti
le masses.

The resolution of the �rst problem appears to be that quantum 
orre
tions

exa
tly 
an
el some of the 
lassi
al three-point 
ouplings, when evaluated on

shell. This means that some quantum 
ouplings C

ijk

vanish even though their


lassi
al 
ounterparts do not. The result is very deli
ate and has only been


he
ked to one loop, but is probably ne
essary if duality is to hold, for the

simple reason that the set of 
lassi
al three-point 
ouplings in a theory and its

dual do not in general 
oin
ide. Those 
ouplings whi
h show signs of vanishing

on
e quantum e�e
ts are taken into a

ount are pre
isely those whi
h are anyway

absent at the 
lassi
al level in the dual model.

As for the se
ond problem, the me
hanism is not too far removed from that

operating in the sine-Gordon model. However, as mentioned at the beginning

of this le
ture, the fa
t that the s
attering is diagonal means that we 
an no

longer hope to generate simple poles through 
an
ellations between 
ompeting

Landau diagrams. Fortunately there is a 
ompensating feature of the aÆne Toda

S-matri
es whi
h allows the basi
 idea to be saved: they all exhibit zeroes as well

as poles on the physi
al strip. These were already visible in the self-dual blo
ks

fxg

toda

de�ned earlier, and are equally present in the more general blo
ks fx; yg.

In the self-dual 
ases the zeroes are merely spe
tators, but in the non self-dual

theories they 
ome to play a mu
h more 
entral role in the pole analysis. A

detailed dis
ussion 
an be found in Corrigan et al. (1993), and it turns out that

for every `anomalous' simple pole in the non self-dual aÆne Toda S-matri
es,

Landau diagrams 
an be drawn in whi
h some internal lines 
ross. Just as for

sine-Gordon, the S-matrix elements for these internal 
rossings must be fa
tored

into the 
al
ulation before the overall order of any pole 
an be predi
ted. This

time, these fa
tors vanish individually as the diagrams are put on shell, and
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thereby manage to demote ostensibly higher poles into the simple poles that are

required in order to mat
h the quantum S-matri
es.
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